R. Stupp, Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. The New England journal of medicine, vol.352, pp.987-96, 2005.

R. Stupp, Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. The lancet oncology, vol.10, pp.459-66, 2009.

J. F. Hainfeld, Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma, Physics in medicine and biology, vol.55, pp.3045-59, 2010.

J. F. Hainfeld, Gold nanoparticle imaging and radiotherapy of brain tumors in mice, Nanomedicine, 2012.

A. Norman, K. S. Iwamoto, and S. T. Cochran, Iodinated contrast agents for brain tumor localization and radiation dose enhancement. Investigative radiology, vol.26, 1991.

C. Boudou, Monte Carlo dosimetry for synchrotron stereotactic radiotherapy of brain tumours, Physics in medicine and biology, vol.50, pp.4841-51, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-00388924

A. V. Mesa, Dose distributions using kilovoltage x-rays and dose enhancement from iodine contrast agents, Phys Med Biol, vol.44, issue.8, pp.1955-68, 1999.

J. P. Pignol, Clinical significance of atomic inner shell ionization (ISI) and Auger cascade for radiosensitization using IUdR, BUdR, platinum salts, or gadolinium porphyrin compounds, Int J Radiat Oncol Biol Phys, vol.55, issue.4, pp.1082-91, 2003.

G. De-stasio, Gadolinium in human glioblastoma cells for gadolinium neutron capture therapy, Cancer Res, vol.61, issue.10, pp.4272-4279, 2001.

S. J. Karnas, Monte Carlo simulations and measurement of DNA damage from xray-triggered auger cascades in iododeoxyuridine (IUdR), Radiat Environ Biophys, vol.40, issue.3, pp.199-206, 2001.

M. Terrissol, S. Edel, and E. Pomplun, Computer evaluation of direct and indirect damage induced by free and DNA-bound iodine-125 in the chromatin fibre, Int J Radiat Biol, vol.80, pp.905-913, 2004.

C. Ceberg, Photon activation therapy of RG2 glioma carrying Fischer rats using stable thallium and monochromatic synchrotron radiation, Phys Med Biol, vol.57, issue.24, pp.8377-91
URL : https://hal.archives-ouvertes.fr/hal-00821168

T. D. Solberg, K. S. Iwamoto, and A. Norman, Calculation of radiation dose enhancement factors for dose enhancement therapy of brain tumours, Phys Med Biol, vol.37, issue.2, pp.439-482, 1992.

J. L. Robar, S. A. Riccio, and M. A. Martin, Tumour dose enhancement using modified megavoltage photon beams and contrast media, Phys Med Biol, vol.47, issue.14, pp.2433-2482, 2002.

J. Gastaldo, Normoxic polyacrylamide gel doped with iodine: response versus Xray energy, Eur J Radiol, vol.68, issue.3, pp.118-138, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00376158

S. Corde, Sensitivity variation of doped Fricke gel irradiated with monochromatic synchrotron X rays between 33.5 and 80 keV, Radiat Prot Dosimetry, vol.117, issue.4, pp.425-456, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-00388937

P. Tsiamas, Impact of beam quality on megavoltage radiotherapy treatment techniques utilizing gold nanoparticles for dose enhancement, Phys Med Biol, vol.58, issue.3, pp.451-64

S. J. Mcmahon, Radiotherapy in the presence of contrast agents: a general figure of merit and its application to gold nanoparticles, Phys Med Biol, vol.53, pp.5635-51, 1920.

J. A. Coulter, Cell type-dependent uptake, localization, and cytotoxicity of 1.9 nm gold nanoparticles, International Journal of Nanomedicine, vol.7, issue.23, pp.2673-2685, 2012.

S. Jain, Cell-Specific Radiosensitization by Gold Nanoparticles at Megavoltage Radiation Energies, International Journal of Radiation Oncology Biology Physics, vol.79, issue.2, pp.531-539, 2011.

E. Lechtman, A Monte Carlo-based model of gold nanoparticle radiosensitization accounting for increased radiobiological effectiveness, Phys Med Biol, vol.58, issue.10, pp.3075-87

K. T. Butterworth, Evaluation of cytotoxicity and radiation enhancement using 1.9 nm gold particles: potential application for cancer therapy, Nanotechnology, issue.29, p.21, 2010.

K. T. Butterworth, Physical basis and biological mechanisms of gold nanoparticle radiosensitization, Nanoscale, vol.4, issue.16, pp.4830-4838, 2012.

S. J. Mcmahon, Nanodosimetric effects of gold nanoparticles in megavoltage radiation therapy, Radiother Oncol, vol.100, issue.3, pp.412-418

S. J. Mcmahon, K. M. Prise, and F. J. Currell, Comment on 'Implications on clinical scenario of gold nanoparticle radiosensitization in regards to photon energy, nanoparticle size, concentration and location', Physics in Medicine and Biology, vol.57, issue.1, pp.287-290, 2012.

P. Mowat, Glioma cells radiosensitization with lanthanid-based nanoparticles, Bulletin Du Cancer, vol.98, pp.69-70, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00730964

P. Mowat, In Vitro Radiosensitizing Effects of Ultrasmall Gadolinium Based Particles on Tumour Cells, Journal of Nanoscience and Nanotechnology, vol.11, issue.9, pp.7833-7839, 2011.

L. Duc and G. , Toward an image-guided microbeam radiation therapy using gadolinium-based nanoparticles, Acs Nano, vol.5, issue.12, pp.9566-74

J. C. Roeske, Characterization of the theorectical radiation dose enhancement from nanoparticles, Technol Cancer Res Treat, vol.6, issue.5, pp.395-401, 2007.

C. Boudou, Monte Carlo dosimetry for synchrotron stereotactic radiotherapy of brain tumours, Phys Med Biol, vol.50, pp.4841-51, 1920.
URL : https://hal.archives-ouvertes.fr/inserm-00388924

C. Boudou, Polymer gel dosimetry for synchrotron stereotactic radiotherapy and iodine dose-enhancement measurements, Phys Med Biol, vol.52, issue.16, pp.4881-92, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00381459

S. J. Karnas, Optimal photon energies for IUdR K-edge radiosensitization with filtered x-ray and radioisotope sources, Phys Med Biol, vol.44, issue.10, pp.2537-2586, 1999.

A. Mesbahi, F. Jamali, and N. Garehaghaji, Effect of photon beam energy, gold nanoparticle size and concentration on the dose enhancement in radiation therapy, Bioimpacts, vol.3, issue.1, pp.29-35

J. L. Robar, Generation and modelling of megavoltage photon beams for contrastenhanced radiation therapy, Phys Med Biol, vol.51, issue.21, pp.5487-504, 2006.

F. Lux, Ultrasmall rigid particles as multimodal probes for medical applications, Angew Chem Int Ed Engl, vol.50, issue.51, pp.12299-303
URL : https://hal.archives-ouvertes.fr/hal-00673713

N. A. Franken and G. W. Barendsen, Enhancement of radiation effectiveness by hyperthermia and incorporation of halogenated pyrimidines at low radiation doses as compared with high doses: implications for mechanisms, Int J Radiat Biol, vol.90, issue.4, pp.313-320, 2014.

I. Miladi, Combining ultrasmall gadolinium-based nanoparticles with photon irradiation overcomes radioresistance of head and neck squamous cell carcinoma, Nanomedicine, vol.11, issue.1, pp.247-57, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01053787