Skip to Main content Skip to Navigation
Journal articles

Frustrated fragmentation and re-aggregation in nuclei: A non-equilibrium description in spallation

Abstract : Heavy nuclei bombarded with protons and deuterons in the 1 GeV range have a large probability of undergoing a process of evaporation and fission; less frequently, the prompt emission of few intermediate-mass fragments can also be observed. We employ a recently developed microscopic approach, based on the Boltzmann-Langevin transport equation, to investigate the role of mean-field dynamics and phase-space fluctuations in these reactions. We find that the formation of few IMF's can be confused with asymmetric fission when relying on yield observables, but it can not be assimilated to the statistical decay of a compound nucleus when analysing the dynamics and kinematic observables: it can be described as a fragmentation process initiated by phase-space fluctuations, and successively frustrated by the mean-field resilience. As an extreme situation, which corresponds to non-negligible probability, the number of fragments in the exit channel reduces to two, so that fission-like events are obtained by re-aggregation processes. This interpretation, inspired by nuclear-spallation experiments, can be generalised to heavy-ion collisions from Fermi to relativistic energies, for situations when the system is closely approaching the fragmentation threshold.
Document type :
Journal articles
Complete list of metadata
Contributor : Sophie Heurteau Connect in order to contact the contributor
Submitted on : Friday, September 4, 2015 - 3:05:36 PM
Last modification on : Tuesday, November 30, 2021 - 8:32:05 AM

Links full text




P. Napolitani, M. Colonna. Frustrated fragmentation and re-aggregation in nuclei: A non-equilibrium description in spallation. Physical Review C, American Physical Society, 2015, 92 (3), pp.034607. ⟨10.1103/PhysRevC.92.034607⟩. ⟨in2p3-01193128⟩



Les métriques sont temporairement indisponibles