IMPACT OF WATER RADIOLYSIS ON URANIUM DIOXIDE CORROSION

A. Traboulsi, J. Vandenborre, G. Blain, J. Barbet, M. Fattahi

To cite this version:

HAL Id: in2p3-00911344
http://hal.in2p3.fr/in2p3-00911344
Submitted on 29 Nov 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
IMPACT OF WATER RADIOLYSIS ON URANIUM DIOXIDE CORROSION

Johan Vandenborre1*, Ali Traboulsi1, Guillaume Blain1, Jacques Barbet2, Massoud Fattahi1

1 SUBATECH, UMR 6457, Ecole des Mines de Nantes, CNRS/IN2P3, Université de Nantes, 4 rue Alfred Kastler, BP 20722, 44307 Nantes cedex 03, France.
2 Cyclotron ARRONAX, 1 Rue ARRONAX, 44817 St-Herblain Cedex France

* Corresponding author: johan.vandenborre@subatech.in2p3.fr.

Abstract

In this work, the oxidation of UO2 by the radiolysis products of water at the solid/solution interface is investigated in function of the dose under open and close atmospheres. Irradiation is realized by He\(^{2+}\) beam provided by the ARRONAX cyclotron with an energy of 66.5 MeV and a dose rate of 4.37 kGy/min. The aim of this investigation is to determine the effect of the atmosphere (presence of H\(_2\)) and the dose on the UO\(_2\) oxidation in order to couple for the first time (1) characterization of the secondary oxidized phases, (2) quantification of H\(_2\)O\(_2\) and H\(_2\) produced by water radiolysis and (3) determination of the quantity of uranium released into the solution. The kinetic of the solid surface oxidation is followed by Raman spectroscopy. H\(_2\)O\(_2\) and H\(_2\) are measured respectively by UV-VIS spectrophotometry and micro Gas Chromatography (µ-GC). Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is used to quantify the soluble uranium species released into the solution. Our results show that He\(^{2+}\) irradiation of water induced oxidation of the UO\(_2\) surface which depended on the atmosphere and the dose rate. We present below the results obtained for two samples irradiated at a dose of 8.73 kGy under the two atmospheres mentioned above. Results shows the Raman spectra of unirradiated UO\(_2\) (a) and a sample irradiated under open atmosphere (b, c, d). The spectra of the irradiated sample are obtained 0.3, 42 and 169 hours after contact with the irradiated water. When comparing the two spectra, 2 identical Raman signals can be observed at 445 and 560 cm\(^{-1}\). The first one characterizes the U-O stretch in the fluorite structure of UO\(_2\) and the second one indicates the presence of defects in the matrix. After irradiation, two Raman signals appear at 820 and 865 cm\(^{-1}\). These vibration bands indicate the presence of studtite (UO\(_4\) 4(H\(_2\)O)) formed by oxidation of the UO\(_2\) surface by H\(_2\)O\(_2\) produced by water radiolysis. We have verified that studtite is not formed by oxidation of the UO\(_2\) surface by O\(_2\) present in the atmosphere. For the irradiated sample, G(H\(_2\)O\(_2\)) formed by water radiolysis is 0.06 μmol/J and the quantity of uranium species released in the irradiated solution is 11.5 10\(^{-7}\) mol/L. For the sample irradiated under close atmosphere, oxidation is much slower due to the inhibition effect of H\(_2\) produced by water radiolysis. In these conditions, G(H\(_2\)O\(_2\)) and G(H\(_2\)) are respectively 0.1 and 0.02 μmol/J. The concentration of Uranium species in the solution is 5.3 10\(^{-7}\) mol/L which is comparable to that published in the literature. G(H\(_2\)O\(_2\)) obtained in open atmosphere is two fold lower than that obtained in close one. In this last condition, H\(_2\)O\(_2\) yield is equal to that of ultra-pure water which means that this molecule was not consumed. Moreover, G(H\(_2\)) obtained in this work is lower than that obtained by radiolysis of ultra-pure water in similar conditions. From this, we can conclude
that H₂ has an inhibition effect on the UO₂ oxidation and this inhibition does not take place by direct effect on H₂O₂ but by interaction between H₂ and the UO₂ surface.

