History of protein-protein interactions: From egg-white to complex networks, PROTEOMICS, vol.22, issue.10, pp.1478-1498, 2012. ,
DOI : 10.1371/journal.pcbi.1000065
Structural Biology and Drug Discovery of Difficult Targets: The Limits of Ligandability, Chemistry & Biology, vol.19, issue.1, pp.42-50, 2012. ,
DOI : 10.1016/j.chembiol.2011.12.013
Using a Fragment-Based Approach To Target Protein-Protein Interactions, ChemBioChem, vol.60, issue.3, pp.332-342, 2013. ,
DOI : 10.1002/cbic.201200521
Chemical and structural lessons from recent successes in protein???protein interaction inhibition (2P2I), Current Opinion in Chemical Biology, vol.15, issue.4, pp.475-481, 2011. ,
DOI : 10.1016/j.cbpa.2011.05.024
Rationalizing the chemical space of protein???protein interaction inhibitors, Drug Discovery Today, vol.15, issue.5-6, pp.220-229, 2010. ,
DOI : 10.1016/j.drudis.2009.11.007
Binding of small molecules to an adaptive protein-protein interface, Proceedings of the National Academy of Sciences, vol.100, issue.4, pp.1603-1608, 2003. ,
DOI : 10.1073/pnas.252756299
Using Fragment-Based Technologies to Target Protein-Protein Interactions, Current Pharmaceutical Design, vol.18, issue.30, pp.4685-4696, 2012. ,
DOI : 10.2174/138161212802651689
Dissecting fragment-based lead discovery at the von hippel-lindau protein:hypoxia inducible factor 1alpha protein-protein interface, Chem Biol, vol.19, pp.1300-1312, 2012. ,
Fragment-based drug design: tools, practical approaches, and exemples, 2011. ,
Discovering High-Affinity Ligands for Proteins: SAR by NMR, Science, vol.274, issue.5292, pp.1531-1534, 1996. ,
DOI : 10.1126/science.274.5292.1531
Ligand efficiency: a useful metric for lead selection, Drug Discovery Today, vol.9, issue.10, pp.430-431, 2004. ,
DOI : 10.1016/S1359-6446(04)03069-7
Ligand efficiency and fragment-based drug discovery, Drug Discovery Today, vol.14, issue.5-6, pp.278-283, 2009. ,
DOI : 10.1016/j.drudis.2008.11.007
Fragment-based lead discovery: leads by design, Drug Discovery Today, vol.10, issue.14, pp.987-992, 2005. ,
DOI : 10.1016/S1359-6446(05)03511-7
Discovery of a potent and selective Bcl-2 inhibitor using SAR by NMR, Bioorganic & Medicinal Chemistry Letters, vol.20, issue.22, pp.6587-6591, 2010. ,
DOI : 10.1016/j.bmcl.2010.09.033
from NMR and Parallel Synthesis, Journal of Medicinal Chemistry, vol.49, issue.2, pp.656-663, 2006. ,
DOI : 10.1021/jm0507532
Crystal structure of ABT-737 complexed with Bcl-xL: implications for selectivity of antagonists of the Bcl-2 family, Cell Death and Differentiation, vol.10, issue.9, pp.1711-1713, 2007. ,
DOI : 10.1073/pnas.0701297104
Discovery of Potent Myeloid Cell Leukemia 1 (Mcl-1) Inhibitors Using Fragment-Based Methods and Structure-Based Design, Journal of Medicinal Chemistry, vol.56, issue.1, pp.15-30, 2013. ,
DOI : 10.1021/jm301448p
and Mcl-1, Journal of Medicinal Chemistry, vol.54, issue.17, pp.6000-6013, 2011. ,
DOI : 10.1021/jm200826s
Discovery of a Potent Small Molecule IL-2 Inhibitor through Fragment Assembly, Journal of the American Chemical Society, vol.125, issue.13, pp.3714-3715, 2003. ,
DOI : 10.1021/ja034247i
Discovery of novel inhibitors of the ZipA/FtsZ complex by NMR fragment screening coupled with structure-based design, Bioorganic & Medicinal Chemistry, vol.14, issue.23, pp.7953-7961, 2006. ,
DOI : 10.1016/j.bmc.2006.07.050
