P. Braun and A. Gingras, History of protein-protein interactions: From egg-white to complex networks, PROTEOMICS, vol.22, issue.10, pp.1478-1498, 2012.
DOI : 10.1371/journal.pcbi.1000065

S. Surade and T. Blundell, Structural Biology and Drug Discovery of Difficult Targets: The Limits of Ligandability, Chemistry & Biology, vol.19, issue.1, pp.42-50, 2012.
DOI : 10.1016/j.chembiol.2011.12.013

D. Scott, M. Ehebauer, T. Pukala, M. Marsh, and T. Blundell, Using a Fragment-Based Approach To Target Protein-Protein Interactions, ChemBioChem, vol.60, issue.3, pp.332-342, 2013.
DOI : 10.1002/cbic.201200521

X. Morelli, R. Bourgeas, and P. Roche, Chemical and structural lessons from recent successes in protein???protein interaction inhibition (2P2I), Current Opinion in Chemical Biology, vol.15, issue.4, pp.475-481, 2011.
DOI : 10.1016/j.cbpa.2011.05.024

O. Sperandio, C. Reyns, A. Camproux, and B. Villoutreix, Rationalizing the chemical space of protein???protein interaction inhibitors, Drug Discovery Today, vol.15, issue.5-6, pp.220-229, 2010.
DOI : 10.1016/j.drudis.2009.11.007

M. Arkin, R. M. Delano, W. Hyde, J. Luong, and T. , Binding of small molecules to an adaptive protein-protein interface, Proceedings of the National Academy of Sciences, vol.100, issue.4, pp.1603-1608, 2003.
DOI : 10.1073/pnas.252756299

J. Bower and A. Pannifer, Using Fragment-Based Technologies to Target Protein-Protein Interactions, Current Pharmaceutical Design, vol.18, issue.30, pp.4685-4696, 2012.
DOI : 10.2174/138161212802651689

I. Molle, A. Thomann, D. Buckley, E. So, and S. Lang, Dissecting fragment-based lead discovery at the von hippel-lindau protein:hypoxia inducible factor 1alpha protein-protein interface, Chem Biol, vol.19, pp.1300-1312, 2012.

L. Kuo, Fragment-based drug design: tools, practical approaches, and exemples, 2011.

S. Shuker, P. Hajduk, R. Meadows, and S. Fesik, Discovering High-Affinity Ligands for Proteins: SAR by NMR, Science, vol.274, issue.5292, pp.1531-1534, 1996.
DOI : 10.1126/science.274.5292.1531

A. Hopkins, C. Groom, and A. A. , Ligand efficiency: a useful metric for lead selection, Drug Discovery Today, vol.9, issue.10, pp.430-431, 2004.
DOI : 10.1016/S1359-6446(04)03069-7

S. Bembenek, B. Tounge, and C. Reynolds, Ligand efficiency and fragment-based drug discovery, Drug Discovery Today, vol.14, issue.5-6, pp.278-283, 2009.
DOI : 10.1016/j.drudis.2008.11.007

R. Carr, M. Congreve, C. Murray, and D. Rees, Fragment-based lead discovery: leads by design, Drug Discovery Today, vol.10, issue.14, pp.987-992, 2005.
DOI : 10.1016/S1359-6446(05)03511-7

A. Petros, J. Huth, T. Oost, C. Park, and H. Ding, Discovery of a potent and selective Bcl-2 inhibitor using SAR by NMR, Bioorganic & Medicinal Chemistry Letters, vol.20, issue.22, pp.6587-6591, 2010.
DOI : 10.1016/j.bmcl.2010.09.033

A. Petros, J. Dinges, D. Augeri, S. Baumeister, and D. Betebenner, from NMR and Parallel Synthesis, Journal of Medicinal Chemistry, vol.49, issue.2, pp.656-663, 2006.
DOI : 10.1021/jm0507532

E. Lee, P. Czabotar, B. Smith, K. Deshayes, and K. Zobel, Crystal structure of ABT-737 complexed with Bcl-xL: implications for selectivity of antagonists of the Bcl-2 family, Cell Death and Differentiation, vol.10, issue.9, pp.1711-1713, 2007.
DOI : 10.1073/pnas.0701297104

