R. E. Sykora, Z. Assefa, R. G. Haire, and T. E. Albrecht-schmitt, First Structural Determination of a Trivalent Californium Compound with Oxygen Coordination, Inorganic Chemistry, vol.45, issue.2, pp.475-477, 2006.
DOI : 10.1021/ic051667v

J. H. Burns, J. R. Peterson, and R. D. Baybarz, Hexagonal and orthorhombic crystal structures of californium trichloride, Journal of Inorganic and Nuclear Chemistry, vol.35, issue.4, pp.1171-1177, 1973.
DOI : 10.1016/0022-1902(73)80189-7

P. G. Laubereau and J. Burns, Microchemical preparation of tricyclopentadienyl compounds of berkelium, californium, and some lanthanide elements, Inorganic Chemistry, vol.9, issue.5, pp.1091-1095, 1970.
DOI : 10.1021/ic50087a018

E. Galbis, Solving the Hydration Structure of the Heaviest Actinide Aqua Ion Known: The Californium(III) Case, Angewandte Chemie International Edition, vol.113, issue.71, pp.3811-3815, 2010.
DOI : 10.1002/anie.200906129

URL : https://hal.archives-ouvertes.fr/in2p3-00493001

P. Lindqvist-reis, The Structures and Optical Spectra of Hydrated Transplutonium Ions in the Solid State and in Solution, Angewandte Chemie International Edition, vol.63, issue.6, pp.919-922, 2007.
DOI : 10.1002/anie.200603947

C. Apostolidis, [An(H2O)9](CF3SO3)3 (An=U-Cm, Cf): Exploring Their Stability, Structural Chemistry, and Magnetic Behavior by Experiment and Theory, Angewandte Chemie International Edition, vol.8, issue.36, pp.6343-6347, 2010.
DOI : 10.1002/anie.201001077

S. Skanthakumar, M. R. Antonio, R. E. Wilson, and L. Soderholm, The Curium Aqua Ion, Inorganic Chemistry, vol.46, issue.9
DOI : 10.1021/ic061798b

N. Kaltsoyannis, Does Covalency Increase or Decrease across the Actinide Series? Implications for Minor Actinide Partitioning, Inorganic Chemistry, vol.52, issue.7, pp.3407-3413, 2013.
DOI : 10.1021/ic3006025

M. L. Neidig, D. L. Clark, and R. L. Martin, Covalency in f-element complexes, Coordination Chemistry Reviews, vol.257, issue.2, pp.394-406, 2013.
DOI : 10.1016/j.ccr.2012.04.029

M. J. Polinski, Differentiating between Trivalent Lanthanides and Actinides, Journal of the American Chemical Society, vol.134, issue.25, pp.10682-10692, 2012.
DOI : 10.1021/ja303804r

A. Ruiz-martínez, D. Casanova, and S. Alverz, Polyhedral Structures with an Odd Number of Vertices: Nine-Coordinate Metal Compounds, Chemistry - A European Journal, vol.56, issue.4, pp.1291-1303, 2008.
DOI : 10.1002/chem.200701137

A. Ruiz-martínez and S. Alverz, Stereochemistry of Compounds with Coordination Number Ten, Chemistry - A European Journal, vol.16, issue.30, pp.7470-7480, 2009.
DOI : 10.1002/chem.200900547

L. Li, Synthesis of rare earth polyborates using molten boric acid as a flux, Chem

I. Castro-rodriguez, Uranium Tris-aryloxide Derivatives Supported by Triazacyclononane:?? Engendering a Reactive Uranium(III) Center with a Single Pocket for Reactivity, Journal of the American Chemical Society, vol.125, issue.15, pp.4565-4571, 2003.
DOI : 10.1021/ja028342n

S. Skanthakumar, L. Soderholm, and R. Movshovich, Magnetic properties of Dy in Pb 2 Sr 2 DyCu 3 O 8, J. Alloys Compd, vol.303, pp.298-302, 2000.

P. R. Fields, B. G. Wybourne, and W. Carnall, The electronic energy levels of the heavy actinides Bk 3+, Cf 3+ (5f 9 ), Es 3+ (5f 10 ), and Fm 3+ (5f 11 ). Argonne National Laboratory AEC Research and Development Report (U.S. Atomic Energy Commission), p.6911, 1964.

