Skip to Main content Skip to Navigation
Journal articles

Multi-strange baryon production in p-Pb collisions at $\sqrt{s_\mathbf{NN}}=5.02$

Abstract : The multi-strange baryon yields in Pb--Pb collisions have been shown to exhibit an enhancement relative to pp reactions. In this work, $\Xi$ and $\Omega$ production rates have been measured with the ALICE experiment as a function of transverse momentum, ${p_{\rm T}}$, in p-Pb collisions at a centre-of-mass energy of ${\sqrt{s_{\rm NN}}}$ = 5.02 TeV. The results cover the kinematic ranges 0.6 GeV/$c<{p_{\rm T}} <$7.2 GeV/$c$ and 0.8 GeV/$c<{p_{\rm T}}<$ 5 GeV/$c$, for $\Xi$ and $\Omega$ respectively, in the common rapidity interval -0.5 $<{y_{\rm CMS}}<$ 0. Multi-strange baryons have been identified by reconstructing their weak decays into charged particles. The ${p_{\rm T}}$ spectra are analysed as a function of event charged-particle multiplicity, which in p-Pb collisions ranges over one order of magnitude and lies between those observed in pp and Pb-Pb collisions. The measured ${p_{\rm T}}$ distributions are compared to the expectations from a Blast-Wave model. The parameters which describe the production of lighter hadron species also describe the hyperon spectra in high multiplicity p-Pb. The yield of hyperons relative to charged pions is studied and compared with results from pp and Pb-Pb collisions. A statistical model is employed, which describes the change in the ratios with volume using a canonical suppression mechanism, in which the small volume causes a species-dependent relative reduction of hadron production. The calculations, in which the magnitude of the effect depends on the strangeness content, show good qualitative agreement with the data.
Complete list of metadatas
Contributor : Sylvie Flores <>
Submitted on : Monday, January 4, 2016 - 8:19:09 AM
Last modification on : Thursday, November 19, 2020 - 1:01:39 PM

Links full text



J. Adam, H. Borel, V.J.G. Feuillard, B. Hippolyte, C. Kuhn, et al.. Multi-strange baryon production in p-Pb collisions at $\sqrt{s_\mathbf{NN}}=5.02$. Physics Letters B, Elsevier, 2016, 758, pp.389-401. ⟨10.1016/j.physletb.2016.05.027⟩. ⟨in2p3-01249887⟩



Record views