A. Friberg, D. Vigil, B. Zhao, R. Daniels, and J. Burke, Discovery of Potent Myeloid Cell Leukemia 1 (Mcl-1) Inhibitors Using Fragment-Based Methods and Structure-Based Design, Journal of Medicinal Chemistry, vol.56, issue.1, pp.15-30, 2013.
DOI : 10.1021/jm301448p

M. Rega, B. Wu, J. Wei, Z. Zhang, and J. Cellitti, and Mcl-1, Journal of Medicinal Chemistry, vol.54, issue.17, pp.6000-6013, 2011.
DOI : 10.1021/jm200826s

A. Braisted, J. Oslob, W. Delano, J. Hyde, and R. Mcdowell, Discovery of a Potent Small Molecule IL-2 Inhibitor through Fragment Assembly, Journal of the American Chemical Society, vol.125, issue.13, pp.3714-3715, 2003.
DOI : 10.1021/ja034247i

D. Tsao, A. Sutherland, L. Jennings, Y. Li, and T. Rush, Discovery of novel inhibitors of the ZipA/FtsZ complex by NMR fragment screening coupled with structure-based design, Bioorganic & Medicinal Chemistry, vol.14, issue.23, pp.7953-7961, 2006.
DOI : 10.1016/j.bmc.2006.07.050

Q. Sun, J. Burke, J. Phan, M. Burns, and E. Olejniczak, Discovery of Small Molecules that Bind to K-Ras and Inhibit Sos-Mediated Activation, Angewandte Chemie International Edition, vol.394, issue.25, pp.6140-6143, 2012.
DOI : 10.1002/anie.201201358

T. Maurer, L. Garrenton, A. Oh, K. Pitts, and D. Anderson, Small-molecule ligands bind to a distinct pocket in Ras and inhibit SOS-mediated nucleotide exchange activity, Proceedings of the National Academy of Sciences, vol.109, issue.14, pp.5299-5304, 2012.
DOI : 10.1073/pnas.1116510109

C. Murray, M. Verdonk, and D. Rees, Experiences in fragment-based drug discovery, Trends in Pharmacological Sciences, vol.33, issue.5, pp.224-232, 2012.
DOI : 10.1016/j.tips.2012.02.006

A. Perryman, Q. Zhang, H. Soutter, R. Rosenfeld, and D. Mcree, Fragment-Based Screen against HIV Protease, Chemical Biology & Drug Design, vol.73, issue.3, pp.257-268, 2010.
DOI : 10.1111/j.1747-0285.2009.00943.x

K. Babaoglu and B. Shoichet, Deconstructing fragment-based inhibitor discovery, Nature Chemical Biology, vol.8, issue.12, pp.720-723, 2006.
DOI : 10.1107/S0907444904019158

J. Carra, C. Mchugh, S. Mulligan, L. Machiesky, and A. Soares, Fragment-based identification of determinants of conformational and spectroscopic change at the ricin active site, BMC Structural Biology, vol.7, issue.1, p.72, 2007.
DOI : 10.1186/1472-6807-7-72

C. Haigh and R. Mallion, Ring current theories in nuclear magnetic resonance, Progress in Nuclear Magnetic Resonance Spectroscopy, vol.13, issue.4, pp.303-344, 1979.
DOI : 10.1016/0079-6565(79)80010-2

S. Neal, A. Nip, H. Zhang, and D. Wishart, Rapid and accurate calculation of protein 1 h, 13c and 15n chemical shifts, Journal of Biomolecular NMR, vol.26, issue.3, pp.215-240, 2003.
DOI : 10.1023/A:1023812930288

X. Xu and D. Case, Automated prediction of 15n, 13calpha, 13cbeta and 13c9 chemical shifts in proteins using a density functional database, Journal of Biomolecular NMR, vol.21, issue.4, pp.321-333, 2001.
DOI : 10.1023/A:1013324104681

M. Mccoy and D. Wyss, Alignment of weakly interacting molecules to protein surfaces using simulations of chemical shift perturbations, Journal of Biomolecular NMR, vol.18, issue.3, pp.189-198, 2000.
DOI : 10.1023/A:1026508025631

T. Oltersdorf, S. Elmore, A. Shoemaker, R. Armstrong, and D. Augeri, An inhibitor of Bcl-2 family proteins induces regression of solid tumours, Nature, vol.20, issue.7042, pp.677-681, 2005.
DOI : 10.1016/0014-5793(95)00062-E