A. F. Campos, A. Meijerink, C. De-mellow-donegá, and O. L. Malta, A theoretical calculation of vibronic coupling strength: the trend in the lanthanide ion series and the host-lattice dependence, Journal of Physics and Chemistry of Solids, vol.61, issue.9, pp.1489-1498, 2000.
DOI : 10.1016/S0022-3697(00)00007-X

J. Legendziewicz, Spectroscopy and structure of selected lanthanide polymeric and monomeric systems, Journal of Alloys and Compounds, vol.300, issue.301, pp.71-87, 2000.
DOI : 10.1016/S0925-8388(99)00735-5

J. P. Perdew, M. Ernzerhof, and K. Burke, Rationale for mixing exact exchange with density functional approximations, The Journal of Chemical Physics, vol.105, issue.22, pp.9982-9985, 1996.
DOI : 10.1063/1.472933

J. P. Perdew, V. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters, vol.77, issue.18, pp.3865-3868, 1996.
DOI : 10.1103/PhysRevLett.77.3865

B. O. Roos, P. R. Taylor, and P. E. Siegbahn, A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach, Chemical Physics, vol.48, issue.2, pp.157-173, 1980.
DOI : 10.1016/0301-0104(80)80045-0

M. Kohout and A. Savin, Atomic shell structure and electron numbers, International Journal of Quantum Chemistry, vol.94, issue.4, pp.875-882, 1996.
DOI : 10.1002/(SICI)1097-461X(1996)60:4<875::AID-QUA10>3.0.CO;2-4

A. D. Becke and K. E. Edgecombe, A simple measure of electron localization in atomic and molecular systems Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr, J. Chem. Phys. J. Chem. Phys, vol.92, issue.100, pp.5397-5403, 1990.

X. Cao and M. Dolg, Segmented contraction scheme for small-core actinide pseudopotential basis sets, Journal of Molecular Structure: THEOCHEM, vol.673, issue.1-3, pp.203-209, 2004.
DOI : 10.1016/j.theochem.2003.12.015

X. Cao, M. Dolg, and H. Stoll, Valence basis sets for relativistic energy-consistent small-core actinide pseudopotentials, The Journal of Chemical Physics, vol.118, issue.2, pp.487-497, 2003.
DOI : 10.1063/1.1521431

M. J. Frisch, Gaussian 09, Revision C.01, 2011.

A. E. Reed, L. A. Curtiss, and F. Weinhold, Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint, Chemical Reviews, vol.88, issue.6, pp.899-926, 1988.
DOI : 10.1021/cr00088a005

B. Silvi and A. Savin, Classification of chemical bonds based on topological analysis of electron localization functions, Nature, vol.371, issue.6499, pp.683-686, 1994.
DOI : 10.1038/371683a0

F. Aquilante, MOLCAS 7: The Next Generation, Journal of Computational Chemistry, vol.104, issue.331, pp.224-247, 2010.
DOI : 10.1002/jcc.21318

URL : https://hal.archives-ouvertes.fr/hal-01460198

T. Tsuchiya, M. Abe, T. Nakajima, and K. Hirao, Accurate relativistic Gaussian basis sets for H through Lr determined by atomic self-consistent field calculations with the third-order Douglas???Kroll approximation, The Journal of Chemical Physics, vol.115, issue.10, p.4463, 2001.
DOI : 10.1063/1.1390515

N. Douglas and N. M. Kroll, Quantum electrodynamical corrections to the fine structure of helium, Annals of Physics, vol.82, issue.1, pp.89-155, 1974.
DOI : 10.1016/0003-4916(74)90333-9

B. A. Hess, Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators, Physical Review A, vol.33, issue.6, pp.3742-3748, 1986.
DOI : 10.1103/PhysRevA.33.3742

A. D. Becke, Density???functional thermochemistry. III. The role of exact exchange, The Journal of Chemical Physics, vol.98, issue.7, pp.5648-5652, 1993.
DOI : 10.1063/1.464913

C. Lee, W. Yang, and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B, vol.37, issue.2, pp.785-789, 1988.
DOI : 10.1103/PhysRevB.37.785

N. Godbout, D. R. Salahub, J. Andzelm, and E. Wimmer, Optimization of Gaussian-type basis sets for local spin density functional calculations. Part I. Boron through neon, optimization technique and validation, Canadian Journal of Chemistry, vol.70, issue.2, pp.560-571, 1992.
DOI : 10.1139/v92-079

J. P. Perdew, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Physical Review B, vol.46, issue.11, pp.6671-6687, 1992.
DOI : 10.1103/PhysRevB.46.6671

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters, vol.77, issue.18, pp.3865-3868, 1996.
DOI : 10.1103/PhysRevLett.77.3865