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1. Introduction

Rare charm decays proceed mostly through the c→ u Flavor Changing Neutral Current (FCNC),

which is possible only at loop diagram level in the Standard Model (SM). Moreover, for rare charm

decays, unlike for B decays, there is not a very massive particle, such as the top quark, which

can enter the loop diagram to mitigate the GIM suppression. Consequently, rare charm decays are

good tools to probe to New Physics (NP) beyond the SM. NP particles can contribute in the loop

diagrams and become detectable by causing observables such as branching ratios and CP-, T-odd

and angular asymmetries to deviate from the SM predictions [1, 2, 3]. The LHCb searches benefit

of large cc̄ production cross section [4], which is ∼ 20 times higher than the bb̄ production cross

section.

The LHCb detector [5] is a single-arm forward spectrometer covering the pseudorapidity range

2 < η < 5, designed for the study of particles containing b or c quarks. The detector includes a

high precision tracking system consisting of a silicon-strip vertex detector surrounding the pp in-

teraction region, a large-area silicon-strip detector located upstream of a dipole magnet with a

bending power of about 4 Tm, and three stations of silicon-strip detectors and straw drift tubes

placed downstream. The combined tracking system has a momentum resolution ∆p/p that varies

from 0.4% at 5GeV/c to 0.6% at 100GeV/c, and an impact parameter resolution of 20 µm for

tracks with high transverse momentum. Charged hadrons are identified using two ring-imaging

Cherenkov detectors. Photon, electron and hadron candidates are identified by a calorimeter sys-

tem consisting of scintillating-pad and preshower detectors, an electromagnetic calorimeter and a

hadronic calorimeter. Muons are identified by a system composed of alternating layers of iron and

multiwire proportional chambers. The LHCb trigger system [6] consists of a hardware stage, based

on information from the calorimeter and muon systems, followed by a software stage which applies

a full event reconstruction.

2. General analysis strategy

Rare charm searches make use of the highly flexible and configurable software trigger that

divides the available bandwidth among many specific lines. A series of such lines, similar to offline

selections, were designed to ensure a high trigger efficiency for rare charm decays and their control

modes. These control modes are used to determine the performance with which signal decays are

reconstructed, identified, selected and triggered on. This constitutes a first step in the analyses

presented in this document.

The detection of very rare decays requires the rejection of combinatorial background to be

particularly performant. For that purpose offline selections are based on typical kinematical and

topological properties of the signal decays. This comprises the transverse momenta of the particles

involved in the decay and quantities that indicate the presence of a long lived particle emerging from

the primary vertex and decaying at a displaced vertex. The analyses presented in this document

maximise the power of these quantities to distinguish signal from background by using boosted

decision trees.

Normalized measurements are performed to minimize systematic uncertainties and prevent

having to use the cc̄ cross section measurements, which would yield an important additional un-
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certainties. Normalization modes are decays that have a similar final state as the signal and are

consequently reconstructed and selected with similar efficiency. The branching fractions (BF) of

the studied decays is measured by using the known branching fraction of the normalization mode:

BFsignal = BFnorm × εnorm

εsignal
×

Nsignal

Nnorm
, where Nsignal , Nnorm are the signal and normalization yields, and

where εsignal , εnorm are the efficiencies with which they are reconstructed, selected and triggered

on.

Efficiencies are calculated using Monte Carlo simulation, corrected with the help of control

samples selected in real data. A large part of the systematic effects cancels in the efficiency ratio,

yielding corrections typically of a few per cent.

The searches presented in this document are based on blind analyses. Upper limits on branch-

ing fractions are derived using the CLs method [7].

3. Recent results on rare charm decays at LHCb with 2011 data

In this section resent results on searches at LHCb of two rare charm channels are presented,

namely the 2-body decay D0 → µ+µ− and 3-body FCNC decays D+
(s) → π+µ+µ− and lepton

number violating (LNV) D+
(s) → π−µ+µ+ decays. The results presented here were obtained using

a dataset corresponding to an integrated luminosity of 1.0 fb−1 collected in 2011 at
√

s = 7 TeV.

Charm meson hadronic decays to two, three or four charged hadrons occur at the percent

level. This is more than six orders of magnitude higher than the signal and therefore constitutes

and important source of additional backgrounds that peak in the invariant mass region close to the

signal mass peak, when two of the hadrons in the final state are misidentified as muons. To reduce

the rate at which pions are misidentified as muons, a likelihood combining the information from

the muon system, the calorimeter and the RICH detectors are applied.

3.1 Search for D0 → µ+µ−

According to the SM, this mode is extremely suppressed (BF(D0 → µ+µ−)< 6×10−11 [8]).

Nevertheless some NP models, like MSSM-RPV where FCNC are possible at the tree level, predict

that the BF could be as high as ∼ 10−9 [9]. The best upper limit before 2012 was published by the

Belle collaboration, BF(D0 → µ+µ−)< 1.4×10−7 @ 90% CL [10].

The LHCb analysis is performed using D∗+ → D0(µ+µ−)π+ decays, with the D∗+ produced

directly at the pp collision primary vertex. The searches are done in the two-dimensional dis-

tribution of invariant mass m(D0) versus invariant mass difference ∆m = m(D∗+)−m(D0) (see

Figure 1). The signal is confined within a very narrow peak in the distribution of the second vari-

able with an excellent resolution (typically 0.3 MeV/c2). It is therefore a powerful variable to

control the backgrounds. The resolution is particularly good thanks to a kinematical fit forcing the

π+ to come from the primary vertex.