Discovery of Small Molecules that Bind to K-Ras and Inhibit Sos-Mediated Activation, Angewandte Chemie International Edition, vol.394, issue.25, pp.6140-6143, 2012. ,
DOI : 10.1002/anie.201201358
Small-molecule ligands bind to a distinct pocket in Ras and inhibit SOS-mediated nucleotide exchange activity, Proceedings of the National Academy of Sciences, vol.109, issue.14, pp.5299-5304, 2012. ,
DOI : 10.1073/pnas.1116510109
Experiences in fragment-based drug discovery, Trends in Pharmacological Sciences, vol.33, issue.5, pp.224-232, 2012. ,
DOI : 10.1016/j.tips.2012.02.006
Fragment-Based Screen against HIV Protease, Chemical Biology & Drug Design, vol.73, issue.3, pp.257-268, 2010. ,
DOI : 10.1111/j.1747-0285.2009.00943.x
Deconstructing fragment-based inhibitor discovery, Nature Chemical Biology, vol.8, issue.12, pp.720-723, 2006. ,
DOI : 10.1107/S0907444904019158
Fragment-based identification of determinants of conformational and spectroscopic change at the ricin active site, BMC Structural Biology, vol.7, issue.1, p.72, 2007. ,
DOI : 10.1186/1472-6807-7-72
Ring current theories in nuclear magnetic resonance, Progress in Nuclear Magnetic Resonance Spectroscopy, vol.13, issue.4, pp.303-344, 1979. ,
DOI : 10.1016/0079-6565(79)80010-2
Rapid and accurate calculation of protein 1 h, 13c and 15n chemical shifts, Journal of Biomolecular NMR, vol.26, issue.3, pp.215-240, 2003. ,
DOI : 10.1023/A:1023812930288
Automated prediction of 15n, 13calpha, 13cbeta and 13c9 chemical shifts in proteins using a density functional database, Journal of Biomolecular NMR, vol.21, issue.4, pp.321-333, 2001. ,
DOI : 10.1023/A:1013324104681
Alignment of weakly interacting molecules to protein surfaces using simulations of chemical shift perturbations, Journal of Biomolecular NMR, vol.18, issue.3, pp.189-198, 2000. ,
DOI : 10.1023/A:1026508025631
An inhibitor of Bcl-2 family proteins induces regression of solid tumours, Nature, vol.20, issue.7042, pp.677-681, 2005. ,
DOI : 10.1016/0014-5793(95)00062-E
Discovery of an Orally Bioavailable Small Molecule Inhibitor of Prosurvival B-Cell Lymphoma 2 Proteins, Journal of Medicinal Chemistry, vol.51, issue.21, pp.6902-6915, 2008. ,
DOI : 10.1021/jm800669s
Targeting the Bcl-2 family for cancer therapy, Expert Opinion on Therapeutic Targets, vol.127, issue.7, pp.61-75, 2013. ,
DOI : 10.1038/nrc3237
How the Bcl-2 family of proteins interact to regulate apoptosis, Cell Research, vol.60, issue.2, pp.203-213, 2006. ,
DOI : 10.1182/blood-2005-01-0320
The BCL-2 protein family: opposing activities that mediate cell death, Nature Reviews Molecular Cell Biology, vol.94, issue.1, pp.47-59, 2008. ,
DOI : 10.1038/nrm2308
Structure of Bcl-xL-Bak Peptide Complex: Recognition Between Regulators of Apoptosis, Science, vol.275, issue.5302, pp.983-986, 1997. ,
DOI : 10.1126/science.275.5302.983
/Bad peptide complex formation from structure, mutagenesis, and biophysical studies, Protein Science, vol.80, issue.12, pp.2528-2534, 2000. ,
DOI : 10.1110/ps.9.12.2528
The Structure of a Bcl-xL/Bim Fragment Complex, Immunity, vol.19, issue.3, pp.341-352, 2003. ,
DOI : 10.1016/S1074-7613(03)00234-6
Molecular Basis of Bcl-xL???s Target Recognition Versatility Revealed by the Structure of Bcl-xL in Complex with the BH3 Domain of Beclin-1, Journal of Molecular Biology, vol.372, issue.1, pp.223-235, 2007. ,
DOI : 10.1016/j.jmb.2007.06.069
