Stellar electron-capture rates on nuclei based on a microscopic Skyrme functional

Abstract : We compute electron-capture rates for 54,56Fe and Ge isotopes using a self-consistent microscopic approach. The single-nucleon basis and the occupation factors in the target nucleus are calculated in the finite-temperature Skyrme Hartree-Fock model, and the Jπ=0±, 1±, 2± charge-exchange transitions are determined in the finite-temperature random-phase approximation (RPA). The scheme is self-consistent; i.e., both the Hartree-Fock and the RPA equations are based on the same Skyrme functional. Several interactions are used in order to provide a theoretical uncertainty on the electron-capture rates for different astrophysical conditions. Comparing electron-capture rates obtained either with different Skyrme sets or with different available models indicates that differences up to one to two orders of magnitude can arise.


http://hal.in2p3.fr/in2p3-00744447
Contributor : Heurteau Sophie <>
Submitted on : Tuesday, October 23, 2012 - 11:00:00 AM
Last modification on : Tuesday, October 23, 2012 - 11:00:00 AM

Identifiers

Collections

Citation

A. F. Fantina, E. Khan, G. Colò, N. Paar, D. Vretenar. Stellar electron-capture rates on nuclei based on a microscopic Skyrme functional. Physical Review C, American Physical Society, 2012, 86, pp.035805. <10.1103/PhysRevC.86.035805>. <in2p3-00744447>

Export

Share

Metrics