
HAL Id: in2p3-01340539
http://hal.in2p3.fr/in2p3-01340539

Submitted on 1 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Impact of pairing on thermodynamical properties of
stellar matter

S. Burrello, F. Aymard, M. Colonna, F. Gulminelli, A. Raduta

To cite this version:
S. Burrello, F. Aymard, M. Colonna, F. Gulminelli, A. Raduta. Impact of pairing on thermodynamical
properties of stellar matter. 12th International Conference on Nucleus-Nucleus Collisions 2015, Jun
2015, Catane, Italy. EPJ Web of conferences, 117, pp.07015, 2016, <10.1051/epjconf/201611707015>.
<in2p3-01340539>

http://hal.in2p3.fr/in2p3-01340539
https://hal.archives-ouvertes.fr


Impact of pairing on thermodynamical

properties of stellar matter

S. Burrello1,2, F. Aymard3, M. Colonna1, F. Gulminelli3 and
Ad. R. Raduta4

1 INFN - Laboratori Nazionali del Sud, 95123 Catania, Italy
2 Dipartimento di Fisica e Astronomia, 95123 Catania, Italy

3 CNRS and ENSICAEN, UMR6534, LPC, 14050 Caen cédex, France
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Abstract

Superfluidity in the crust is a key ingredient for the cooling proper-
ties of proto-neutron stars. Investigations on crust superfluidity carried
out so far typically assumed that the cluster component was given by a
single representative nucleus and did not consider the fact that at finite
temperature a wide distribution of nuclei is expected to be populated
at a given crust pressure condition. We want to assess the importance
of this distribution on the calculation of the heat capacity in the inner
crust, in the framework of an extended NSE model. We additionally
show that it is very important to consider the temperature evolution
of the proton fraction, imposed by the β-equilibrium condition, for a
quantitatively reliable estimation of the heat capacity.

Introduction

Superfluidity in the crust is essential to understand many different phenom-
ena in compact star physics, such as the cooling of neutron stars. It is
well-known indeed that pairing correlations reduce the crust thermalization
time by a large fraction [1]. The specificity of the inner crust is the simul-
taneous presence of clusters and homogeneous matter. The studies of crust
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superfluidity at finite temperature have always been done solving Hartree-
Fock-Bogoliubov (HFB) equations in the so-called Wigner-Seitz approxima-
tion, meaning that the cluster component is given by a single representative
quasi-particle configuration, corresponding to a single representative nucleus
immersed in a neutron gas. These works do not consider the fact that at
finite temperature a wide distribution of nuclei is expected to be populated
at a given crust pressure and temperature condition.

Finite temperature Nuclear Statistical Equilibrium (NSE) models [2, 3]
take into account the whole distribution of clusters, which is obtained self-
consistently under conditions of statistical equilibrium. Our aim is to an-
alyze how the non-homogeneity of crust matter and the associated wide
distribution of nuclear species affects the superfluid properties of the crust.

In most HFB calculations for the cooling problem, moreover, it is as-
sumed that the proton fraction does not evolve with the temperature and
can be estimated by the value imposed, at each baryonic density, by the
condition of neutrinoless chemical equilibrium at zero temperature. As the
NSE model is much less numerically demanding than a full HFB calcula-
tion, we have released this approximation and imposed the β-equilibrium
condition at each finite temperature.

1 The extended NSE model

The complete formalism that we use can be found in [4]. We detail here
our extension of the NSE model, that is the inclusion of pairing in the bulk
region of the Wigner-Seitz cell.

The energy density of a superfluid and spin saturated nuclear gas at
finite temperature T, in the mean field approximation, reads [5] (q=n,p):

εHM = 2
∑

q

∫ ∞

0

dp

2π2�3
p2fq

p2

2m∗
q

+ Esky +
1
4

∑
q=n,p

vπ(ρgq)ρ̃∗gqρ̃gq (1)

We use the Sly4 parametrization [6] of the Skyrme energy functional for the
local energy density Esky and the effective nucleon mass m∗

q . In Eq.(1), fq is
the particle occupation number including pairing, ρ̃gq = 2Δ/vπ(ρgq) denotes
the anomalous density while Δ is the temperature dependent pairing gap.
The pairing interaction vπq(ρgq), as a function of the gas density ρgq, is given
by [7] :

vπq(ρgq) = Vπ

[
1 − η

(
2ρgq

ρsat

)α]
, (2)
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Figure 1: (Color online)
1S0 pairing gap as a func-
tion of density for ho-
mogeneous neutron mat-
ter at zero temperature, as
obtained from Brueckner-
Hartree Fock calculations
(full line from [8]). The
figure also shows the en-
ergy gap deduced solving
the BCS gap equations at
finite temperature (sym-
bols from [5]).

where ρsat is the saturation density and the parameters Vπ, η, α are fixed im-
posing to reproduce the 1S0 pairing gap of pure neutron matter, as obtained
in Brueckner-Hartree-Fock calculations [8]. The resulting gap is displayed
in Fig.1.

The binding energy of the clusters is evaluated by the analytical liquid
drop model (LDM) expression reported in [9], where the different parameters
are fitted from numerical calculations which make use of the same Skyrme
energy functional employed for the unbound component.

