C. /. Golm, C. In2p3, and . Irfu, Observatoire de Paris, Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet, F-75205 Paris Cedex 13, France 28 Columbia University, 23 European Gravitational Observatory (EGO), I-56021 Cascina, p.35042

. Laboratoire-kastler-brossel, C. Ens, U. , U. Pierre, M. Curie et al., The Netherlands 49 University of Maryland, College Park, MD 20742, USA 50 University of Massachusetts -Amherst 53 Canadian Institute for Theoretical Astrophysics, pp.0-478, 1081.

B. P. Abbott, LIGO: the Laser Interferometer Gravitational-Wave Observatory, Reports on Progress in Physics, vol.72, issue.7, p.76901, 2009.
DOI : 10.1088/0034-4885/72/7/076901

H. Grote, The status of GEO 600, Classical and Quantum Gravity, vol.25, issue.11, p.114043, 2008.
DOI : 10.1088/0264-9381/25/11/114043

F. Acernese, Status of Virgo, Classical and Quantum Gravity, vol.25, issue.11, p.114045, 2008.
DOI : 10.1088/0264-9381/25/11/114045

URL : https://hal.archives-ouvertes.fr/in2p3-00025043

J. Abadie, Search for gravitational waves from low mass compact binary coalescence in LIGO???s sixth science run and Virgo???s science runs 2 and 3, Physical Review D, vol.85, issue.8, p.82002, 2012.
DOI : 10.1103/PhysRevD.85.082002

J. Abadie, SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3, The Astrophysical Journal, vol.760, issue.1, p.12, 2012.
DOI : 10.1088/0004-637X/760/1/12

URL : https://hal.archives-ouvertes.fr/in2p3-00706656

J. Aasi, Search for gravitational waves from binary black hole inspiral, merger, and ringdown in LIGO-Virgo data from 2009???2010, Physical Review D, vol.87, issue.2, p.22002, 2009.
DOI : 10.1103/PhysRevD.87.022002

URL : https://hal.archives-ouvertes.fr/in2p3-00737685

J. Abadie, All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run, Physical Review D, vol.85, issue.12, 2012.
DOI : 10.1103/PhysRevD.85.122007

URL : https://hal.archives-ouvertes.fr/in2p3-00679939

J. Aasi, Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data, Physical Review D, vol.87, issue.4, 2012.
DOI : 10.1103/PhysRevD.87.042001

URL : https://hal.archives-ouvertes.fr/in2p3-00725598

B. P. Abbott, An upper limit on the stochastic gravitational-wave background of cosmological origin, Nature, vol.73, issue.7258, p.990, 2009.
DOI : 10.1038/nature08278

URL : https://hal.archives-ouvertes.fr/in2p3-00414345

S. Klimenko, A. Yakushin, G. Mercer, and . Mitselmakher, A coherent method for detection of gravitational wave bursts, Classical and Quantum Gravity, vol.25, issue.11, p.114029, 2008.
DOI : 10.1088/0264-9381/25/11/114029

P. J. Sutton, X-Pipeline: an analysis package for autonomous gravitational-wave burst searches, New Journal of Physics, vol.12, issue.5, p.53034, 2010.
DOI : 10.1088/1367-2630/12/5/053034

URL : https://hal.archives-ouvertes.fr/in2p3-00495192

I. W. Harry and S. Fairhurst, Targeted coherent search for gravitational waves from compact binary coalescences, Physical Review D, vol.83, issue.8, p.84002, 2011.
DOI : 10.1103/PhysRevD.83.084002

S. Babak, P. Biswas, . Brady, A. Duncan, . Brown et al., Searching for gravitational waves from binary coalescence, Physical Review D, vol.87, issue.2, p.24033, 2013.
DOI : 10.1103/PhysRevD.87.024033

L. Blackburn, The LSC glitch group: monitoring noise transients during the fifth LIGO science run, Classical and Quantum Gravity, vol.25, issue.18, p.184004, 2008.
DOI : 10.1088/0264-9381/25/18/184004

J. Slutsky, Methods for reducing false alarms in searches for compact binary coalescences in LIGO data, Classical and Quantum Gravity, vol.27, issue.16, p.165023, 2010.
DOI : 10.1088/0264-9381/27/16/165023

N. Christensen, LIGO S6 detector characterization studies, Classical and Quantum Gravity, vol.27, issue.19, 2010.
DOI : 10.1088/0264-9381/27/19/194010

