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ZERO-CURRENT LONGITUDINAL BEAM DYNAMICS 

J-M. Lagniel, GANIL, Caen, France 

Abstract 
In linacs, the longitudinal focalization is done by 

nonlinear forces and the acceleration induces a damping 
of the phase oscillations. The longitudinal beam dynamics 
is therefore complex, even when the nonlinear space-
charge forces are ignored. The three different ways to 
study and understand this zero-current longitudinal beam 
dynamics are presented and compared. 

THREE WAYS TO STUDY THE 
LONGITUDINAL BEAM DYNAMICS 

As schematically illustrated by Fig. 1, there are three 
different methods traditionally used to compute the 
longitudinal beam dynamics in linacs. 

 
Figure 1 : Schematic representation of the energy 
evolution with the 3 methods used to compute the 
longitudinal dynamics : integration of the EoM in field 
maps (blue), mapping from cavity to cavity (violet), from 
the EoM obtained in smooth approximation (green). 

The first method, by far the most accurate but 
computer-time consuming, consists in integrating the 
equation of motion (EoM) (1) using field maps giving the 
amplitude of the rf accelerating field �' �í�:�N�á �V�;. 
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(1) 

The second method consists in computing the 
evolution of the particle energies using the so-called 
Panofsky equation (2) [1] which gives the total energy 
gain produced by an accelerating gap or a cavity. 
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In (2), �M is the particle charge, �'$ the accelerating field 
mean value, �.�Ö the gap or cavity length, ���p�á�’ the Transit 
Time Factor (TTF) and �Ô�4 the rf phase when the particle 
crosses the gap or cavity center. The exact value of the 
TTF is given by (3) which shows that all the information 
concerning the field value along the particle trajectory 
and the evolution of the particle �³velocity�  ́ �Ú�:�V�; have 
been transferred into the TTF. 
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(3) 

Using (3) the computation of the particle energy 
evolution is even more complicated than using (1); the 
practical use of the Panofsky equation often used for linac 
designs requires therefore several approximations. 

The first approximations consist in assuming that the 
accelerating field �' �í�:�N�:�V�;�á �V�; seen by the particle is an 
odd function of z and that the evolution of the particle 
radial position and velocity can be neglected. In this case 
the second integral of (3) vanishes and the TTF can be 
expressed as a function of the particle radial position (�N�§) 
�D�Q�G���³�Y�H�O�R�F�L�W�\�´�����Ú�§) at the entrance of the gap or cavity (4). 
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Under the form (4), the use of an analytical expression 
of the accelerating field distribution �' �í�:���N�§�á �V�; allows a fast 
computation of the TTF, then a fast computation of the 
particle energy evolutions using (2). 

Eq. (4) has nevertheless the redhibitory drawback to 
produce non symplectic transformations inducing large 
spurious emittance growths [2]. The only way to build a 
simple symplectic mapping (5) is to use the synchronous 
particle TTF (�����å�§�@�4�á�������	%�@�	�Þ) for any particle, then to neglect 
the effect of the particle velocity spread on the TTF. The 
error introduced by all these approximations can be very 
significant in the case of superconducting linacs with 
large energy gains per cavity and large energy spreads. 
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The third method used to compute and understand the 
longitudinal dynamics consists in considering a 
continuous longitudinal focalization (smooth 
approximation). In this case the mixing of (5-1) and (5-2) 
leads to the second order differential equation (6) which 
describes the particle phase oscillations around the 
synchronous particle. In (6) �V�4�ß is the zero-current 
longitudinal phase advance per unit of length and �-�×�ã is 
the damping coefficient which will be discussed later on. 
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LONGITUDINAL BEAM DYNAMICS 
WITHOUT DAMPING 

The use of (6) with �-�×�ã = 0 allows to study the main 
properties of the longitudinal beam dynamics without 
damping (see [3] eg.). Fig. 2 gives an example showing 
the evolution of the separatrix shapes as a function of the 
synchronous phase and the evolution of the particle 
relative phase advances as a function of the phase 
oscillation amplitudes. The strongly nonlinear character 
of the longitudinal motion is well shown by these figures. 

 
Figure 2 : From Eq. (6), separatrix shapes (left) and 
evolution of the particle relative phase advance as a 
function of their amplitude (right) for different 
synchronous phases from -15° (red) to -90° (brown). 

The comparison between the dynamics obtained in the 
framework of the smooth approximation (6) with the one 
given by the mapping (5-1) and (5-2) must be done at a 
-90° synchronous phase to be in the undamped regime. 
This comparison does not show significant differences 
between both methods up to zero-current longitudinal 
phase advances per focusing period of the order of �V�4�ß�Û = 
50°. As shown in Fig. 3, a thin chaotic layer appears 
around the separatrix in the phase-space portrait obtained 
using the mapping at this value. 

 
Figure 3 : �V�4�ß�Û = 50°/lattice phase-space portraits 
Left : smooth approximation Eq. (6) 
Right : mapping Eq. (5-1) and (5-2) 

The difference is more and more important when �V�4�ß�Û 
increases as shown by the Fig. 4 phase-space portraits 
plotted using the mapping superimposed on the red 
separatrix calculated from the smooth approximation. 

The study of the longitudinal beam dynamics using the 
mapping shows that the parametric resonances present in 
the stable region are always excited (Fig. 2 right hand side 
allows to estimate their positions). One can notice that the 
1/4 resonance start to be excited at �V�4�ß�Û = 82° because at 
this value calculated using the smooth approximation the 
real value of the phase advance per period is ~ 92°. 

In addition, the lowest order resonances which are more 
and more numerous in the separatrix area as �V�4�ß�Û 

increases form a broader and broader chaotic sea leading 
to a higher and higher reduction of the longitudinal 
acceptance (a phenomenon described in [4] and [5]). 