D0 → π+π− is used as a normalization mode. This final state has different trigger and PID

criteria compared to the signal. This calls for special care in the determination of the corresponding

efficiencies since the systematic errors associated with these efficiencies do not cancel. The effi-

ciency determination is based on real data, namely on the D0 → K−π+ and J/ψ → µ+µ− control

modes.
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Figure 1: Invariant mass difference ∆m = m(D∗+)−m(D0) (on the left) and invariant mass m(D0) (on the

right) for D∗+ → D0(µ+µ−)π+ candidates. The projections of the two-dimensional fit are overlaid. The

curves represent the total distribution (solid black), the D∗+ →D0(π+π−)π+ (dashed red), the combinatorial

background (dashed orange), the D∗+ → D0(K−π+)π+ (dash-dotted blue), the D∗+ → D0(π−µ+νµ)π
+

(dash-dotted purple) and the signal D∗+ → D0(µ+µ−)π+ (solid green) contributions.

One of the corner stones in LHCb’s analysis [11], is the use of tight muon identification cri-

teria. It is possible thanks to a precise determination of LHCb’s performance in terms of pion to

muon misidentification. We used real data with a high statistics control mode D0 → K−π+.

The obtained upper limit is BF(D0 → µ+µ−)< 7.6×10−9 @ 95% CL [11].

3.2 Search for D+
(s) → π+µ+µ− and D+

(s) → π−µ+µ+

The SM short distance contributions to D+
(s) → π+µ+µ− are FCNCs that add up to ∼ 10−11 −

10−9 [12]. This could be enhanced according some models beyond the SM up to measurable

level [2, 3, 13]. The same final state can be reached via intermediate resonances η , ρ , ω and

φ decaying to µ+µ−. These long distance contributions have BF of the order 10−6 and could

overwhelm any enhancement from NP. Therefore experimental searches are performed in regions

of dimuon mass away from resonances.

The most stringent limits published so far are BF(D+→ π+µ+µ−)< 3.9×10−6 (90% CL) [14]

and BF(D+
s → π+µ+µ−)< 2.6×10−5 (90% CL) [15].

The LHCb analysis uses D+ → π+φ(µ+µ−) as a normalization mode. Its final state is iden-

tical to that of the signal, therefore a better cancellation of systematics uncertainties is expected.

This decay is also used as a signal proxy to optimize the selection and define the shape of the PDF

fitted to the data.

The yield of the D+ → π+π+π− peaking background is measured by the same fit that deter-

mines the signal yield. To help the fitter, the shape of this background is determined using another

sample, where the muon identification cuts have been loosened in order to obtain a larger sample

of D+ → π+π+π− decays.

New upper limits have been obtained in two regions of dimuon mass (see Figure 2 and Table 1)

and the total short distance BF is extrapolated assuming a phase space model. The limits on the

total BFs are BF(D+
s → π+µ+µ−) < 7.3× 10−8 (90% CL) and BF(D+

s → π+µ+µ−) < 4.1×

10−7 (90% CL) [16].
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Figure 2: Invariant mass distributions for D+
(s)

→ π+µ+µ− [16] candidates in two dimuon invariant mass

regions: the low-µ+µ− (on the left) and high-µ+µ− (on the right). The data are shown as points (black)

and the total PDF (blue line) is overlaid. The components of the fit are also shown: the signal (green line),

the peaking background (solid area) and the non-peaking background (dashed line).

Lepton number violating processes such as D+
(s) → π−µ+µ+ are forbidden in the SM. The

previous best upper limits are BF(D+ → π−µ+µ+) < 2.0× 10−6 and BF(D+
s → π−µ+µ+) <

1.4×10−5 at 90% CL [17]. New searches are performed in four regions of mass m(µ+π−), in order

to be more sensitive to a potential Majorana neutrino in the region where its mass may lie. Upper

limits are presented in Table 2. The total upper limits are extrapolated with the same assumption as

above and are equal BF(D+ → π−µ+µ+)< 2.2×10−8 and BF(D+
s → π−µ+µ+)< 1.2×10−7 at

90% CL [16].

These upper limits are almost 50 times better than the previous ones but they are still orders

of magnitude above the SM predictions and BF enhancements from possible NP are not excluded

yet.

m(µ+µ−) region, [MeV/c2]

Decay mode 250 - 525 1250 - 2000

D+ → π+µ+µ− 2.0 (2.5) ×10−8 2.6 (2.9) ×10−8

D+
s → π+µ+µ− 6.9 (7.7)×10−8 16.0 (18.6)×10−8

Table 1: Upper limits at the 90% (95%) CL on the branching fractions for FCNC D+
(s)

→ π+µ+µ− decays

in the regions of dimuon mass sensitive to the short distance contributions.

m(µ+π−) region, [MeV/c2]

Decay mode 250 - 1140 1140 - 1340 1340 - 1540 1540 - 2000

D+ → π−µ+µ+ 1.4 (1.7) ×10−8 1.1 (1.3)×10−8 1.3 (1.5)×10−8 1.3 (1.5)×10−8

D+
s → π−µ+µ+ 6.2 (7.6)×10−8 4.4 (5.3)×10−8 6.0 (7.3)×10−8 7.5 (8.7)×10−8

Table 2: Upper limits at the 90% (95%) CL on the branching fractions for LNV D+
(s)

→ π−µ+µ+ decays in

four regions of hypothetical Majorana neutrino mass m(µ+π−).
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4. Conclusions

Rare charm decays are powerful tools for the search of physics beyond the Standard Model.

Their searches are an important part of LHCb’s physics program. The presented results are based

on 1.0 fb−1 of data collected in 2011. The measured upper limits still lie above the SM expectations.
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