Studies Leading to Potent, Dual Inhibitors of Bcl-2 and Bcl-xL, Journal of Medicinal Chemistry, vol.50, issue.4, pp.641-662, 2007. ,
DOI : 10.1021/jm061152t
Protein???Ligand NOE Matching:?? A High-Throughput Method for Binding Pose Evaluation That Does Not Require Protein NMR Resonance Assignments, Journal of the American Chemical Society, vol.128, issue.22, pp.7252-7263, 2006. ,
DOI : 10.1021/ja060356w
Application of Protein???Ligand NOE Matching to the Rapid Evaluation of Fragment Binding Poses, Fragment-Based Drug Discovery, pp.99-133, 2008. ,
DOI : 10.1002/9780470721551.ch5
Dipolar couplings as a probe of molecular dynamics and structure in solution, Current Opinion in Structural Biology, vol.11, issue.5, pp.532-539, 2001. ,
DOI : 10.1016/S0959-440X(00)00245-1
Residual Dipolar Couplings: Measurements and Applications to Biomolecular Studies, Annual Reports on NMR Spectroscopy Annual Reports on NMR Spectroscopy, vol.58, pp.231-303, 2006. ,
DOI : 10.1016/S0066-4103(05)58005-0
BclxL Changes Conformation upon Binding to Wild-type but Not Mutant p53 DNA Binding Domain, Journal of Biological Chemistry, vol.285, issue.5, pp.3439-3450, 2010. ,
DOI : 10.1074/jbc.M109.065391
Affinity Makes the Difference: Nonselective Interaction of the UBA Domain of Ubiquilin-1 with Monomeric Ubiquitin and Polyubiquitin Chains, Journal of Molecular Biology, vol.377, issue.1, pp.162-180, 2008. ,
DOI : 10.1016/j.jmb.2007.12.029
Conformational Analysis of a Flexible Oligosaccharide Using Residual Dipolar Couplings, Journal of the American Chemical Society, vol.123, issue.3, pp.485-492, 2001. ,
DOI : 10.1021/ja002900l
Inhibitors, Journal of Medicinal Chemistry, vol.53, issue.6, pp.2577-2588, 2010. ,
DOI : 10.1021/jm100009z
AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility, Journal of Computational Chemistry, vol.22, issue.16, pp.2785-2791, 2009. ,
DOI : 10.1002/jcc.21256
Application of Fragment-Based NMR Screening, X-ray Crystallography, Structure-Based Design, and Focused Chemical Library Design to Identify Novel ??M Leads for the Development of nM BACE-1 (??-Site APP Cleaving Enzyme 1) Inhibitors, Journal of Medicinal Chemistry, vol.53, issue.3, pp.942-950, 2010. ,
DOI : 10.1021/jm901472u
Role of protein flexibility in the design of Bcl-XL targeting agents: insight from molecular dynamics, Journal of Computer-Aided Molecular Design, vol.273, issue.1, pp.49-61, 2009. ,
DOI : 10.1007/s10822-008-9237-0
Analysis of Flexibility and Hotspots in Bcl-xL and Mcl-1 Proteins for the Design of Selective Small-Molecule Inhibitors, ACS Medicinal Chemistry Letters, vol.3, issue.4, pp.308-312, 2012. ,
DOI : 10.1021/ml200301w
Spatial Localization of Ligand Binding Sites from Electron Current Density Surfaces Calculated from NMR Chemical Shift Perturbations, Journal of the American Chemical Society, vol.124, issue.39, pp.11758-11763, 2002. ,
DOI : 10.1021/ja026166c
Steering Protein???Ligand Docking with Quantitative NMR Chemical Shift Perturbations, Journal of Chemical Information and Modeling, vol.49, issue.10, pp.2260-2271, 2009. ,
DOI : 10.1021/ci900188r
Use of Chemical Shifts in Macromolecular Structure Determination, Methods Enzymol, vol.338, pp.3-34, 2001. ,
DOI : 10.1016/S0076-6879(02)38214-4
Cooperative Hydrogen Bonding Effects Are Key Determinants of Backbone Amide Proton Chemical Shifts in Proteins, Journal of the American Chemical Society, vol.128, issue.30, pp.9863-9872, 2006. ,
