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Abstract

In Nuclear Physics and High Energy Physics the calibration and debugging of new detector systems in

the early stages is possible using cosmic rays (muons). CORTO, the COsmic Ray Telescope at Orsay,

located at the Linear Accelerator Laboratory (LAL) in Orsay (France), detects and reconstructs the

position, time and direction of cosmic muons. We can study response of the investigated detectors with

using coincidences between CORTO and this detector system. This work is devoted to the measurement

of the major parameters of the facility: the X (1.8 cm) coordinate resolution and the Y (2.1 cm)

resolution, given by the time resolution for the muon track (250 ps). The paper presents the basic

principles of the track reconstruction, the electronics delays investigation and displays the results of

running.

Keywords: cosmic muons, track reconstruction, the detection e�ciency, USB WaveCatcher, signal

processing, MRPC.

1 Introduction

1.1 Particle sources for detector test

In High-Energy Physics (HEP) and Nuclear Physics where sophisticated detector system consisting in

di�erent types of detectors with hundreds of millions readout channels (for example in the ATLAS

(CERN) detector), the calibration and con�guration the of subsystems can be performed with:

1. Radioactive sources (�; �; ; n );

2. Lasers ( );

3. Particle accelerators (e+ ; e� ; �; p; �p; d; � 0; � + ; � � ; K 0; K � ; K + );

4. Nuclear reactors (n);

5. Neutron generators (n);
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6. Cosmic rays (� );

The use of natural radioactive sources for calibrating is quite easy and convenient, but their limited

energy maximum does not allow to fully explore the detectors in HEP (for example, detectors that have

very thick protective layer or signi�cant size of insensitive zone). For improvement and calibration of

photomultiplier tube one can use lasers, LEDs and di�erent types of �lament lamp. The most common

way to test the detectors in real condition of running is to use particles from accelerators. However, there

are several factors that complicate the use of accelerators: the limited time for each test, the fact that

such complex devices are not in every laboratory, and that the test requires a large �nancial expense.

Nuclear reactors are an alternative for obtaining neutrons which result from �ssion of nuclear fuel, but

the use of this type of sources cannot be a�orded by every laboratory. Cosmic radiation is safe and easy

to use. The main component of cosmic radiation at the earth's surface consists of muons with an average

kinetic energy of about 1 GeV. Although their ux does not exceed few particles on 100cm2 per second,

the use of this type of radiation is unlimited in time and does not require a large amount of equipment.

CORTO was designed and build at LAL to provide muon track reconstruction with a good accuracy.

This work is dedicated to the study of properties of the instrument and its performances.

1.2 Cosmic rays

Most muons observed at the surface of the Earth are produced by primary cosmic rays in the upper

atmosphere (Fig.1). They are the most numerous energetic particles arriving at sea level (Fig.2), with a

ux of about 1 muon per square centimetre per second. Their mean energy is about 4 GeV. Muons, being

charged particles, they interact with matter by ionizing it. The loss of energy of muons passing through the

atmosphere is proportional to the amount of matter they traverse. The medium is usually characterized

by its density (g=cm3) times the distance travelled in centimetres. It's called the "interaction length"

and measured ing=cm2. The energy loss for muons is about 2 MeV perg=cm2. The interaction depth

of the atmosphere is about 1000cm2, so muons lose about 2 GeV in passing through it.

Figure 1: The main components of primary

cosmic rays in the upper atmosphere; di�er-

ential ux as a function of kinetic energy.[1]

Figure 2: Altitude variation of the main cos-

mic ray components.[1]
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2 CORTO

The Cosmic Ray Telescope was developed as a platform for testing di�erent detector devices. It gives the

numbers of � passing through the detector under test and their tracks. This telescope is assembled and

in test mode for the setting. The project involves: the Laboratoire d'Acc�el�erateur Lin�eaire (LAL), The

Institute de Physique Nucl�eaire (IPN) (Orsay, France); the group GWNU(Korea, at Gangneung-Wonju

National University) and Taras Shevchenko National University of Kyiv(Ukraine).

