A 3D diamond detector for particle tracking

M. Artuso 1 F. Bachmair 2 L. Bäni 2 M. Bartosik 3 J. Beacham 4 V. Bellini 5 V. Belyaev 6 B. Bentele 7 E. Berdermann 8 P. Bergonzo 9 A. Bes 10 J-M. Brom 11 M. Bruzzi 12 M. Cerv 3 C. Chau 13 G. Chiodini 14 D. Chren 15 V. Cindro 16 G. Claus 11 J. Collot 10 S. Costa 5 J. Cumalat 7 A. Dabrowski 3 R. D׳alessandro 12 W. de Boer 17 B. Dehning 3 D. Dobos 3 M. Dünser 18 V. Eremin 19 R. Eusebi 20 G. Forcolin 21 J. Forneris 22 H. Frais-Kölbl 23 K.K. Gan 4 M. Gastal 3 M. Goffe 11 J. Goldstein 24 A. Golubev 25 L. Gonella 26 A. Gorišek 16 L. Graber 27 E. Grigoriev 25 J. Grosse-Knetter 27 B. Gui 4 M. Guthoff 3 I. Haughton 21 D. Hidas 22 D. Hits 2 M. Hoeferkamp 28 T. Hofmann 3 J. Hosslet 11 J.Y. Hostachy 26 F. Hügging 26 H. Jansen 3 J. Janssen 26 H. Kagan 4 K. Kanxheri 29 G. Kasieczka 18 R. Kass 4 F. Kassel 30 M. Kis 31 G. Kramberger 16 S. Kuleshov 25 A. Lacoste 32 S. Lagomarsino 12 A. Lo Giudice 33 C. Maazouzi 11 I. Mandic 16 C. Mathieu 11 N. Mcfadden 28 G. Mcgoldrick 13 M. Menichelli 12 M. Mikuž 16 A. Morozzi 12 J. Moss 4 R. Mountain 1 S. Murphy 21 A. Oh 21 P. Olivero 34 G. Parrini 12 D. Passeri 12 M. Pauluzzi 12 H. Pernegger 3 R. Perrino 3 F. Picollo 33 M. Pomorski 9 R. Potenza 5 A. Quadt 27 A. Re 33 G. Riley 5 S. Roe 3 M. Sapinski 3 M. Scaringella 12 S. Schnetzer 34 T. Schreiner 23 S. Sciortino 12 A. Scorzoni 12 S. Seidel 28 L. Servoli 12 A. Sfyrla 3 G. Shimchuk 25 D.S. Smith 6 B. Sopko 15 V. Sopko 15 S. Spagnolo 3 S. Spanier 5 K. Stenson 7 R. Stone 22 C. Sutera 5 A. Taylor 28 M. Traeger 31 D. Tromson 35 W. Trischuk 36 C. Tuve 5 L. Uplegger 37 J. Velthuis 24 N. Venturi 13 E. Vittone 22 S. Wagner 7 R. Wallny 21 J.C. Wang 1 P. Weilhammer 3 J. Weingarten 27 C. Weiss 3 T. Wengler 3 N. Wermes 32 M. Yamouni 32 M. Zavrtanik 16
9 LCD-LIST - Laboratoire Capteurs Diamant
DM2I - Département Métrologie Instrumentation & Information : DRT/LIST/DM2I
35 LCAE - Laboratoire Capteurs et Architectures Electroniques
DM2I - Département Métrologie Instrumentation & Information : DRT/LIST/DM2I
Abstract : In the present study, results towards the development of a 3D diamond sensor are presented. Conductive channels are produced inside the sensor bulk using a femtosecond laser. This electrode geometry allows full charge collection even for low quality diamond sensors. Results from testbeam show that charge is collected by these electrodes. In order to understand the channel growth parameters, with the goal of producing low resistivity channels, the conductive channels produced with a different laser setup are evaluated by Raman spectroscopy.
Complete list of metadatas

http://hal.in2p3.fr/in2p3-01322643
Contributor : Emmanuelle Vernay <>
Submitted on : Friday, May 27, 2016 - 2:13:56 PM
Last modification on : Monday, May 13, 2019 - 11:14:15 AM

Identifiers

Citation

M. Artuso, F. Bachmair, L. Bäni, M. Bartosik, J. Beacham, et al.. A 3D diamond detector for particle tracking. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Elsevier, 2016, 824, pp.402-405. ⟨https://agenda.infn.it/conferenceDisplay.py?confId=8397⟩. ⟨10.1016/j.nima.2015.09.079⟩. ⟨in2p3-01322643⟩

Share

Metrics

Record views

225