DOI : 10.1021/ja0617901
A new model for chemical shifts of amide hydrogens in proteins, Journal of Biomolecular NMR, vol.65, issue.2, pp.139-150, 2007. ,
DOI : 10.1007/s10858-007-9156-8
Non-Peptidic Small-Molecule Inhibitors of the Single-Chain Hepatitis C Virus NS3 Protease/NS4A Cofactor Complex Discovered by Structure-Based NMR Screening, Journal of Medicinal Chemistry, vol.47, issue.10, pp.2486-2498, 2004. ,
DOI : 10.1021/jm0305117
H NMR Chemical Shift, Journal of Medicinal Chemistry, vol.51, issue.8, pp.2512-2517, 2008. ,
DOI : 10.1021/jm701194r
Use of quantitative 1H NMR chemical shift changes for ligand docking into barnase, Journal of Biomolecular NMR, vol.10, issue.1, pp.11-19, 2009. ,
DOI : 10.1007/s10858-008-9286-7
NMRPipe: A multidimensional spectral processing system based on UNIX pipes, Journal of Biomolecular NMR, vol.6, issue.3, pp.277-293, 1995. ,
DOI : 10.1007/BF00197809
NMR View: A computer program for the visualization and analysis of NMR data, Journal of Biomolecular NMR, vol.88, issue.5, pp.603-614, 1994. ,
DOI : 10.1007/BF00404272
Sparky 3. University of California, 2004. ,
Combined chemical shift changes and amino acid specific chemical shift mapping of protein???protein interactions, Journal of Biomolecular NMR, vol.105, issue.6532, pp.275-289, 2007. ,
DOI : 10.1007/s10858-007-9197-z
Complexation-Induced Changes in1H NMR Chemical Shift for Supramolecular Structure Determination, Chemistry - A European Journal, vol.5, issue.6, pp.1891-1897, 1999. ,
DOI : 10.1002/(SICI)1521-3765(19990604)5:6<1891::AID-CHEM1891>3.0.CO;2-G
Structure-based prediction of methyl chemical shifts in proteins, Journal of Biomolecular NMR, vol.131, issue.4, pp.331-346, 2011. ,
DOI : 10.1007/s10858-011-9524-2
Protein backbone chemical shifts predicted from searching a database for torsion angle and sequence homology, Journal of Biomolecular NMR, vol.35, issue.4, pp.289-302, 2007. ,
DOI : 10.1007/s10858-007-9166-6
Definitive Benchmark Study of Ring Current Effects on Amide Proton Chemical Shifts, Journal of Chemical Theory and Computation, vol.7, issue.7, pp.2078-2084, 2011. ,
DOI : 10.1021/ct2002607
Measurement ofJand Dipolar Couplings from Simplified Two-Dimensional NMR Spectra, Journal of Magnetic Resonance, vol.131, issue.2, pp.373-378, 1998. ,
DOI : 10.1006/jmre.1998.1361
Structural Properties of Polyubiquitin Chains in Solution, Journal of Molecular Biology, vol.324, issue.4, pp.637-647, 2002. ,
DOI : 10.1016/S0022-2836(02)01198-1
Order Matrix Analysis of Residual Dipolar Couplings Using Singular Value Decomposition, Journal of Magnetic Resonance, vol.138, issue.2, pp.334-342, 1999. ,
DOI : 10.1006/jmre.1999.1754
, and Complete Cross-Validation for Dipolar Coupling Refinement of NMR Structures, Journal of the American Chemical Society, vol.121, issue.39, pp.9008-9012, 1999. ,
DOI : 10.1021/ja991789k
LigPlot+: Multiple Ligand???Protein Interaction Diagrams for Drug Discovery, Journal of Chemical Information and Modeling, vol.51, issue.10, pp.2778-2786, 2011. ,
DOI : 10.1021/ci200227u
Bcl-XL Mutations Suppress Cellular Sensitivity to Antimycin A, Journal of Biological Chemistry, vol.279, issue.3, pp.2159-2165, 2004. ,
DOI : 10.1074/jbc.M306021200
X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death, Nature, vol.381, issue.6580, pp.335-341, 1996. ,
DOI : 10.1038/381335a0