H. Haario, E. Saksman, and J. Tamminen, An Adaptive Metropolis Algorithm, Bernoulli, vol.7, issue.2, pp.223-242, 2001.
DOI : 10.2307/3318737

G. Roberts, A. Gelman, and W. Gilks, Weak convergence and optimal scaling of random walk Metropolis algorithms, The Annals of Applied Probability, vol.7, issue.1, pp.110-120, 1997.
DOI : 10.1214/aoap/1034625254

G. O. Roberts and J. S. Rosenthal, Optimal scaling for various Metropolis-Hastings algorithms, Statistical Science, vol.16, issue.4, pp.351-367, 2001.
DOI : 10.1214/ss/1015346320

S. Richardson and P. J. Green, On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion), Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.59, issue.4, pp.731-792, 1997.
DOI : 10.1111/1467-9868.00095

G. Celeux, Bayesian Inference for Mixture: The Label Switching Problem, COMPSTAT 98. Physica-Verlag, 1998.
DOI : 10.1007/978-3-662-01131-7_26

M. Stephens, Dealing with label switching in mixture models, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.62, issue.4, pp.795-809, 2000.
DOI : 10.1111/1467-9868.00265

J. M. Marin, K. Mengersen, and C. P. Robert, Bayesian Modelling and Inference on Mixtures of Distributions, Handbook of Statisics, vol.25, 2004.
DOI : 10.1016/S0169-7161(05)25016-2

A. Jasra, C. C. Holmes, and D. A. Stephens, Markov Chain Monte Carlo Methods and the Label Switching Problem in Bayesian Mixture Modeling, Statistical Science, vol.20, issue.1, pp.50-67, 2005.
DOI : 10.1214/088342305000000016

A. Jasra, Bayesian inference for mixture models via Monte Carlo, 2005.

M. Sperrin, T. Jaki, and E. Wit, Probabilistic relabelling strategies for the label switching problem in Bayesian mixture models, Statistics and Computing, vol.62, issue.2, pp.357-366, 2010.
DOI : 10.1007/s11222-009-9129-8

P. Papastamoulis and G. Iliopoulos, An Artificial Allocations Based Solution to the Label Switching Problem in Bayesian Analysis of Mixtures of Distributions, Journal of Computational and Graphical Statistics, vol.19, issue.2, pp.313-331, 2010.
DOI : 10.1198/jcgs.2010.09008

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equation of State Calculations by Fast Computing Machines, The Journal of Chemical Physics, vol.21, issue.6, pp.1087-1092, 1953.
DOI : 10.1063/1.1699114

E. Saksman and M. Vihola, On the ergodicity of the adaptive Metropolis algorithm on unbounded domains, The Annals of Applied Probability, vol.20, issue.6, pp.2178-2203, 2010.
DOI : 10.1214/10-AAP682

G. Fort, E. Moulines, and P. Priouret, Convergence of adaptive and interacting Markov chain Monte Carlo algorithms, The Annals of Statistics, vol.39, issue.6, 2011.
DOI : 10.1214/11-AOS938SUPP

URL : https://hal.archives-ouvertes.fr/hal-00695649

P. Auger and C. , Pierre Auger project design report, 1997.

M. Vihola, Can the Adaptive Metropolis Algorithm Collapse Without the Covariance Lower Bound?, Electronic Journal of Probability, vol.16, issue.0, pp.45-75, 2011.
DOI : 10.1214/EJP.v16-840

V. S. Borkar, Stochastic approximation, Resonance, vol.8, issue.s.471012, 2008.
DOI : 10.1007/s12045-013-0136-x

C. Andrieu, E. Moulines, and P. Priouret, Stability of Stochastic Approximation under Verifiable Conditions, SIAM Journal on Control and Optimization, vol.44, issue.1, pp.283-312, 2005.
DOI : 10.1137/S0363012902417267

URL : https://hal.archives-ouvertes.fr/hal-00023475

S. Graf and H. Luschgy, Foundations of Quantization for Probability Distributions, 2000.
DOI : 10.1007/BFb0103945