 
Figure 4 : Phase-space portraits from the mapping. 
From top left to bottom right : 
�V�4�ß�Û = 60°/lattice (1/8 res.)    �V�4�ß�Û = 70°/lattice (1/6 res.) 
�V�4�ß�Û = 82°/lattice (1/4 res.)    �V�4�ß�Û = 86°/lattice (1/4 res.) 

The legitimate question arising looking to these results 
�L�V�� �³�L�V�� �W�K�L�V�� �E�H�K�D�Y�L�R�X�U�� �U�H�D�O�� �R�U�� �L�Q�G�X�F�H�G�� �E�\�� �W�K�H�� �U�H�S�H�W�L�W�L�Y�H��
errors (which can be seen as a periodic excitation) done 
�X�V�L�Q�J�� �W�K�H�� �P�D�S�S�L�Q�J�"�´ or, i�Q�� �R�W�K�H�U�� �W�H�U�P�V���� �³�L�V�� �L�W�� �D��spurious 
effect of the mapping�"� ́

The answer is given by Fig. 5 which shows the phase-
space portraits obtained making the integration of the 
EoM with the cavity �³�I�L�H�O�G���P�D�S�´��given by Eq. (7). 
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Fig. 5 left which is the result of a calculation done 
without drift space between the cavities (lattice length = 
�.�Ö), then with a purely sinusoidal field map, shows that 
such an accelerating field do not excite the resonances, 
even at �V�4�ß�Û = 80°/lattice. At the opposite, Fig. 5 right 
plotted with a lattice length = �v���.�Ö, then with a field map 
with harmonics, shows that the resonances are excited by 
these harmonics which are always present in the mapping. 
One can notice the great similarities between the Fig. 4 
(mapping) and Fig. 5 (EoM integration) phase-space 
portraits at �V�4�ß�Û = 70°/lattice with the 1/6 resonance. 

 
Figure 5 : Phase-space portraits from integration of the 
EoM in the �³�I�L�H�O�G���P�D�S�´ (7) 
Left : �V�4�ß�Û = 80°/lattice, purely sinusoidal field map 
Right : �V�4�ß�Û = 70°/lattice, field map with harmonics 

Proceedings of LINAC2014, Geneva, Switzerland TUPP064

04 Beam Dynamics, Extreme Beams, Sources and Beam Related Technologies

4A Beam Dynamics, Beam Simulations, Beam Transport

ISBN 978-3-95450-142-7

573 C
op

yr
ig

ht
'

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



LONGITUDINAL BEAM DYNAMICS 
WITH DAMPING 

The �-�×�ã coefficient in (6) is given by (8), it is positive 
when the beam is accelerated. In this case the particle 
phase oscillations are then damped and the attractor of the 
stable trajectories in the (d�M, d�M�¶) trace-space is the 
central point (0, 0). 

Fig. 6 gives two examples of such trajectories for a 
�Ô�æL F�u�r�¹ synchronous phase. Superimposed to the 
undamped separatrix in blue, the extreme stable 
trajectories in red and green define the basin of attraction 
(longitudinal acceptance with the classical golf-club 
shape). The size of this basin and the damping speed of 
the trajectories increase rapidly as �-�×�ã increases. 
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Figure 6 : (d�M, d�M�¶) basin of attraction (smooth approx.) 
�Ô�æL F�u�r�¹, �-�×�ã = 0.10 left and 0.50 right 

When the (d�M, d�M�¶) �³�W�U�D�M�H�F�W�R�U�L�H�V�´�� �D�U�H�� �S�O�R�W�W�H�G���X�V�L�Q�J�� �W�K�H��
mapping, Fig. 7 shows that, depending on their initial 
conditions, the particles are attracted either by the central 
point (0, 0) or by the resonance-island central points. 

 
Figure 7 : (d�M, d�M�¶����trajectories (mapping) 
�V�4�ß�Û = 82°/lattice, �-�×�Ô�à�ã = 0.02 

This behaviour is well confirmed plotting the basin of 
attractions for �V�4�ß�Û = 70° and 82°/lattice (Fig. 8 and 9 
respectively). To plot these figures, at initial conditions 
covering the whole (d�M, d�M�¶) space, a red dot is plotted 
when the motion is attracted by the central point and a 
green dot is plotted when the attractor is in the resonance 
islands. 

To summarize we can say that the stable fix points of 
the resonance islands can act as main attractors at low 
damping rates but that the damping can annihilate the 
effect of the resonances. Anyway, the perturbation of the 
damping towards the central point (0, 0) leads to 
normalized emittance increase. 

  
Figure 8 : (d�M, d�M�¶) basin of attraction (mapping) 
�V�4�ß�Û = 70°/lattice, �-�×�Ô�à�ã = 0.01 left and 0.10 right 

  

  
Figure 9 : (d�M, d�M�¶) basin of attraction (mapping) 
�V�4�ß�Û = 82°/lattice, from top left to bottom right : 
�-�×�Ô�à�ã = 0.01, 0.05, 0.10 and 0.20 

SUMMARY 
The zero-current longitudinal beam dynamics is 

complex; at least more complex than what is taught in 
classical accelerator books and accelerator schools! 

The nonlinear character of the zero-current longitudinal 
dynamics is such that the parametric resonances affect the 
beam core and that there is strong longitudinal acceptance 
reductions as soon as the zero-current longitudinal phase 
advance is higher than 60°/lattice. 

To understand the longitudinal beam dynamics in linacs 
it is essential to take into account the damping induced by 
the acceleration; the damping coefficient should be 
considered as an important parameter to analyze a linac 
design and understand its longitudinal beam dynamics. 
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