Skip to Main content Skip to Navigation
Journal articles

Deuteron magnetic quadrupole moment from chiral effective field theory

Abstract : We calculate the magneticquadrupolemoment (MQM) of the deuteron at leading order in the systematic expansion provided by chiraleffectivefieldtheory. We take into account parity (P) and time-reversal (T) violation which, at the quark-gluon level, results from the QCD vacuum angle and dimension-six operators that originate from physics beyond the Standard Model. We show that the deuteron MQM can be expressed in terms of five low-energy constants that appear in the P- and T-violating nuclear potential and electromagnetic current, four of which also contribute to the electric dipole moments of light nuclei. We conclude that the deuteron MQM has an enhanced sensitivity to the QCD vacuum angle and that its measurement would be complementary to the proposed measurements of light-nuclear EDMs.
Document type :
Journal articles
Complete list of metadatas
Contributor : Sophie Heurteau <>
Submitted on : Friday, August 31, 2012 - 3:11:21 PM
Last modification on : Wednesday, September 16, 2020 - 4:07:56 PM

Links full text




C. P. Liua, J. de Vries, E. Mereghetti, R.G.E. Timmermans, U. van Kolck. Deuteron magnetic quadrupole moment from chiral effective field theory. Physics Letters B, Elsevier, 2012, 713, pp.447-452. ⟨10.1016/j.physletb.2012.06.024⟩. ⟨in2p3-00726911⟩



Record views