2.1 Structure

CORTO consists of two positional sensitive strip gas detectors, called Multigap Resistive Plate Chamber

(MRPC)(1 m � 2 m � 5 cm), which provide the track reconstruction. These detectors are spaced verti-

cally at a distance of 2 m (see Fig.3). Between them are placed moving platforms for accommodating the

research detection devices. Electronics for CORTO is situated on a separate platform for convenience. A

controlled system assures the gas supply for MRPC.

Figure 3: CORTO: picture (left) and drawing (right).

2.2 Multigap Resistive Plate Chamber

2.2.1 Structure

The MPRCs[2] used for CORTO were originally produced for the ALICE Experiment at CERN, having

then been adapted for the Extreme Energy Events (EEE) project. They are composed of a total of seven

glass plates, being separated by six gas gaps each of 300� m width. Their readout electrode is segmented

with 24 strips (2.5 cm � 2 m). The complete MRPC unit is housed within an outer, gas-tight, aluminium

casing with inputs for the electronics, voltage supply, and gas entry and exit.

2.2.2 Gas Mixture

The standard gas mixture used in modern RPCs and MRPCs primarily contains tetrauoroethane

(C2H2F4, Freon 134-a, provides a "heavy" electronegative gas), a small proportion ofSF6, and, oc-

casionally, a small proportion of iso-butaneC4H10. MRPCs are operated at LAL with pure C2H2F4.
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2.2.3 Readout of the strips

There are 24 di�erential outputs (from left and right sides) at each MRPC. Multiple gas gaps within

the MRPC mean that multiple avalanches are created for a single incident muon traversing the chamber.

The inner plates act as dielectrics and so are transparent to the fast signals produced by the electron

avalanche. The induced signals on the pickup strips are therefore due to the sum of the signals from the

avalanches in all of the gas gaps. Knowing the length of each strip and the speed of the signals, the hit

position can be retrieved from a measurement of the di�erence in signal time arrival.

2.3 Electronics

The signal collected on the strips is sent to a front-end electronic circuit based on ultra-fast channel

ampli�er/discriminator cards based on NINO-ASIC chips. The ampli�ed signals are transferred by the

interface card to the WaveCatcher, high-performance digitizing boards based on a new generation of ultra

fast analog memories[3].

The NINO Application-Speci�c Integrated Circuit (ASIC)[4] was developed as an ampli�er explicitly for

the di�erential input of the MRPC. NINO generates a Low Voltage Di�erential Signal (LVDS) output with

a width dependent logarithmically on the input charge. Its previous ampli�er provides good resolution

in time (jitter) of less than 25 ps[5].

The interface card serves to convert the signals of the NINO from di�erential to monopolar (common

mode) form, this being required as an input of the WaveCatcher boards. The interface board also serves

to split the input from the 68 SCSI cable into 24 individual cables, allowing signals from each pickup

strip (anode-cathode pairing) to be sent via an individual cable to the WaveCatcher boards. The signals

are then sent via USB input, to the computer and the custom-built software.

The WaveCatcher has a time resolution of� 7 ps. The size of analog memory is 1024 points, so when

the distance between adjacent digitized points is 312.5 ps the total memory depth is 320 ns.

Each WaveCatcher board has a total of 16 input channels and so, for all the strips' cables to be connected,

6 WaveCatcher boards will be required in the �nal set-up for the total readout of the 96 signals.

The software for the WaveCatcher provides an oscilloscope-like display, allow that to analyze the signals

and to save the information to a computer.

2.4 Reconstruction of the X and Y coordinates

Cosmic rays passing through the MRPC induce signals on the strip, which is then readout by the elec-

tronics. The coordinates in the plane of the MRPC are de�ned in Fig.5. The Y coordinates corresponds

to the number of the strip from which the signal has come. Knowing the length of the strip (L ) and the

speed of signal propagation (v) on it, we can reconstruct the X coordinates. Ideally, the passage of a

single muon in one MRPC induces a signal only on one strip. Since the electrical signal spreads from the

place of interaction in di�erent directions, to determine the coordinates of X we need to know the time

of arrival of the signal to the left edge strip (tL ) and to its right ( tR ). Then by measuring the di�erence

between these times(M t)(Eq.1):

M t = tL � tR (1)
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Figure 4: Schematic structure of the readout electronics. (by Chaumat Vincent)

it is possible to reconstruct the coordinates x, as follows:

M t = 2 � k � X + T0 ,where k =
1
v

(2)

T0 is the time delay on the strip (each strip has its own).