C. Park, M. Bruncko, J. Adickes, J. Bauch, and H. Ding, Discovery of an Orally Bioavailable Small Molecule Inhibitor of Prosurvival B-Cell Lymphoma 2 Proteins, Journal of Medicinal Chemistry, vol.51, issue.21, pp.6902-6915, 2008.
DOI : 10.1021/jm800669s

S. Thomas, B. Quinn, S. Das, R. Dash, and L. Emdad, Targeting the Bcl-2 family for cancer therapy, Expert Opinion on Therapeutic Targets, vol.127, issue.7, pp.61-75, 2013.
DOI : 10.1038/nrc3237

M. Van-delft and D. Huang, How the Bcl-2 family of proteins interact to regulate apoptosis, Cell Research, vol.60, issue.2, pp.203-213, 2006.
DOI : 10.1182/blood-2005-01-0320

R. Youle and A. Strasser, The BCL-2 protein family: opposing activities that mediate cell death, Nature Reviews Molecular Cell Biology, vol.94, issue.1, pp.47-59, 2008.
DOI : 10.1038/nrm2308

M. Sattler, H. Liang, D. Nettesheim, R. Meadows, and J. Harlan, Structure of Bcl-xL-Bak Peptide Complex: Recognition Between Regulators of Apoptosis, Science, vol.275, issue.5302, pp.983-986, 1997.
DOI : 10.1126/science.275.5302.983

A. Petros, D. Nettesheim, Y. Wang, E. Olejniczak, and R. Meadows, /Bad peptide complex formation from structure, mutagenesis, and biophysical studies, Protein Science, vol.80, issue.12, pp.2528-2534, 2000.
DOI : 10.1110/ps.9.12.2528

X. Liu, S. Dai, Y. Zhu, P. Marrack, and J. Kappler, The Structure of a Bcl-xL/Bim Fragment Complex, Immunity, vol.19, issue.3, pp.341-352, 2003.
DOI : 10.1016/S1074-7613(03)00234-6

W. Feng, S. Huang, H. Wu, and M. Zhang, Molecular Basis of Bcl-xL???s Target Recognition Versatility Revealed by the Structure of Bcl-xL in Complex with the BH3 Domain of Beclin-1, Journal of Molecular Biology, vol.372, issue.1, pp.223-235, 2007.
DOI : 10.1016/j.jmb.2007.06.069

M. Bruncko, T. Oost, B. Belli, H. Ding, and M. Joseph, Studies Leading to Potent, Dual Inhibitors of Bcl-2 and Bcl-xL, Journal of Medicinal Chemistry, vol.50, issue.4, pp.641-662, 2007.
DOI : 10.1021/jm061152t

K. Constantine, M. Davis, W. Metzler, L. Mueller, and C. Bl, Protein???Ligand NOE Matching:?? A High-Throughput Method for Binding Pose Evaluation That Does Not Require Protein NMR Resonance Assignments, Journal of the American Chemical Society, vol.128, issue.22, pp.7252-7263, 2006.
DOI : 10.1021/ja060356w

W. Metzler, B. Caus, P. Mcdonnell, S. Johnson, and V. Goldfarb, Application of Protein???Ligand NOE Matching to the Rapid Evaluation of Fragment Binding Poses, Fragment-Based Drug Discovery, pp.99-133, 2008.
DOI : 10.1002/9780470721551.ch5

J. Tolman, Dipolar couplings as a probe of molecular dynamics and structure in solution, Current Opinion in Structural Biology, vol.11, issue.5, pp.532-539, 2001.
DOI : 10.1016/S0959-440X(00)00245-1

W. Hu and L. Wang, Residual Dipolar Couplings: Measurements and Applications to Biomolecular Studies, Annual Reports on NMR Spectroscopy Annual Reports on NMR Spectroscopy, vol.58, pp.231-303, 2006.
DOI : 10.1016/S0066-4103(05)58005-0

F. Hagn, C. Klein, O. Demmer, N. Marchenko, and A. Vaseva, BclxL Changes Conformation upon Binding to Wild-type but Not Mutant p53 DNA Binding Domain, Journal of Biological Chemistry, vol.285, issue.5, pp.3439-3450, 2010.
DOI : 10.1074/jbc.M109.065391

