Skip to Main content Skip to Navigation
Journal articles

Vertical distribution of the different types of aerosols in the stratosphere: Detection of solid particles and analysis of their spatial variability

Abstract : Stratospheric aerosols play a significant role in stratospheric chemistry. In the past, it was assumed that only liquid droplets are present in the stratosphere. Nevertheless, a few lidar measurements have shown that sudden enhancement of aerosol content in the middle stratosphere could be due to meteoritic debris. Aircraft measurements have shown that solid particles can be found in the lower stratosphere; these particles are mainly soot, but also include some interplanetary material. In order to better document the various characteristics of aerosols in the unperturbed stratosphere (i.e., free of volcanic aerosols), we have performed observations using different balloon-borne instruments (Stratospheric and Tropospheric Aerosol Counter (STAC), Spectroscopie d'Absorption Lunaire pour l'Observation des Minoritaires Ozone et NOx (SALOMON), and Micro Radiometre Ballon (MicroRADIBAL)) and also some satellite data (Global ozone monitoring by occultation of stars Envisat (GOMOS-Envisat)). These instruments allow us to obtain the number of particles in different size classes, the wavelength dependence of aerosol extinction, and the radiance of the light scattered by aerosols. Combining all the data together, it appears that significant amounts of particles are ubiquitous in the middle stratosphere, above the canonical sulfate aerosol layer. "Background'' interplanetary dusts in low concentration are likely present in the stratosphere. Above 30 km, interplanetary dust and largest grains from meteoroid disintegration dominate. Although the disintegration of meteoroids occurs in the upper stratosphere or in the mesosphere at all latitudes, these solid aerosols can be transported to the polar regions by the general circulation and can descend into the middle and lower stratosphere during winter mesospheric descents. Between about 22 km and 30 km, soot particles contribute to the population of aerosols at all latitudes. These soot, likely originating from biomass burning at all latitudes, could be injected into the lower stratosphere by the pyroconvective effect and can then reach the middle stratosphere perhaps owing to the gravitophotophoresis effect as was theoretically proposed. In the lower unperturbed stratosphere, liquid sulfate aerosols dominate, although soot particles are still present. Local horizontal and vertical enhancements of solid aerosols have sometimes been detected, although their origin is not yet determined. The presence of these solid particles can strongly bias the interpretation of in situ and remote sensing measurements when only the presence of liquid aerosols is assumed. Therefore, a new strategy of measurement will be necessary in the future to better characterize the stratospheric aerosol content free of volcanic particles.
Complete list of metadata

Cited literature [60 references]  Display  Hide  Download
Contributor : Nathalie Pothier Connect in order to contact the contributor
Submitted on : Monday, March 9, 2015 - 9:47:15 AM
Last modification on : Wednesday, November 17, 2021 - 12:32:02 PM
Long-term archiving on: : Monday, April 17, 2017 - 5:46:44 AM


Publisher files allowed on an open archive




Jean-Baptiste Renard, C. Brogniez, Gwenaël Berthet, Q. Bourgeois, B. Gaubicher, et al.. Vertical distribution of the different types of aerosols in the stratosphere: Detection of solid particles and analysis of their spatial variability. Journal of Geophysical Research: Atmospheres, American Geophysical Union, 2008, 113, pp.D21303. ⟨10.1029/2008JD010150⟩. ⟨in2p3-00855556⟩



Les métriques sont temporairement indisponibles