E. Witten, Topological sigma models) 411; E. Witten, On the structure of the topological phase of two-dimensional gravity, Commun. Math. Phys. Nucl. Phys. B, vol.118, issue.340, p.281, 1988.

G. Lopes-cardoso, B. De-wit, and T. Mohaupt, Corrections to macroscopic supersymmetric black-hole entropy, Phys. Lett. B, vol.451, issue.309, pp.hep-th, 1999.

G. Lopes-cardoso, B. De-wit, and T. Mohaupt, Deviations from the area law for supersymmetric black holes, Fortschr. Phys, vol.48, issue.49, p.9904005, 2000.

G. Lopes-cardoso, B. Dewit, and T. Mohaupt, Macroscopic entropy formulae and nonholomorphic corrections for supersymmetric black holes, Nucl. Phys. B, vol.567, issue.87, p.9906094, 2000.

G. Lopes-cardoso, B. De-wit, and T. Mohaupt, Area law corrections from state counting and supergravity, Class. Quantum Gravity, vol.17, issue.1007, pp.hep-th, 2000.

T. Mohaupt, Black hole entropy, special geometry and strings, Fortschr. Phys, vol.49, issue.3, p.7195, 2001.

M. Bershadsky, S. Cecotti, H. Ooguri, and C. Vafa, Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes, Communications in Mathematical Physics, vol.400, issue.2, pp.hep-th, 1994.
DOI : 10.1007/BF02099774

N. Berkovits and C. Vafa, Type IIB R 4 H * (4g ? 4) conjectures, Nucl. Phys. B, vol.533, issue.181, p.9803145, 1998.

H. Ooguri and C. Vafa, All loop N = 2 string amplitudes, Nuclear Physics B, vol.451, issue.1-2, p.9505183, 1995.
DOI : 10.1016/0550-3213(95)00365-Y

I. Antoniadis, E. Gava, K. S. Narain, and T. R. Taylor, Topological amplitudes in heterotic superstring theory, Nuclear Physics B, vol.476, issue.1-2, p.9604077, 1996.
DOI : 10.1016/0550-3213(96)00349-5

I. Antoniadis, K. S. Narain, and T. R. Taylor, Open string topological amplitudes and gaugino masses, Nuclear Physics B, vol.729, issue.1-2, p.507244, 2005.
DOI : 10.1016/j.nuclphysb.2005.09.024

I. Antoniadis, S. Hohenegger, and K. S. Narain, topological amplitudes and string effective action, Nuclear Physics B, vol.771, issue.1-2, pp.hep-th, 2007.
DOI : 10.1016/j.nuclphysb.2007.02.011

I. Antoniadis, S. Hohenegger, K. S. Narain, and E. Sokatchev, Harmonicity in supersymmetry and its quantum anomaly, Nuclear Physics B, vol.794, issue.1-2, 2008.
DOI : 10.1016/j.nuclphysb.2007.11.005

I. Antoniadis, S. Hohenegger, K. S. Narain, and E. Sokatchev, A new class of topological amplitudes, Nuclear Physics B, vol.823, issue.3, p.9053629, 2009.
DOI : 10.1016/j.nuclphysb.2009.08.006

URL : https://hal.archives-ouvertes.fr/hal-00611810

I. Antoniadis, S. Hohenegger, K. S. Narain, and E. Sokatchev, Generalized N = 2 topological amplitudes and holomorphic anomaly equation, Nucl. Phys. B, vol.856, issue.360, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00613067

I. Antoniadis, S. Hohenegger, K. S. Narain, and T. R. Taylor, Deformed topological partition function and Nekrasov backgrounds, Nuclear Physics B, vol.838, issue.3, 2010.
DOI : 10.1016/j.nuclphysb.2010.04.021

G. W. Moore, N. Nekrasov, and S. Shatashvili, Integrating over Higgs Branches, Communications in Mathematical Physics, vol.209, issue.1, pp.hep-th, 2000.
DOI : 10.1007/PL00005525

A. Losev, N. Nekrasov, and S. L. Shatashvili, Testing Seiberg?Witten solution, in: Strings, Branes and Dualities, Cargese, pp.359-372, 1997.

N. A. Nekrasov, Seiberg-Witten Prepotential from Instanton Counting, Advances in Theoretical and Mathematical Physics, vol.7, issue.5, pp.hep-th, 2004.
DOI : 10.4310/ATMP.2003.v7.n5.a4

I. Antoniadis, I. Florakis, S. Hohenegger, K. S. Narain, and A. , Zein Assi, Worldsheet realization of the refined topological string, Nucl. Phys. B, vol.875, issue.101, 2013.

R. Gopakumar and C. , Vafa, M theory and topological strings. 1, arXiv:hep-th/9809187, Gopakumar, C. Vafa, M theory and topological strings, pp.hep-th, 9812127.

T. J. Hollowood, A. Iqbal, and C. Vafa, Matrix models, geometric engineering and elliptic genera, Journal of High Energy Physics, vol.2003, issue.03, p.310272, 2008.
DOI : 10.1016/0550-3213(87)90108-8

H. Awata and H. Kanno, Instanton counting, Macdonald functions and the moduli space of D-branes, J. High Energy Phys, p.505, 2005.