X =
M t � T0

2 � k
�

1
2

� (M t � T0) � v (3)

3 Calibration

3.1 The Electronics

The main task of the reconstruction of events is the calculation of the coordinates of the� point of

interaction in the MRPC with minimal errors. Since the signal after interaction goes a long way through

5



Figure 5: The coordinate system for �nding the place of the muon penetration.

the electronic chain, di�erent components of it have to be measured: the time delays associated with the

NINO card ( TNINO ), the 68 scsi cable (TCable ), the interface card and the cables to the WaveCatcher

(TLink ), and the delay added by the channel of the WaveCatcher itself (TChannel ).

3.1.1 Calibration of the WaveCatcher channels

The calibration of the WaveCatcher has to be performed with the same type of signal that is sent to the

NINO chip, therefore the signal has a rectangle shape. Based on the analysis of the MRPC output signal,

it was found that the width of the signal is 14 nanoseconds, with an amplitude of 300 mV. Therefore, these

parameters were chosen for the signal generator which was used to calibrate the WaveCatcher boards

(Fig.6). The correction of the WaveCatcher delay can then be done by subtracting the delays for each

channel pairing using the measured value for that channel pairing. These channel delays were all of the

order of tens of picoseconds (Fig.7).

Figure 6: The scheme of the

WaveCatcher channel calibra-

tion.

Figure 7: The dependence of

time delays from the channel

number [(i)-(i+1)].

Figure 8: Delay associated with

each NINO output channel pair-

ing.

The WaveCatcher calibration method was extended to account for the delays introduced by all the

electronics. Fig.8 displays the measured delay between the right and left electronic chains associated

with each channel pairing of the NINO. The total accuracy for WaveCatcher and NINO is � 20 ps for

obtained values.

3.1.2 The dependence between time and signal width

Since the width of LVDS NINO output signal is proportional to the charge (amplitude) of the input

signal to the NINO chip, there is a correlation between the width and the arrival time of the signal. This
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dependence was investigated with a dedicated test bench (Fig.9).

Figure 9: Scheme for the study of signal NINO motion.

Fig.10 and Fig.11 show the measurements taken from all channel pairings (R1-24 and L1-24) of each

NINO board channels (upper and lower), where dt total (ps) is the total time-di�erence for a couple

channels in picoseconds and Mean Width(ns) is the average of the signal width in nanoseconds.

Figure 10: The variation of the time-di�erence

with the mean width for the upper (left and right)

NINO pair.

Figure 11: The variation of the time-di�erence

with the mean signal width for the lower (left and

right) NINO pair.

3.2 MRPC dark current as a function of voltage

Dark current in the MRPC is the relatively small electric current that ows through the chamber even

when no muons are entering the device. It's from the background radiation, due to not ideally pure

gas inside the chamber, electrical breakdown increasing with the voltage. It was decided to use the

MRPC with a bias voltage around 16 kV where dark current is less than 1�A (Fig.12), which is a good

compromise between dark current and e�ciency[6].

3.3 Measurement of the signal propagation speed along the strip

To measure the speed of the signal propagation along the strip (v), we use the setup shown on Fig.13:

two plastic scintillators readout by PHILIPS Photomultipliers (XP2282/B SN:19239) and positioned one

above the other are placed above one strip of the MRPC. When a muon passes through the scintillators

and the corresponding strip, the electronic chain records signals from both ends of the strip. There

7



Figure 12: Dark current (nA) as a function of voltage (kV) for the upper MRPC with pure Freon.

have been several measurements at di�erent points along the MRPC. Using the method described in the

Subsection 2.4 of reconstruction of the hit and knowing the geometrical parameters of the experiment,

the relationship between time di�erence of the signals at the ends of the strip and the location of the

scintillators was constructed (Fig.14). The slope of the line determines the speed of the signal propagation

along the strip. This value is 17:0 � 0:4 cm/ns.

Figure 13: Setup used to determined v.

Figure 14: Di�erence between

signal arrival time with varia-

tion of the position of muon inci-

dence.