Introduction

This paper deals with the radiolytic corrosion at the UO₂ surface. We study the impact of water radiolysis onto the corrosion of the grain boundaries (GB) present at the TRISO particle surface. The influence of H₂ produced by water radiolysis on the UO₂ corrosion is also studied. More details on the context of this study is published elsewhere (Kienzler et al., 2012). The aim of this work was to investigate experimentally the effect of molecular radiolytic species (H₂ and H₂O₂) produced by localized ⁴He²⁺ radiolysis of water on UO₂ corrosion in function of different parameters. Water in contact with UO₂ particles was then irradiated by ⁴He²⁺ beam at different absorbed doses and under different atmospheres in order to evaluate the effect of H₂ and the absorbed dose on the corrosion process. To fulfill this work, we chose to investigate the corrosion of the surface of solid particles by Raman Spectroscopy which is known to be very efficient in surface characterization of solid state materials. Soluble uranium species leached into the solution were analyzed by Inducted Coupled Plasma Mass Spectrometry (ICP-MS) technique. H₂O₂ and H₂ produced by water radiolysis were respectively quantified by UV-VIS Spectrophotometry and Gas Chromatography (μ-GC) in order to calculate their radiolytic yields, compare them to those of pure water and clarify the role of these two species in the UO₂ corrosion.

Material and Methods :

The experimental section (analytical tools and irradiation conditions) is described elsewhere (Kienzler et al., 2012). 3 irradiations were performed for 3 sets of sample: (1) irradiation under open to air atmosphere (oxidative conditions without H₂), (2) close with air atmosphere (oxidative conditions with H₂ produced by water radiolysis), and (3) close with Ar/H₂ (4%) atmosphere (reductive atmosphere where H₂ is initially added into the system before irradiation by the Ar/H₂ (4%) gas).

Results

1. **UO₂ Surface Characterization**

UO₂ TRISO particle is constituted of a UO₂ based kernel (500 μm of diameter) composed by grains and grain boundaries (Figure 1). The grain size has been measured between 10 and 20 μm. After irradiation, SEM pictures were realized on the surface particles in order to determine the zones most affected by the corrosion process (Figure 2). Figure 2 clearly shows that regardless the irradiation atmosphere, the grain boundaries are a lot more degraded than the UO₂ grains. It appears too that the corrosion did not occur homogeneously on the entire surface. Some regions of the grains surface are indeed more corroded. The corrosion can be considered as localized to the GB.
The spectrum of the unirradiated UO$_2$ is presented in Figure 3. It presents two characteristic bands around 445 cm$^{-1}$ and 560 cm$^{-1}$. The former is affected to the triply degenerated Raman active mode (T$_{2g}$) of U-O stretch (Amme et al., 2002; Amme et al., 2005; Desgranges et al., 2012; He and Shoesmith, 2010; Manara and Renker, 2003) whereas the latter characterizes defects present initially in the UO$_2$ fluorite structure (He and Shoesmith, 2010).

To estimate the Raman spectral modifications brought by the radiolytic products of water in the different studied atmospheres, a comparison was made between the UO$_2$ spectra before and after irradiation. The results showed that after irradiation in close atmospheres, the spectra of the UO$_2$ particles remained stable in function of the dose (not presented in this paper).