D. Zhang, S. Raasi, and D. Fushman, Affinity Makes the Difference: Nonselective Interaction of the UBA Domain of Ubiquilin-1 with Monomeric Ubiquitin and Polyubiquitin Chains, Journal of Molecular Biology, vol.377, issue.1, pp.162-180, 2008.
DOI : 10.1016/j.jmb.2007.12.029

F. Tian, H. Hashimi, J. Craighead, and J. Prestegard, Conformational Analysis of a Flexible Oligosaccharide Using Residual Dipolar Couplings, Journal of the American Chemical Society, vol.123, issue.3, pp.485-492, 2001.
DOI : 10.1021/ja002900l

S. Barelier, J. Pons, O. Marcillat, J. Lancelin, and I. Krimm, Inhibitors, Journal of Medicinal Chemistry, vol.53, issue.6, pp.2577-2588, 2010.
DOI : 10.1021/jm100009z

G. Morris, R. Huey, W. Lindstrom, M. Sanner, and R. Belew, AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility, Journal of Computational Chemistry, vol.22, issue.16, pp.2785-2791, 2009.
DOI : 10.1002/jcc.21256

Y. Wang, C. Strickland, J. Voigt, M. Kennedy, and B. Beyer, Application of Fragment-Based NMR Screening, X-ray Crystallography, Structure-Based Design, and Focused Chemical Library Design to Identify Novel ??M Leads for the Development of nM BACE-1 (??-Site APP Cleaving Enzyme 1) Inhibitors, Journal of Medicinal Chemistry, vol.53, issue.3, pp.942-950, 2010.
DOI : 10.1021/jm901472u

W. Novak, H. Wang, and G. Krilov, Role of protein flexibility in the design of Bcl-XL targeting agents: insight from molecular dynamics, Journal of Computer-Aided Molecular Design, vol.273, issue.1, pp.49-61, 2009.
DOI : 10.1007/s10822-008-9237-0

C. Yang and S. Wang, Analysis of Flexibility and Hotspots in Bcl-xL and Mcl-1 Proteins for the Design of Selective Small-Molecule Inhibitors, ACS Medicinal Chemistry Letters, vol.3, issue.4, pp.308-312, 2012.
DOI : 10.1021/ml200301w

M. Mccoy and D. Wyss, Spatial Localization of Ligand Binding Sites from Electron Current Density Surfaces Calculated from NMR Chemical Shift Perturbations, Journal of the American Chemical Society, vol.124, issue.39, pp.11758-11763, 2002.
DOI : 10.1021/ja026166c

D. Gonzlez-ruiz and H. Gohlke, Steering Protein???Ligand Docking with Quantitative NMR Chemical Shift Perturbations, Journal of Chemical Information and Modeling, vol.49, issue.10, pp.2260-2271, 2009.
DOI : 10.1021/ci900188r

D. Wishart and D. Case, Use of Chemical Shifts in Macromolecular Structure Determination, Methods Enzymol, vol.338, pp.3-34, 2001.
DOI : 10.1016/S0076-6879(02)38214-4

L. Parker, A. Houk, and J. Jensen, Cooperative Hydrogen Bonding Effects Are Key Determinants of Backbone Amide Proton Chemical Shifts in Proteins, Journal of the American Chemical Society, vol.128, issue.30, pp.9863-9872, 2006.
DOI : 10.1021/ja0617901

S. Moon and D. Case, A new model for chemical shifts of amide hydrogens in proteins, Journal of Biomolecular NMR, vol.65, issue.2, pp.139-150, 2007.
DOI : 10.1007/s10858-007-9156-8

D. Wyss, A. Arasappan, M. Senior, Y. Wang, and B. Beyer, Non-Peptidic Small-Molecule Inhibitors of the Single-Chain Hepatitis C Virus NS3 Protease/NS4A Cofactor Complex Discovered by Structure-Based NMR Screening, Journal of Medicinal Chemistry, vol.47, issue.10, pp.2486-2498, 2004.
DOI : 10.1021/jm0305117

M. Cioffi, C. Hunter, M. Packer, and A. Spitaleri, H NMR Chemical Shift, Journal of Medicinal Chemistry, vol.51, issue.8, pp.2512-2517, 2008.
DOI : 10.1021/jm701194r

