D. Benbouzid, R. Busa-fekete, N. Casagrande, F. Collin, and B. Kégl, MultiBoost: a multipurpose boosting package, Journal of Machine Learning Research, vol.13, pp.549-553, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00698455

J. Bergstra and Y. Bengio, Random search for hyperparameter optimization, Journal of Machine Learning Research, 2012.

J. Bergstra, R. Bardenet, B. Kégl, and Y. Bengio, Algorithms for hyperparameter optimization, Advances in Neural Information Processing Systems (NIPS), 2011.
URL : https://hal.archives-ouvertes.fr/hal-00642998

M. Brendel and M. Schoenauer, Instance-based parameter tuning for evolutionary AI planning, Proceedings of the 20th Genetic and Evolutionary Computation Conference, 2011.

W. Chu and Z. Ghahramani, Preference learning with Gaussian processes, Proceedings of the 22nd international conference on Machine learning , ICML '05, pp.137-144, 2005.
DOI : 10.1145/1102351.1102369

A. Coates, H. Lee, and A. Ng, An analysis of single-layer networks in unsupervised feature learning, 14th International Conference on Artificial Intelligence and Statistics (AISTATS), 2011.

J. Dem?ar, Statistical comparisons of classifiers over multiple data sets, Journal of Machine Learning Research, vol.7, pp.1-30, 2006.

F. Hutter, Automated Configuration of Algorithms for Solving Hard Computational Problems, 2009.

F. Hutter, H. H. Hoos, K. Leyton-brown, and T. Stützle, ParamILS: an automatic algorithm configuration framework, Journal of Artificial Intelligence Research, vol.36, pp.267-306, 2009.

T. Joachims, Optimizing search engines using clickthrough data, Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '02, 2002.
DOI : 10.1145/775047.775067

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

D. R. Jones, A taxonomy of global optimization methods based on response surfaces, Journal of Global Optimization, vol.21, issue.4, pp.345-383, 2001.
DOI : 10.1023/A:1012771025575

B. Kégl and R. Busa-fekete, Boosting products of base classifiers, Proceedings of the 26th Annual International Conference on Machine Learning, ICML '09, pp.497-504, 2009.
DOI : 10.1145/1553374.1553439

A. Lacoste, F. Laviolette, and M. Marchand, Bayesian comparison of machine learning algorithms on single and multiple datasets, 15th International Conference on Artificial Intelligence and Statistics (AISTATS), 2012.

D. Lizotte, Practical Bayesian Optimization, 2008.

V. Nannen and A. E. Eiben, Efficient relevance estimation and value calibration of evolutionary algorithm parameters, 2007 IEEE Congress on Evolutionary Computation, pp.975-980, 2007.
DOI : 10.1109/CEC.2007.4424460

N. Pinto, D. Doukhan, J. J. Dicarlo, and D. D. Cox, A High-Throughput Screening Approach to Discovering Good Forms of Biologically Inspired Visual Representation, PLoS Computational Biology, vol.5, issue.11, 2009.
DOI : 10.1371/journal.pcbi.1000579.s013

C. E. Rasmussen and C. K. Williams, Gaussian Processes in Machine Learning, 2006.
DOI : 10.1162/089976602317250933

R. E. Schapire and Y. Singer, Improved boosting algorithms using confidence-rated predictions, Proceedings of the eleventh annual conference on Computational learning theory , COLT' 98, pp.297-336, 1999.
DOI : 10.1145/279943.279960

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Snoek, H. Larochelle, A. , and R. P. , Practical Bayesian optimization of machine learning algorithms, Advances in Neural Information Processing Systems, 2012.

N. Srinivas, A. Krause, S. Kakade, and M. Seeger, Gaussian process optimization in the bandit setting: No regret and experimental design, Proceedings of the 27th International Conference on Machine Learning, 2010.

C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-brown, Auto-WEKA, Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '13, 2012.
DOI : 10.1145/2487575.2487629

J. Villemonteix, E. Vazquez, and E. Walter, An informational approach to the global optimization of expensive-to-evaluate functions, Journal of Global Optimization, vol.10, issue.5, 2006.
DOI : 10.1007/s10898-008-9354-2

URL : https://hal.archives-ouvertes.fr/hal-00354262