When water in contact with the UO$_2$ particles was irradiated in open to air atmosphere, no spectral modifications were observed until 21.8 kGy deposited in the solution. From 43.7 kGy, modifications can be seen between 800 and 900 cm$^{-1}$ and appear clearly at the dose of 87.3 kGy. Two peaks appear indeed at 825 and 860 cm$^{-1}$. They characterize the metastudtite (UO$_2$(O$_2$)$(\text{H}_2\text{O})_2$) (Amme et al., 2002; Canizarès et al., 2012; Guimbretière et al., 2011) formed on the UO$_2$ surface by oxidation with H$_2$O$_2$ produced by water radiolysis according to the reaction (i) (Corbel et al., 2006):

$$\text{UO}_2 + 2\text{H}_2\text{O}_2 \rightarrow \text{UO}_2(\text{O}_2)(\text{H}_2\text{O})_2$$

(i)

After irradiation, temporal evolution of the solid particles was followed by Raman spectroscopy. The results showed that Raman spectra of the samples irradiated with an irradiation time $t = 1$ min remained unchanged after two months of the experiment. It seems that in these conditions, the concentration of H$_2$O$_2$ produced by water radiolysis was not sufficient to oxidize the UO$_2$ surface. For $t \geq 3$ min, Raman spectra of the irradiated particles evolved slightly in function of time until one week after irradiation and then remained stable.
Figure 3 : Raman spectra of unirradiated UO$_2$ ((a)) and a sample irradiated at 8.73 kGy under open atmosphere ((b), (c) and (d)). The spectra (b), (c) and (d) are obtained 0.3, 42 and 169 hours after contact with the irradiated solution.

2.Uranium Solubility and Dissolution Rate
After irradiation, water in contact with the UO$_2$ particles was collected to quantify the soluble uranium species leached into the solution. Indeed, the metastudtite phase formed on the UO$_2$ surface after oxidation by H$_2$O$_2$ produced by water radiolysis underwent later a dissolution step where uranyl ions (UO$_2^{2+}$) were leached into the solution. The mechanism of this dissolution reaction in ultra-pure water was rarely discussed in the literature. According to some authors (Sattonnay et al., 2001), the dissolution step occurs according to reaction (ii):

\[\text{UO}_2^{2+} + \text{H}_2\text{O} \rightarrow \text{UO}_2^{\text{OH}^+} + \text{H}^+ \]

(ii)

However, (Sattonnay et al., 2001) proposed this dissolution mechanism based on a pH decreasing observed in their case after the solution irradiation. But, in our work measurement of the irradiated solutions acidity after each irradiation showed that pH did not evolve significantly and remained between 6.5 and 7.5. This means that the above proposed mechanism (reaction (ii)) does not occur in our case.

We have followed the variation of the soluble uranium species concentration leached into the solution after irradiation in function of the dose and the irradiation time in both open and close atmospheres. Regardless the irradiation atmosphere, the quantity of soluble uranium species increased with the dose and then remained constant from 43.6 kGy. At this latter dose, concentration of soluble uranium species found in close with air atmosphere (5.25 10^{-7} mol l$^{-1}$) is two-fold lower than that observed in open to air atmosphere (11.49 10^{-7} mol l$^{-1}$) due to inhibition of UO$_2$ oxidation by H$_2$ produced by water radiolysis. Values of [U] measured in our system at the steady state are presented in Table 1 for an irradiation time of 10 min together with the normalized leaching rate (r). Moreover, Table 1 presents also UO$_2$ dissolution rate values obtained from literature in order to compare it to our data. When UO$_2$ particles were irradiated between 10 and 20 min in close with air atmosphere, concentration of Uranium species remained practically constant. The obtained values were respectively 4.44 ± 0.5 and 5.25 ± 0.5 10^{-7} mol l$^{-1}$ for the latter mentioned irradiation time. These values are
comparable to most solubility data reported in the literature (Casas et al., 2009; Grambow et al., 2004; Jégou et al., 2003; Shoesmith and Sunder, 1992). However, we believe that in our work the thermodynamic equilibrium of the UO$_2$ particles dissolution was not achieved due to their composition of grains and grain boundaries. In these conditions, the dissolution rate was equal to 13.5 g m$^{-2}$ d$^{-1}$. A comparison of our dissolution rates with literature data is given in Table 1. Despite the similarity with [U] reported in the literature, r values obtained in this investigation are at least 103 fold higher. It seems then that with the irradiation conditions used in our work, the UO$_2$ oxidation/dissolution mechanism occurred with a faster kinetic. This is very probably due to the impact of the high doses deposited into the irradiated solution for this work. In order to apprehend the dose impact on the UO$_2$ corrosion, we propose here a new methodology to express the dissolution rate. This methodology consists in calculating the dissolution rate in function of the dose deposited into the solution and not in function of the irradiation time. Thus, the new dissolution rate r’ can be defined as follow:

$$ r' = \frac{V}{S} \frac{d[U]}{dd} M_{UO_2} $$

Where $d[U]/dd$ (mol m$^{-3}$) is the variation of soluble uranium species in function of the dose deposited into the solution. In our case the r’ values are 2.01 µg m$^{-2}$ Gy$^{-1}$ for the open with air atmosphere experiment and 1.11 µg m$^{-2}$ Gy$^{-1}$ for the close with air atmosphere one. These results confirm that the reducing atmosphere (in presence of H$_2$) has a strong diminishing impact onto the UO$_2$ dissolution rate. Moreover, we have recalculated the same new dissolution rate r’ from literature data (Grambow et al., 2004; Jégou et al., 2003) (Table 1) in order to compare it to our results. Even after taking into account the effect of the dose, r’ values obtained in this investigation still higher (Table 1). However, the dose rate used in our work is very high. It appears then that the dose rate is the main parameter which controls the UO$_2$ dissolution rate under irradiation.

Table 1: Steady state U concentrations, Dissolution rates (r and r’) of UO$_2$ and experimental conditions used in this study and others found in the literature.

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Physical aspect</th>
<th>UO$_2$</th>
<th>4He$^{2+}$ Beam</th>
<th>Dose Rate Gy min$^{-1}$</th>
<th>Atm. [U] 10$^{-7}$ mol l$^{-1}$</th>
<th>Diss. rate r mg m$^{-2}$ d$^{-1}$</th>
<th>Diss. rate r’ µg m$^{-2}$ Gy$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>This work</td>
<td>Particle</td>
<td>External source*</td>
<td>4366</td>
<td>Ox Red</td>
<td>11.49 5.25</td>
<td>13500 7000</td>
<td>2.01 1.11</td>
</tr>
<tr>
<td>(Shoesmith and Sunder, 1992)</td>
<td>Pellet</td>
<td>Internal</td>
<td>No</td>
<td>Ox</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Casas et al., 2009)</td>
<td>Particle</td>
<td>No</td>
<td>0</td>
<td>Red</td>
<td>23.3</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(Grambow et al., 2004)</td>
<td>Colloid</td>
<td>External source*</td>
<td>52.7</td>
<td>Red</td>
<td>15.7</td>
<td>0.246</td>
<td></td>
</tr>
<tr>
<td>(Jégou et al., 2003)</td>
<td>Pellet</td>
<td>Internal**</td>
<td>18 1.8</td>
<td>Ox</td>
<td>2.5 0.2</td>
<td>0.095 0.076</td>
<td></td>
</tr>
</tbody>
</table>

