A review of the discovery reach of directional Dark Matter detection

Abstract : Cosmological observations indicate that most of the matter in the Universe is Dark Matter. Dark Matter in the form of Weakly Interacting Massive Particles (WIMPs) can be detected directly, via its elastic scattering off target nuclei. Most current direct detection experiments only measure the energy of the recoiling nuclei. However, directional detection experiments are sensitive to the direction of the nuclear recoil as well. Due to the Sun's motion with respect to the Galactic rest frame, the directional recoil rate has a dipole feature, peaking around the direction of the Solar motion. This provides a powerful tool for demonstrating the Galactic origin of nuclear recoils and hence unambiguously detecting Dark Matter. Furthermore, the directional recoil distribution depends on the WIMP mass, scattering cross section and local velocity distribution. Therefore, with a large number of recoil events it will be possible to study the physics of Dark Matter in terms of particle and astrophysical properties. We review the potential of directional detectors for detecting and characterizing WIMPs.
Liste complète des métadonnées

http://hal.in2p3.fr/in2p3-01277677
Contributeur : Emmanuelle Vernay <>
Soumis le : mardi 23 février 2016 - 08:54:56
Dernière modification le : mardi 15 mai 2018 - 20:10:11

Lien texte intégral

Identifiants

Collections

Citation

F. Mayet, A. M. Green, J. B. R. Battat, J. Billard, N. Bozorgnia, et al.. A review of the discovery reach of directional Dark Matter detection. Physics Reports, Elsevier, 2016, 627, pp.1-49. 〈10.1016/j.physrep.2016.02.007〉. 〈in2p3-01277677〉

Partager

Métriques

Consultations de la notice

111