Probing the moduli dependence of refined topological amplitudes

Abstract : With the aim of providing a worldsheet description of the refined topological string, we continue the study of a particular class of higher derivative couplings $F_{g,n}$ in the type II string effective action compactified on a Calabi-Yau threefold. We analyse first order differential equations in the anti-holomorphic moduli of the theory, which relate the $F_{g,n}$ to other component couplings. From the point of view of the topological theory, these equations describe the contribution of non-physical states to twisted correlation functions and encode an obstruction for interpreting the $F_{g,n}$ as the free energy of the refined topological string theory. We investigate possibilities of lifting this obstruction by formulating conditions on the moduli dependence under which the differential equations simplify and take the form of generalised holomorphic anomaly equations. We further test this approach against explicit calculations in the dual heterotic theory.
Type de document :
Article dans une revue
Nuclear Physics B, Elsevier, 2015, 901, pp.252-281. 〈10.1016/j.nuclphysb.2015.10.016〉
Liste complète des métadonnées

Littérature citée [45 références]  Voir  Masquer  Télécharger
Contributeur : Dominique Girod <>
Soumis le : lundi 18 janvier 2016 - 14:24:06
Dernière modification le : lundi 17 décembre 2018 - 01:35:24


Publication financée par une institution


Distributed under a Creative Commons Paternité 4.0 International License



I. Antoniadis, I. Florakis, S. Hohenegger, K.S. Narain, A. Zein Assi. Probing the moduli dependence of refined topological amplitudes. Nuclear Physics B, Elsevier, 2015, 901, pp.252-281. 〈10.1016/j.nuclphysb.2015.10.016〉. 〈in2p3-01196631〉



Consultations de la notice


Téléchargements de fichiers