Skip to Main content Skip to Navigation
Journal articles

Multiboost: a multi-purpose boosting package

D. Benbouzid 1, 2 Róbert Busa-Fekete 1 N. Casagrande 3 F.-D. Collin 1 Balázs Kégl 1, 2, 4
4 TAO - Machine Learning and Optimisation
CNRS - Centre National de la Recherche Scientifique : UMR8623, Inria Saclay - Ile de France, UP11 - Université Paris-Sud - Paris 11, LRI - Laboratoire de Recherche en Informatique
Abstract : The MultiBoost package provides a fast C++ implementation of multi-class/multi-label/multi-task boosting algorithms. It is based on AdaBoost.MH but it also implements popular cascade classifiers and FilterBoost. The package contains common multi-class base learners (stumps, trees, products, Haar filters). Further base learners and strong learners following the boosting paradigm can be easily implemented in a flexible framework.
Document type :
Journal articles
Complete list of metadatas

Cited literature [9 references]  Display  Hide  Download

http://hal.in2p3.fr/in2p3-00698455
Contributor : Sabine Starita <>
Submitted on : Monday, May 21, 2012 - 4:39:51 PM
Last modification on : Wednesday, September 16, 2020 - 5:13:10 PM
Long-term archiving on: : Wednesday, August 22, 2012 - 2:21:28 AM

File

Multiboost.pdf
Publisher files allowed on an open archive

Identifiers

  • HAL Id : in2p3-00698455, version 1

Collections

Citation

D. Benbouzid, Róbert Busa-Fekete, N. Casagrande, F.-D. Collin, Balázs Kégl. Multiboost: a multi-purpose boosting package. Journal of Machine Learning Research, Microtome Publishing, 2012, 13, pp.549-553. ⟨in2p3-00698455⟩

Share

Metrics

Record views

530

Files downloads

502