M. Cioffi, C. Hunter, M. Packer, M. Pandya, and M. Williamson, Use of quantitative 1H NMR chemical shift changes for ligand docking into barnase, Journal of Biomolecular NMR, vol.10, issue.1, pp.11-19, 2009.
DOI : 10.1007/s10858-008-9286-7

F. Delaglio, S. Grzesiek, G. Vuister, G. Zhu, and J. Pfeifer, NMRPipe: A multidimensional spectral processing system based on UNIX pipes, Journal of Biomolecular NMR, vol.6, issue.3, pp.277-293, 1995.
DOI : 10.1007/BF00197809

B. Johnson and R. Blevins, NMR View: A computer program for the visualization and analysis of NMR data, Journal of Biomolecular NMR, vol.88, issue.5, pp.603-614, 1994.
DOI : 10.1007/BF00404272

T. Goddard and D. Kneller, Sparky 3. University of California, 2004.

F. Schumann, H. Riepl, T. Maurer, W. Gronwald, and K. Neidig, Combined chemical shift changes and amino acid specific chemical shift mapping of protein???protein interactions, Journal of Biomolecular NMR, vol.105, issue.6532, pp.275-289, 2007.
DOI : 10.1007/s10858-007-9197-z

C. Hunter and M. Packer, Complexation-Induced Changes in1H NMR Chemical Shift for Supramolecular Structure Determination, Chemistry - A European Journal, vol.5, issue.6, pp.1891-1897, 1999.
DOI : 10.1002/(SICI)1521-3765(19990604)5:6<1891::AID-CHEM1891>3.0.CO;2-G

A. Sahakyan, W. Vranken, A. Cavalli, and M. Vendruscolo, Structure-based prediction of methyl chemical shifts in proteins, Journal of Biomolecular NMR, vol.131, issue.4, pp.331-346, 2011.
DOI : 10.1007/s10858-011-9524-2

Y. Shen and A. Bax, Protein backbone chemical shifts predicted from searching a database for torsion angle and sequence homology, Journal of Biomolecular NMR, vol.35, issue.4, pp.289-302, 2007.
DOI : 10.1007/s10858-007-9166-6

A. Christensen, S. Sauer, and J. Jensen, Definitive Benchmark Study of Ring Current Effects on Amide Proton Chemical Shifts, Journal of Chemical Theory and Computation, vol.7, issue.7, pp.2078-2084, 2011.
DOI : 10.1021/ct2002607

M. Ottiger, F. Delaglio, and A. Bax, Measurement ofJand Dipolar Couplings from Simplified Two-Dimensional NMR Spectra, Journal of Magnetic Resonance, vol.131, issue.2, pp.373-378, 1998.
DOI : 10.1006/jmre.1998.1361

R. Varadan, O. Walker, C. Pickart, and D. Fushman, Structural Properties of Polyubiquitin Chains in Solution, Journal of Molecular Biology, vol.324, issue.4, pp.637-647, 2002.
DOI : 10.1016/S0022-2836(02)01198-1

J. Losonczi, M. Andrec, M. Fischer, and J. Prestegard, Order Matrix Analysis of Residual Dipolar Couplings Using Singular Value Decomposition, Journal of Magnetic Resonance, vol.138, issue.2, pp.334-342, 1999.
DOI : 10.1006/jmre.1999.1754

G. Clore and D. Garrett, , and Complete Cross-Validation for Dipolar Coupling Refinement of NMR Structures, Journal of the American Chemical Society, vol.121, issue.39, pp.9008-9012, 1999.
DOI : 10.1021/ja991789k

R. Laskowski and M. Swindells, LigPlot+: Multiple Ligand???Protein Interaction Diagrams for Drug Discovery, Journal of Chemical Information and Modeling, vol.51, issue.10, pp.2778-2786, 2011.
DOI : 10.1021/ci200227u

M. Manion, O. Neill, J. Giedt, C. Kim, K. Zhang et al., Bcl-XL Mutations Suppress Cellular Sensitivity to Antimycin A, Journal of Biological Chemistry, vol.279, issue.3, pp.2159-2165, 2004.
DOI : 10.1074/jbc.M306021200

S. Muchmore, M. Sattler, H. Liang, R. Meadows, and J. Harlan, X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death, Nature, vol.381, issue.6580, pp.335-341, 1996.
DOI : 10.1038/381335a0