* 4He$^{2+}$ Beam produced by cyclotron facility

** Doped UO$_2$ with Pu

3. H_2 and H_2O_2 Chemical Yields

When the UO$_2$ particles were irradiated in close with air atmosphere, H_2 produced by water radiolysis was quantified by calculating its radiolytic yield (G) in order to compare it to that of pure water and explain any gas consumption due to the inhibition of the UO$_2$ corrosion
process. In our work, the solution used during irradiation is ultra-pure water (ρ = 1 kg l⁻¹) and the mean \(G(H_2) \) was 0.02 ± 0.002 μmol J⁻¹. It corresponds to the slope of the curve representing the variation of \(H_2 \) concentration in function of the dose. (Crumière et al., 2013) irradiated ultra-pure water by a cyclotron \(^{4}\)He²⁺ beam with a 64.7 MeV energy and doses up to 800 Gy in Argon saturated atmosphere. \(G(H_2) \) obtained in their work was 0.061 ± 0.006 μmol J⁻¹ which is three-fold higher than that found in this investigation (\(G(H_2) = 0.02 ± 0.002 \) μmol J⁻¹). The irradiation conditions used by (Crumière et al., 2013) are very similar to those used in our work which means that for the system UO₂/ultra-pure water, a non negligible part (around 2/3) of the \(H_2 \) produced by water radiolysis was consumed certainly by inhibition of the UO₂ oxidation process.

In both open to air and close with air atmospheres, concentrations of \(H_2O_2 \) produced by water radiolysis was determined by the Ghormley method (Ghormley and Hochanadel, 1954) to analyze the effect of the irradiation atmosphere on its consumption by the UO₂ oxidation process. During this study, we have followed the variation of \(H_2O_2 \) concentration produced by water radiolysis under open to air and close with air atmospheres in function of the dose. It shows that concentration of \(H_2O_2 \) produced by water radiolysis increased with the dose and then reached a steady state from 21.8 kGy and 65.5 kGy in open to air and close with air atmospheres respectively. At these latter doses, \([H_2O_2] \) values were respectively \(1.4 \times 10^{-4} \) and \(5.5 \times 10^{-4} \) mol l⁻¹ which means that \(H_2O_2 \) concentration was four-fold higher when the UO₂ particles were irradiated in presence of \(H_2 \). It seems then that in the latter conditions consumption of \(H_2O_2 \) and thus oxidation of the UO₂ surface was mainly inhibited by \(H_2 \) produced by water radiolysis. Radiolytic yields of \(H_2O_2 \) were also calculated and the values obtained were 0.06 ± 0.006 and 0.1 ± 0.01 μmol J⁻¹ in open to air and close with air atmospheres respectively. \(G(H_2O_2) \) obtained in open to air atmosphere is two fold lower than that obtained in close with air one. In this last condition, \(H_2O_2 \) yield is equal to that of ultra-pure water (LaVerne, 2004; Pastina and LaVerne, 1999; Yamashita et al., 2008a; Yamashita et al., 2008b) which means that this molecule was not consumed whereas a non-negligible part of \(H_2 \) was consumed. From this, we can conclude that in open to air atmosphere, half of the \(H_2O_2 \) produced by water radiolysis was consumed by oxidation of the UO₂ surface leading to the formation of metastudite secondary phase. We can conclude too that \(H_2 \) has an inhibition effect on the UO₂ oxidation and this inhibition does not take place by direct effect on \(H_2O_2 \) but by interaction between \(H_2 \) and the UO₂ surface.

Conclusions and Future work

In conclusion, this work brings some light on the radiolytic corrosion of UO₂ by identification of (1) the oxidized secondary phase formed (metastudtite) and following its temporal evolution, (2) the \(H_2 \) role as an inhibitor agent, (3) the oxidative role of \(H_2O_2 \) and (4) the quantity of U species released. Detailed mechanisms of UO₂ corrosion/oxidation will be proposed taking into account the phenomena of water radiolysis. Furthers studies will be performed in order to determine the role of the radical species produced by water radiolysis on UO₂ corrosion. Moreover, spacial resolution technique will be used in future surface characterization experiments in order to localize the corrosion on the grain boundaries as shown with SEM pictures.
Acknowledgement
We acknowledge B.Humbert and J.Y. Mevellec from the IMN laboratory for support in Raman measurements and N.Stephan for SEM measurements. The authors acknowledge ARRONAX staff for the efficient performing of irradiation runs onto the cyclotron facility. The research leading to these results has received funding from the European Atomic Energy Community's (Euratom) Seventh Framework Programme FP7/2007-2011 under grant agreement n° 295722 (FIRST-Nuclides project).

References