The equilibrium distribution is obtained by minimizing the total free
energy corresponding to an arbitrary collection of different Wigner-Seitz
cells, subject to the constraint of total baryonic and charge density conser-
vation [4].

2 Main results

In order to facilitate a quantitative comparison with the previous literature,
we have chosen ten representative values for the baryonic density which have
been proposed in [10]. These values cover the inner crust of the neutron star,
approximately from the emergence of the neutron gas close to the drip point
(denoted as cell 10) to a density close to the crust-core transition (cell 1).

2.1 Clusters distribution

The distribution of the cluster size obtained by our NSE calculation is dis-
played in Fig. 2. We can see that at the lowest densities and temperatures
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Figure 2: (Color online) Nor-
malized cluster size distribu-
tion at different temperatures
for four representative values
of the total baryonic density:
ρB (Cell 1) = 4.8× 10−2 fm−3,
ρB (Cell 4) = 5.8× 10−3 fm−3,
ρB (Cell 7) = 9.0× 10−4 fm−3,
ρB (Cell 10) = 2.8×10−4 fm−3

and under the imposition of
the β-equilibrium condition.

the distribution is strongly peaked and can be approximated by a unique
nucleus, but increasing the temperature and/or moving towards the inner
part of the crust, many different nuclear species can appear with compara-
ble probability. Moreover, at sufficiently high temperatures, light resonances
can appear and even become dominant in the composition of matter. Such
configuration cannot be addressed in mean-field based formalisms like HFB.
Looking at the isotopic distribution of clusters, especially for the lowest
density cells (cells 7 and 10), one observes that the β-equilibrium condition
leads to a significantly larger cluster asymmetry. This happens especially
for light resonances, so at the highest temperatures, where the contribution
of the most unbound clusters is increased.

2.2 Energy and heat capacity

The effects of the temperature dependence of the β-equilibrium condition
and of the whole distribution of cells can also be appreciated looking at
the behavior of the total energy density of the system. We have seen that
these effects are very important not only at the highest densities, but also at
the lowest ones when the temperature gets higher, whereas the emergence
of light clusters occurs. The transition temperature from the superfluid
to the normal phase is signalled by a kink in the behavior of the energy
density, which will lead to a peak in its derivative with respect to the tem-
perature, that is the associated heat capacity shown in Fig. 3. The tem-
perature derivative was performed numerically following the trajectory of
β-equilibrium: this means that only the total baryonic density is constant,
but the proton fraction is not. As we can see, the temperature dependence
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Figure 3: (Color online)
Temperature evolution of
the heat capacity for the
same representative cells
as in Fig.2. Full line:
complete NSE calculation.
Dashed line: as the full
line, but the value of
the global proton frac-
tion is assumed equal to
that one calculated from
β-equilibrium at the low-
est temperature, that is
T=100 keV.

of the β-equilibrium condition has a dramatic effect on the heat capacity. In
particular the peak due to the phase transition is strongly smeared out in
the outer region of the inner crust, from cell 7 to 10, while on the contrary,
at the highest densities (cells 1 to 3) the consideration of the temperature
variation of the proton fraction increases the size of the peak. In this case,
indeed, it is possible to show that β-equilibrium path favors a discontinuous
trend of all thermodynamic quantities at the transition point.

Actually, the quantitative value of the heat capacity, as shown in Fig. 3,
cannot be directly compared to the results of previous HFB works [1] because
of the different mean-field and/or pairing model. However, we have verified
that the temperature location of the heat capacity peak, its height and
width are almost identical, if we take the same parameters for the pairing
interaction employed in that work.

2.3 The effect of mass functional

In all the calculations presented in the previous sections, we have used the
Skyrme-based liquid-drop formula given in [9]. This choice allows a con-
sistent treatment of the bound and unbound matter component within the
same energy functional. However, as it happens also in other mean-field
model, light clusters are systematically underbound, with respect to heavier
ones, by this formula and this effect is even more dramatic for the most
neutron rich light resonances, at the limit of nuclear binding, which can ap-
pear in our distribution. We have therefore repeated the same calculations,
making use of the experimental mass, whenever this value is known [11].
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Figure 4: (Color online)
Temperature evolution of
heat capacity for four in-
termediate cells. Full lines:
complete NSE calculation
making use of the analyt-
ical expressions reported
in [9] for binding energies
(labeled as LDM in the
figure). Line with sym-
bols: as the full line, but
experimental binding en-
ergies from [11] are used
whenever available (EXP
+ LDM in the figure).

As we can see in Fig. 4, in the range of temperatures considered, the
results are similar to the ones presented in Fig. 3 both for the highest (cells
1-2) and lowest (cells 7 to 10) densities. However, in the cells from 3 to
6 the consideration of the experimental masses has dramatic consequences
because it modifies the height of the heat capacity peak and also its position
in temperature. Moreover, a second peak appears in the case of cells 3 and 4
whose location, it is possible to show, coincides with the temperature where
a sharp transition to the dominance of light clusters occurs. The same
features could also appear in cells at lower densities, but at temperature
values that are beyond the range considered in the present study.
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