s'authentifier
version française rss feed
HAL : in2p3-00741945, version 1

Fiche détaillée  Récupérer au format
The XXIXth International Colloquium on Group-Theoretical Methods in Physics, Tianjin : Chine (2012)
PHASE STATES AND COHERENT STATES FOR GENERALIZED WEYL-HEISENBERG ALGEBRAS
Maurice Robert Kibler1, Mohammed Daoud1
(2012)

This paper is concerned with the construction of phase operators, phase states, vector phase states, and coherent states for a generalized Weyl-Heisenberg algebra. This polynomial algebra (that depends on real parameters) is briefly described. The various states are defined on a finite- or infinite-dimensional space depending on the parameters. This report constitutes an introduction to three papers published by the authors in J. Phys. A [43 (2010) 115303 and 45 (2012) 244036] and J. Math. Phys. [52 (2011) 082101]. See these three papers for the relevant references.
1 :  IPNL - Institut de Physique Nucléaire de Lyon
Physique/Physique Quantique

Mathématiques/Physique mathématique
phase operators – phase states – vector phase states – coherent states – mutually unbiased bases
Liste des fichiers attachés à ce document : 
PDF
HAL_proc_Kibler_Daoud.pdf(115.9 KB)
PS
HAL_proc_Kibler_Daoud.ps(470.2 KB)