Gas-phase structure and reactivity of the keto tautomer of the deoxyguanosine radical cation

Abstract : Guanine radical cations are formed upon oxidation of DNA. Deoxyguanosine (dG) is used as a model, and the gas-phase infrared (IR) spectroscopic signature and gas-phase unimolecular and bimolecular chemistry of its radical cation, dG˙+, A, which is formed via direct electrospray ionisation (ESI/MS) of a methanolic solution of Cu(NO3)2 and dG, are examined. Quantum chemistry calculations have been carried out on 28 isomers and comparisons between their calculated IR spectra and the experimentally-measured spectra suggest that A exists as the ground-state keto tautomer. Collision-induced dissociation (CID) of A proceeds via cleavage of the glycosidic bond, while its ion–molecule reactions with amine bases occur via a number of pathways including hydrogen-atom abstraction, proton transfer and adduct formation. A hidden channel, involving isomerisation of the radical cation via adduct formation, is revealed through the use of two stages of CID, with the final stage of CID showing the loss of CH2O as a major fragmentation pathway from the reformed radical cation, dG˙+. Quantum chemistry calculations on the unimolecular and bimolecular reactivity are also consistent with A being present as a ground-state keto tautomer.
Document type :
Journal articles
Complete list of metadatas

http://hal.in2p3.fr/in2p3-01237671
Contributor : Dominique Girod <>
Submitted on : Thursday, December 3, 2015 - 3:54:37 PM
Last modification on : Wednesday, October 30, 2019 - 1:46:07 AM

Links full text

Identifiers

Collections

Citation

L. Feketeová, B. Chan, G.N. Khairallah, V. Steinmetz, P. Maître, et al.. Gas-phase structure and reactivity of the keto tautomer of the deoxyguanosine radical cation. Physical Chemistry Chemical Physics, Royal Society of Chemistry, 2015, 17 (39), pp.25837-25844. ⟨10.1039/C5CP01573A⟩. ⟨in2p3-01237671⟩

Share

Metrics

Record views

83