Skip to Main content Skip to Navigation
Conference papers

Superheavy magic nuclei in Relativistic Hartree-Fock-Bogoliubov theory

Abstract : The occurrence of the spherical shell closures in superheavy nuclear systems is explored within the relativistic Hartree-Fock-Bogoliubov (RHFB) theory with density- dependent meson-nucleon couplings. We use the two-nucleon gaps δ2n(p) and pairing gaps Δv(π) to characterize the shell effects. The results depend slightly on the forces used, but the general set of magic numbers beyond 208Pb are Z = 120, 138 and N = 172, 184, 228 and 258. Our calculations are in favor of the nuclide 304120 as the next spherical doubly magic nucleus. Combined with the bulk properties of symmetric matter, we find that the shell effects are sensitive to the values of both scalar mass and effective mass. These two masses essentially determine the spin-orbit splittings and single-particle level density, respectively. Furthermore, the breaking of relativistic pseudo-spin symmetry influences the level structure and the occurrence of closed shells.
Document type :
Conference papers
Complete list of metadatas
Contributor : Dominique Girod <>
Submitted on : Friday, September 12, 2014 - 11:05:41 AM
Last modification on : Wednesday, September 16, 2020 - 4:10:26 PM

Links full text




J. Li, W. Long, J. Margueron, N. van Giai. Superheavy magic nuclei in Relativistic Hartree-Fock-Bogoliubov theory. XX International School on Nuclear Physics, Neutron Physics and Applications (Varna2013), Sep 2013, Golden Sands, Bulgaria. pp.012002, ⟨10.1088/1742-6596/533/1/012002⟩. ⟨in2p3-01063466⟩



Record views