URL : https://hal.archives-ouvertes.fr/hal-00910711

J. Mciver, Data quality studies of enhanced interferometric gravitational wave detectors, Classical and Quantum Gravity, vol.29, issue.12, p.124010, 2012.
DOI : 10.1088/0264-9381/29/12/124010

F. Robinet, Data quality in gravitational wave bursts and inspiral searches in the second Virgo Science Run, Classical and Quantum Gravity, vol.27, issue.19, p.194012, 2010.
DOI : 10.1088/0264-9381/27/19/194012

J. Aasi, The characterization of Virgo data and its impact on gravitational-wave searches, Classical and Quantum Gravity, vol.29, issue.15, p.155002, 2012.
DOI : 10.1088/0264-9381/29/15/155002

URL : https://hal.archives-ouvertes.fr/in2p3-00683730

A. Albert, . Michelson, W. Edward, and . Morley, On the Relative Motion of the Earth and of the Luminiferous Ether, Sidereal Messenger, vol.6, issue.6, pp.306-310306, 1887.

J. R. Smith, The path to the enhanced and advanced LIGO gravitational-wave detectors, Classical and Quantum Gravity, vol.26, issue.11, p.114013, 2009.
DOI : 10.1088/0264-9381/26/11/114013

L. Rick, . Savage, S. King, and . Seel, A Highly Stabilized 10-Watt Nd: YAG Laser for the Laser Interferometer Gravitational-Wave Observatory (LIGO), Laser Physics, vol.8, issue.3, pp.679-685, 1998.

M. Gregory and . Harry, Advanced LIGO: The next generation of gravitational wave detectors, Class.Quant.Grav, vol.27, p.84006, 2010.

P. Kwee, C. Bogan, . Danzmann, . Frede, . Kim et al., Stabilized high-power laser system for the gravitational wave detector advanced LIGO, Optics Express, vol.20, issue.10, pp.2010617-10634, 2012.
DOI : 10.1364/OE.20.010617

S. Rupal, . Amin, A. Joseph, and . Giaime, Gravitational-wave detector-derived error signals for the LIGO thermal compensation system, Class. Quantum Grav, vol.27, issue.21, p.215002, 2010.

P. Fritschel, R. Bork, G. González, N. Mavalvala, D. Ouimette et al., Readout and control of a power-recycled interferometric gravitational-wave antenna, Applied Optics, vol.40, issue.28, pp.4988-4998, 2001.
DOI : 10.1364/AO.40.004988

N. Smith-lefebvre, S. Ballmer, . Evans, . Waldman, . Kawabe et al., Optimal alignment sensing of a readout mode cleaner cavity, Optics Letters, vol.36, issue.22, p.4365, 2011.
DOI : 10.1364/OL.36.004365

A. Bertolini, R. Desalvo, C. Galli, . Gennaro, S. Mantovani et al., Design and prototype tests of a seismic attenuation system for the advanced-LIGO output mode cleaner, Classical and Quantum Gravity, vol.23, issue.8, pp.111-118, 2006.
DOI : 10.1088/0264-9381/23/8/S15

R. Derosa, C. Jennifer, D. Driggers, H. Atkinson, V. Miao et al., Global feed-forward vibration isolation in a km scale interferometer, Classical and Quantum Gravity, vol.29, issue.21, 2012.
DOI : 10.1088/0264-9381/29/21/215008

Y. Levin, Internal thermal noise in the LIGO test masses: A direct approach, Physical Review D, vol.57, issue.2, pp.659-663, 1998.
DOI : 10.1103/PhysRevD.57.659

M. Gregory, H. Harry, E. Armandula, D. R. Black, G. Crooks et al., Thermal noise from optical coatings in gravitational wave detectors, Applied Optics IP, issue.7, pp.451569-1574, 2006.

A. Buonanno and Y. Chen, Optical noise correlations and beating the standard quantum limit in advanced gravitational-wave detectors, Classical and Quantum Gravity, vol.18, issue.15, pp.95-101, 2001.
DOI : 10.1088/0264-9381/18/15/102

L. S. Finn and D. F. Chernoff, Observing binary inspiral in gravitational radiation: One interferometer, Physical Review D, vol.47, issue.6, pp.2198-2219, 1993.
DOI : 10.1103/PhysRevD.47.2198

J. Abadie, Sensitivity Achieved by the LIGO and Virgo Gravitational Wave Detectors during LIGO's Sixth and Virgo's Second and Third Science Runs, 2012.

