Subtraction method in the second random-phase approximation: First applications with a Skyrme energy functional

Abstract : We make use of a subtraction procedure, introduced to overcome double--counting problems in beyond--mean--field theories, in the second random--phase--approximation (SRPA) for the first time. This procedure guarantees the stability of SRPA (so that all excitation energies are real). We show that the method fits perfectly into nuclear density--functional theory. We illustrate applications to the monopole and quadrupole response and to low--lying $0^+$ and $2^+$ states in the nucleus $^{16}$O. We show that the subtraction procedure leads to: (i) results that are weakly cutoff dependent; (ii) a considerable reduction of the SRPA downwards shift with respect to the random--phase approximation (RPA) spectra (systematically found in all previous applications). This implementation of the SRPA model will allow a reliable analysis of the effects of 2 particle--2 hole configurations ($2p2h$) on the excitation spectra of medium--mass and heavy nuclei.
Type de document :
Article dans une revue
Physical Review C, American Physical Society, 2015, 92 (3), pp.034303. 〈10.1103/PhysRevC.92.034303〉
Liste complète des métadonnées

http://hal.in2p3.fr/in2p3-01193119
Contributeur : Sophie Heurteau <>
Soumis le : vendredi 4 septembre 2015 - 14:49:14
Dernière modification le : mardi 6 février 2018 - 11:11:33

Lien texte intégral

Identifiants

Citation

D. Gambacurta, M. Grasso, J. Engel. Subtraction method in the second random-phase approximation: First applications with a Skyrme energy functional. Physical Review C, American Physical Society, 2015, 92 (3), pp.034303. 〈10.1103/PhysRevC.92.034303〉. 〈in2p3-01193119〉

Partager

Métriques

Consultations de la notice

124