Gauge invariant quark Green’s functions with polygonal Wilson lines

Abstract : Properties of gauge invariant two-point quark Green’s functions, defined with polygonal Wilson lines, are studied. The Green’s functions can be classified according to the number of straight line segments their polygonal lines contain. Functional relations are established between the Green’s functions with different numbers of segments on the polygonal lines. An integrodifferential equation is obtained for the Green’s function with one straight line segment, in which the kernels are represented by a series of Wilson loop vacuum averages along polygonal contours with an increasing number of segments and functional derivatives on them. The equation is exactly solved in the case of two-dimensional QCD in the large-N c limit. The spectral properties of the Green’s function are displayed.
Type de document :
Article dans une revue
Fizika Elementarnykh Chastits i Atomnogo Yadra / Physics of Particles and Nuclei, MAIK Nauka/Interperiodica, 2014, 45, pp.782-787. 〈10.1134/S1063779614040133〉
Liste complète des métadonnées

http://hal.in2p3.fr/in2p3-01074560
Contributeur : Sophie Heurteau <>
Soumis le : mardi 14 octobre 2014 - 17:45:13
Dernière modification le : jeudi 11 janvier 2018 - 06:12:40

Identifiants

Collections

Citation

H. Sazdjian. Gauge invariant quark Green’s functions with polygonal Wilson lines. Fizika Elementarnykh Chastits i Atomnogo Yadra / Physics of Particles and Nuclei, MAIK Nauka/Interperiodica, 2014, 45, pp.782-787. 〈10.1134/S1063779614040133〉. 〈in2p3-01074560〉

Partager

Métriques

Consultations de la notice

43