S. K. Chattergi, The search for gravitational wave bursts in data from the second LIGO science run, 2005.

D. M. Macleod, Reducing the effect of seismic noise in LIGO searches by targeted veto generation, Classical and Quantum Gravity, vol.29, issue.5, p.55006, 2012.
DOI : 10.1088/0264-9381/29/5/055006

J. R. Smith, A hierarchical method for vetoing noise transients in gravitational-wave detectors, Classical and Quantum Gravity, vol.28, issue.23, p.235005, 2011.
DOI : 10.1088/0264-9381/28/23/235005

URL : https://hal.archives-ouvertes.fr/in2p3-00662664

E. J. Daw, J. A. Giaime, D. Lormand, M. Lubinski, and J. Zweizig, Long-term study of the seismic environment at LIGO, Classical and Quantum Gravity, vol.21, issue.9, pp.2255-2273, 2004.
DOI : 10.1088/0264-9381/21/9/003

G. Manson and G. Hoffmann-de-visme, The frequency spectrum of Barkhausen noise, Journal of Physics D: Applied Physics, vol.5, issue.8, pp.1389-1395, 2002.
DOI : 10.1088/0022-3727/5/8/305

R. Weiss, Notes on Barkhausen Noise, 2006.

M. Prijatelj, . Degallaix, . Grote, C. Leong, . Affeldt et al., The output mode cleaner of GEO 600, Classical and Quantum Gravity, vol.29, issue.5, p.55009, 2012.
DOI : 10.1088/0264-9381/29/5/055009

D. Nicolás and . Smith-lefebvre, Techniques for Improving the Readout Sensitivity of Gravitational Wave Antennae, 2012.

T. T. Fricke, DC readout experiment in Enhanced LIGO, Classical and Quantum Gravity, vol.29, issue.6, p.65005, 2012.
DOI : 10.1088/0264-9381/29/6/065005

W. Michael and . Coughlin, Noise Line Identification in LIGO S6 and Virgo VSR2, J.Phys.Conf.Ser, vol.243, p.12010, 2010.

C. Robinson, A. Sathyaprakash, and . Sengupta, Geometric algorithm for efficient coincident detection of gravitational waves, Physical Review D, vol.78, issue.6, p.62002, 2008.
DOI : 10.1103/PhysRevD.78.062002

B. Allen, A chi**2 time-frequency discriminator for gravitational wave detection, Phys.Rev, vol.71, p.62001, 2005.

P. Ajith, T. Isogai, N. Christensen, R. Adhikari, and A. B. Pearlman, Instrumental vetoes for transient gravitational-wave triggers using noise-coupling models: The bilinear-coupling veto, Physical Review D, vol.89, issue.12, 2014.
DOI : 10.1103/PhysRevD.89.122001

V. Dergachev, Description of PowerFlux algorithms and implementation, 2005.

V. Dergachev, Description of PowerFlux 2 algorithms and implementation, 2011.

J. Abadie, Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600???1000??Hz, Physical Review D, vol.85, issue.12, p.85, 2011.
DOI : 10.1103/PhysRevD.85.122001

URL : https://hal.archives-ouvertes.fr/in2p3-00708743

E. Thrane, N. Christensen, and R. Schofield, Correlated magnetic noise in global networks of gravitational-wave detectors: Observations and implications, Physical Review D, vol.87, issue.12, p.123009, 2013.
DOI : 10.1103/PhysRevD.87.123009

J. Aasi, Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light, Nature Photonics, vol.11, issue.8, pp.613-619, 2013.
DOI : 10.1038/nphoton.2013.177

R. Essick, L. Blackburn, and E. Katsavounidis, Optimizing vetoes for gravitational-wave transient searches, Classical and Quantum Gravity, vol.30, issue.15, p.155010, 2013.
DOI : 10.1088/0264-9381/30/15/155010

R. Biswas, L. Blackburn, J. Cao, R. Essick, and K. A. Hodge, Application of machine learning algorithms to the study of noise artifacts in gravitational-wave data, Physical Review D, vol.88, issue.6, p.88062003, 2013.
DOI : 10.1103/PhysRevD.88.062003

B. P. Abbott, Implementation and testing of the first prompt search for gravitational wave transients with electromagnetic counterparts, A & A, vol.539, p.124, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00716028

P. A. Evans, Swift follow-up observations of candidate gravitational-wave transient events, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00718573

J. Abadie, Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors, Classical and Quantum Gravity, vol.27, issue.17, p.173001, 2010.
DOI : 10.1088/0264-9381/27/17/173001

URL : https://hal.archives-ouvertes.fr/in2p3-00465032