4 Acquisition and analysis of data

4.1 Map of MRPC registration e�ciency

The errors of reconstructed data are due to di�erent types of electronics false signals. To check the

MRPC noise we turn on it without coincidences using scintillators to trigger the acquisition. As it turns

out (Fig.15), the spectrum of the time di�erence has a periodic form, which is related to the fact that

�shing thread that separates the glass plate inside the camera creates additional noise and its location is

clearly visible in the reconstructed data (Fig.16).

4.2 Description of CORTO con�guration in 2013

In order to decrease the noise ,three detectors were used to trigger CORTO: two short plastic scintillators

(5:0 � 5:0 � 1:5 cm3) and a long one (3:0 � 3:0 � 60:0 cm3) with two photomultipliers at both ends.
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Figure 15: Distribution of the time di�erence

from the left and right ends of the MRPC at

startup without coincidences.

Figure 16: Generation of the noise by dividing

thread between glass plates of the camera.

Figure 17: The scheme of the CORTO

setup with scintillators.

(a) Top MRPC; (b) Two scintilation de-

tectors; (c) "Long" scintillation detec-

tor; (d) Bottom MRPC

Figure 18: Coincidence circuit.

Knowing the speed of light in plastic scintillator (measured at LAL, � 133 ps/cm) and measuring the

time di�erence of signals on PMT, we can reconstruct the point of muon penetration.

Layout of the detectors is shown in Fig.17, all detectors (scintillators + PMTs and MRPCs) were included

in the coincidence circuit (Fig.18) with a trigger window of 100 ns (time during which the system is waiting

for signals from the detectors for one event).

To analyse the data from CORTO a C++ software using ROOT (CERN) was developed. Its main

purpose is the reconstruction of events and the reducing of the size of data �les for compact data storage

on hard disk.

4.3 Muon impact point reconstruction

The Fig.19 and Fig.20 show the dependence between the reconstructed X coordinates using "Long"

detector (y-axis) and using the procedure of the track reconstruction (x-axis) by CORTO. The linear

dependence suggests that these two independent methods are consistent, even if there are noise samples

9



Figure 19: Dependence between reconstructed

X-coordinates by "Long" detector and tracks

from MRPC.

Figure 20: The two-dimensional histogram of

the reconstructed position of "Long" detector.

that must be analysed and cut.

The Fig.21 (Fig.22) shows the distribution of the X (Y) coordinate for "Long" scintillator as a result of

the events reconstruction. For the Y coordinate, the sigma of the distribution is 1.69 cm (FWHM = 3.98

cm), for X coordinate: sigma is 3.36 cm (FWHM = 75 cm). For "Short" detector, the distribution has a

Gaussian form with a sigma of 1.814 cm (FWHM of 4.27 cm). Similarly, for Y coordinates sigma is 2.13

cm (FWHM 5.02 cm). If we recall that the size of scintillators is 5 cm by 5 cm on X and Y, it can be

concluded that the tracks are correctly reconstructed.

Figure 21: Distribution of X coordinate for "Long"

scintillator.

Figure 22: Distribution of Y coordinate for

"Long" scintillator.

A simulation of the CORTO and detector setup using the same software package ROOT (CERN) was

performed, the particles were generated with a given angular distribution (cos1:85(� ))[1]. The Fig.23 and

Fig.24 show the comparison of simulation and experimental data for distribution of X and Y coordinates

of the "Long" detector. Those two results (simulation and experimental) are consistent.

5 Conclusions

The preliminary test of the COsmic Ray Telescope at Orsay gives encouraging results: a time resolution

of 250 ps (for a bias voltage of 16 kV), a spatial resolution along the X direction of 1.8 cm and along the

Y direction of 2.1 cm. So it's possible to use CORTO for testing di�erent types of detectors using cosmic

rays.

Improvement version of CORTO with better characteristics (100 ps of limiting resolution, around 1 cm

of spatial resolution) is planned in 2014. Once �nalized, CORTO will be opened to other laboratories
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Figure 23: Comparison of experimental and

simulated data for the X coordinate of the

"Long" detector.

Figure 24: Comparison of experimental and simu-

lated data for the Y coordinate of the "Long" de-

tector.

and used by students during their Master as a testing platform.
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