A. Iqbal, C. Kozcaz, and C. Vafa, The refined topological vertex, Journal of High Energy Physics, vol.2004, issue.10, p.701156, 2009.
DOI : 10.1007/s11005-005-0008-8

R. Dijkgraaf and C. Vafa, Toda theories, matrix models, topological strings, and N = 2 gauge systems

S. Hellerman, D. Orlando, and S. Reffert, String theory of the Omega deformation, Journal of High Energy Physics, vol.226, issue.193, 2012.
DOI : 10.1007/JHEP01(2012)148

S. Hellerman, D. Orlando, and S. Reffert, The omega deformation from string and M-theory, J. High Energy Phys

J. F. Morales and M. Serone, Higher derivative F-terms in N = 2 strings, Nuclear Physics B, vol.481, issue.1-2, p.9607193, 1996.
DOI : 10.1016/S0550-3213(96)90143-1

I. Antoniadis, I. Florakis, S. Hohenegger, K. S. Narain, and A. , Zein Assi, Non-perturbative Nekrasov partition function from string theory, Nucl. Phys. B, vol.880, issue.87, 2014.

Y. Nakayama and H. Ooguri, Comments on worldsheet description of the Omega background, Nuclear Physics B, vol.856, issue.2, 2012.
DOI : 10.1016/j.nuclphysb.2011.11.010

A. Z. Assi, Topological amplitudes and the string effective action
URL : https://hal.archives-ouvertes.fr/tel-00942993

M. Billó, M. Frau, F. Fucito, and A. Lerda, Instanton calculus in R?R background and the topological string, J. High Energy Phys, vol.0611, issue.012, p.606013, 2006.

K. Ito, H. Nakajima, T. Saka, and S. Sasaki, N = 2 instanton effective action in -background and D3/D(-1)-brane system in R?R background, J. High Energy Phys, vol.1011, issue.093, 2010.

M. Huang and A. Klemm, Direct integration for general ?? backgrounds, Advances in Theoretical and Mathematical Physics, vol.16, issue.3, 2012.
DOI : 10.4310/ATMP.2012.v16.n3.a2

M. Huang, A. Kashani-poor, and A. Klemm, The ?? Deformed B-model for Rigid N??=??2 Theories, Annales Henri Poincar??, vol.162, issue.2, 2013.
DOI : 10.1007/s00023-012-0192-x

URL : https://hal.archives-ouvertes.fr/hal-00631748

B. Mcclain and B. D. Roth, Modular invariance for interacting bosonic strings at finite temperature, Communications in Mathematical Physics, vol.25, issue.Suppl., p.539, 1987.
DOI : 10.1007/BF01219073

K. H. O-'brien, C. I. Tan-;-l, V. Dixon, J. Kaplunovsky, and . Louis, Modular invariance of thermopartition function and global phase structure of heterotic string Moduli dependence of string loop corrections to gauge coupling constants, Phys. Rev. D Nucl. Phys. B, vol.36, issue.649, 1184.

J. A. Harvey and G. W. Moore, 315, arXiv:hep-th/9510182; G. Lopes Cardoso, G. Curio, D. Lust, Perturbative couplings and modular forms in N = 2 string models with a Wilson line, BPS states, and strings, pp.hep-th, 1996.

K. Foerger and S. Stieberger, Higher derivative couplings and heterotic-Type I duality in eight dimensions, Nuclear Physics B, vol.559, issue.1-2, pp.hep-th, 1999.
DOI : 10.1016/S0550-3213(99)00408-3

C. Angelantonj, I. Florakis, and B. Pioline, A new look at one-loop integrals in string theory, Communications in Number Theory and Physics, vol.6, issue.1, 2012.
DOI : 10.4310/CNTP.2012.v6.n1.a4

URL : https://hal.archives-ouvertes.fr/hal-00639799

C. Angelantonj, I. Florakis, and B. Pioline, One-loop BPS amplitudes as BPS-state sums, Journal of High Energy Physics, vol.45, issue.294, 2012.
DOI : 10.1007/JHEP06(2012)070

URL : https://hal.archives-ouvertes.fr/hal-00678471

C. Angelantonj, I. Florakis, and B. Pioline, Rankin-Selberg methods for closed strings on orbifolds, Journal of High Energy Physics, vol.11, issue.7, 2013.
DOI : 10.1007/JHEP07(2013)181

URL : https://hal.archives-ouvertes.fr/hal-00814356

C. Angelantonj, I. Florakis, and B. Pioline, Threshold corrections, generalised prepotentials and Eichler integrals, Nuclear Physics B, vol.897
DOI : 10.1016/j.nuclphysb.2015.06.009

URL : https://hal.archives-ouvertes.fr/hal-01113281

I. Antoniadis, E. Gava, K. S. Narain, and T. R. Taylor, N = 2 type II-heterotic duality and higher-derivative F-terms, Nuclear Physics B, vol.455, issue.1-2, p.9507115, 1995.
DOI : 10.1016/0550-3213(95)00467-7

S. Hohenegger and A. , Iqbal, M-strings, elliptic genera and N = 4 string amplitudes, Fortschr. Phys, vol.62, issue.155, pp.hep-th, 2014.