A 3D diamond detector for particle tracking

M. Artuso 1 F. Bachmair 2 L. Bäni 2 M. Bartosik 3 J. Beacham 4 V. Bellini 5 V. Belyaev 6 B. Bentele 7 E. Berdermann 8 P. Bergonzo 9 A. Bes 10 J-M. Brom 11 M. Bruzzi 12 M. Cerv 3 C. Chau 13 G. Chiodini 14 D. Chren 15 V. Cindro 16 G. Claus 11 J. Collot 10 S. Costa 5 J. Cumalat 7 A. Dabrowski 3 R. D׳alessandro 12 W. De Boer 17 B. Dehning 3 D. Dobos 3 M. Dünser 18 V. Eremin 19 R. Eusebi 20 G. Forcolin 21 J. Forneris 22 H. Frais-Kölbl 23 K.K. Gan 4 M. Gastal 3 M. Goffe 11 J. Goldstein 24 A. Golubev 25 L. Gonella 26 A. Gorišek 16 L. Graber 27 E. Grigoriev 25 J. Grosse-Knetter 27 B. Gui 4 M. Guthoff 3 I. Haughton 21 D. Hidas 22 D. Hits 28 M. Hoeferkamp 29 T. Hofmann 3 J. Hosslet 11 J.Y. Hostachy 26 F. Hügging 26 H. Jansen 3 J. Janssen 26 H. Kagan 4 K. Kanxheri 30 G. Kasieczka 28 R. Kass 4 F. Kassel 31 M. Kis 32 G. Kramberger 16 S. Kuleshov 25 A. Lacoste 33 S. Lagomarsino 12 A. Lo Giudice 34 C. Maazouzi 11 I. Mandic 16 C. Mathieu 11 N. Mcfadden 29 G. Mcgoldrick 13 M. Menichelli 12 M. Mikuž 16 A. Morozzi 12 J. Moss 4 R. Mountain 1 S. Murphy 21 A. Oh 21 P. Olivero 35 G. Parrini 12 D. Passeri 12 M. Pauluzzi 12 H. Pernegger 3 R. Perrino 3 F. Picollo 34 M. Pomorski 9 R. Potenza 5 A. Quadt 27 A. Re 34 G. Riley 5 S. Roe 3 M. Sapinski 3 M. Scaringella 12 S. Schnetzer 35 T. Schreiner 23 S. Sciortino 12 A. Scorzoni 12 S. Seidel 29 L. Servoli 12 A. Sfyrla 3 G. Shimchuk 25 D.S. Smith 6 B. Sopko 15 V. Sopko 15 S. Spagnolo 3 S. Spanier 5 K. Stenson 7 R. Stone 22 C. Sutera 5 A. Taylor 29 M. Traeger 32 D. Tromson 36 W. Trischuk 37 C. Tuve 5 L. Uplegger 38 J. Velthuis 24 N. Venturi 13 E. Vittone 22 S. Wagner 7 R. Wallny 21 J.C. Wang 1 P. Weilhammer 3 J. Weingarten 27 C. Weiss 3 T. Wengler 3 N. Wermes 33 M. Yamouni 33 M. Zavrtanik 16
9 LCD-LIST - Laboratoire Capteurs Diamant
DM2I - Département Métrologie Instrumentation & Information : DRT/LIST/DM2I
36 LCAE - Laboratoire Capteurs et Architectures Electroniques
DM2I - Département Métrologie Instrumentation & Information : DRT/LIST/DM2I
Abstract : In the present study, results towards the development of a 3D diamond sensor are presented. Conductive channels are produced inside the sensor bulk using a femtosecond laser. This electrode geometry allows full charge collection even for low quality diamond sensors. Results from testbeam show that charge is collected by these electrodes. In order to understand the channel growth parameters, with the goal of producing low resistivity channels, the conductive channels produced with a different laser setup are evaluated by Raman spectroscopy.
Type de document :
Article dans une revue
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Elsevier, 2016, 824, pp.402-405. 〈https://agenda.infn.it/conferenceDisplay.py?confId=8397〉. 〈10.1016/j.nima.2015.09.079〉
Liste complète des métadonnées

http://hal.in2p3.fr/in2p3-01322643
Contributeur : Emmanuelle Vernay <>
Soumis le : vendredi 27 mai 2016 - 14:13:56
Dernière modification le : samedi 20 octobre 2018 - 13:58:02

Identifiants

Citation

M. Artuso, F. Bachmair, L. Bäni, M. Bartosik, J. Beacham, et al.. A 3D diamond detector for particle tracking. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Elsevier, 2016, 824, pp.402-405. 〈https://agenda.infn.it/conferenceDisplay.py?confId=8397〉. 〈10.1016/j.nima.2015.09.079〉. 〈in2p3-01322643〉

Partager

Métriques

Consultations de la notice

165