Fluctuations of collective coordinates and convexity theorems for energy surfaces

Abstract : Constrained energy minimizations of a many-body Hamiltonian return energy landscapes e(b) where b= representes the average value(s) of one (or several) collective operator(s), B, in an "optimized" trial state Phi_b, and e = is the average value of the Hamiltonian in this state Phi_b. It is natural to consider the uncertainty, Delta e, given that Phi_b usually belongs to a restricted set of trial states. However, we demonstrate that the uncertainty, Delta b, must also be considered, acknowledging corrections to theoretical models. We also find a link between fluctuations of collective coordinates and convexity properties of energy surfaces.
Type de document :
Article dans une revue
Annals of Physics, 2017, 376, pp.296 - 310. 〈10.1016/j.aop.2016.11.015〉
Liste complète des métadonnées

http://hal.in2p3.fr/in2p3-01468960
Contributeur : Sylvie Flores <>
Soumis le : jeudi 16 février 2017 - 09:06:13
Dernière modification le : mardi 16 janvier 2018 - 14:40:38

Identifiants

Collections

Citation

B.G. Giraud, S. Karataglidis, T. Sami. Fluctuations of collective coordinates and convexity theorems for energy surfaces. Annals of Physics, 2017, 376, pp.296 - 310. 〈10.1016/j.aop.2016.11.015〉. 〈in2p3-01468960〉

Partager

Métriques

Consultations de la notice

42