C. A. Appelo, A. Vinsot, S. Mettler, and S. Wechner, Obtaining the Porewater Composition of a Clay Rock by Modeling the In-and Out-Diffusion of Anions and Cations from an InSitu Experiment, J. Contam. Hydrol, vol.101, pp.67-76, 2008.

J. A. Davis and D. B. Kent, Surface Complexation Modeling in Aqueous Geochemistry, Rev. Mineral, vol.23, pp.177-260, 1990.

M. Ochs, M. Boonekamp, H. Wanner, H. Satp, and M. Yui, A Quantitative Model for Ion Diffusion in Compacted Bentonite, Radiochim. Acta, vol.82, pp.437-444, 1998.
DOI : 10.1524/ract.1998.82.special-issue.437

C. Park, P. Fenter, K. L. Nagy, and N. C. Sturchio, Hydration and Distribution of Ions at the Mica-Water Interface, Phys. Rev. Lett, p.16101, 2006.

G. E. Brown, V. E. Henrich, W. H. Casey, D. L. Clark, C. Eggleston et al., Metal Oxide Surfaces and Their Interactions with Aqueous Solutions and Microbial Organisms, Chem. Rev, vol.99, pp.77-174, 1998.
DOI : 10.1021/cr980011z

URL : http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article%3D1196%26context%3Dusdoepub

M. A. Henderson, The Interaction of Water with Solid Surfaces: Fundamental Aspects Revisited, Surf. Sci. Reports, vol.46, pp.5-308, 2002.

S. Kerisit and S. C. Parker, Free Energy of Adsorption of Water and Metal Ions on the {1014} Calcite Surface, J. Amer. Chem. Soc, vol.126, pp.10152-10161, 2004.

S. Kerisit, D. J. Cooke, D. Spagnoli, and S. C. Parker, Molecular Dynamics Simulations of the Interactions between Water and Inorganic Solids, J. Mater. Chem, vol.15, pp.1454-1462, 2005.
DOI : 10.1039/b415633c

J. Wang, A. G. Kalinichev, and R. J. Kirkpatrick, Effects of Substrate Structure and Composition on the Structure, Dynamics, and Energetics of Water at Mineral Surfaces: A Molecular Dynamics Modeling Study, Geochim. Cosmochim. Acta, vol.70, pp.562-582, 2006.

J. N. Israelachvili, P. B. Miranda, L. Xu, Y. R. Shen, and M. Salmeron, Icelike Water Monolayer Adsorbed on Mica at Room Temperature, Phys. Rev. Lett, vol.81, issue.10, pp.5876-5879, 1992.

W. C. Cantrell and G. E. Ewing, Thin Film Water on Muscovite Mica, J. Phys. Chem. B, vol.105, pp.5434-5439, 2001.
DOI : 10.1021/jp004305b

T. E. Balmer, H. K. Christenson, N. D. Spencer, and M. Heuberger, The Effect of Surface Ions on Water Adsorption to Mica, Langmuir, vol.24, pp.1566-1569, 2007.

S. S. Lee, P. Fenter, C. Park, N. C. Sturchio, and K. L. Nagy, Hydrated Cation Speciation at the Muscovite (001)-Water Interface, Langmuir, vol.26, pp.16647-16651, 2010.
DOI : 10.1021/la1032866

S. S. Lee, C. Park, P. Fenter, N. C. Sturchio, and K. L. Nagy, Competitive Adsorption of Strontium and Fulvic Acid at the Muscovite-Solution Interface Observed with Resonant Anomalous X-Ray Reflectivity, Geochim. Cosmochim. Acta, vol.74, pp.1762-1776, 2010.

L. Dzene, E. Tertre, and F. Hubert, Ferrage, E. Nature of the Sites Involved in the Process of Cesium Desorption from Vermiculite, J. Colloid Interf. Sci, vol.455, pp.254-260, 2015.

P. J. Feibelman, Hydration in a Low-Energy Two-Dimensional Wetting Layer on the Basal Surface of Muscovite, J. Chem. Phys, vol.139, pp.74705-74715, 2013.

D. Spagnoli, D. J. Cooke, S. Kerisit, and S. C. Parker, Molecular Dynamics Simulations of the Interaction between the Surfaces of Polar Solids and Aqueous Solutions, J. Mater. Chem, vol.16, 1997.

Y. Leng and P. T. Cummings, Hydration Structure of Water Confined between Mica Surfaces, J. Chem. Phys, vol.124, pp.74711-74715, 2006.
DOI : 10.1063/1.2172589

M. Holmboe and I. C. Bourg, Molecular Dynamics Simulations of Water and Sodium Diffusion in Smectite Interlayer Nanopores as a Function of Pore Size and Temperature, J. Phys. Chem. C, vol.118, pp.1001-1013, 2014.

B. F. Ngouana-wakou and A. G. Kalinichev, Structural Arrangements of Isomorphic Substitutions in Smectites: Molecular Simulation of the Swelling Properties, Interlayer Structure, and Dynamics of Hydrated Cs-Montmorillonite Revisited with New Clay Models, J. Phys. Chem. C, vol.118, pp.12758-12773, 2014.

N. Loganathan, A. O. Yazaydin, G. M. Bowers, A. G. Kalinichev, and R. J. Kirkpatrick, Structure, Energetics, and Dynamics of Cs + and H 2 O in Hectorite: Molecular Dynamics Simulations with an Unconstrained Substrate Surface, J. Phys. Chem. C, vol.120, pp.10298-10310, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01577618

Z. Chen, G. Montavon, S. Ribet, Z. Guo, J. C. Robinet et al., Key Factors to Understand In-Situ Behavior of Cs in Callovo-Oxfordian Clay-Rock (France), Chemical Geology, vol.387, pp.47-58, 2014.

L. Weng, W. H. Van-riemsdijk, and T. Hiemstra, Effects of Fulvic and Humic Acids on Arsenate Adsorption to Geothite: Experiments and Modeling, Env. Sci. Technol, vol.43, pp.7198-7204, 2009.
DOI : 10.1021/es9000196

I. C. Bourg and G. Sposito, Molecular Dynamics Simulations of the Electrical Double Layer on Smectite Surface Contacting Concentrated Mixed Electrolyte (NaCl-CaCl 2 ) Solutions

C. Park, P. A. Fenter, N. C. Sturchio, K. L. Nagy, and . Thermodynamics, Interfacial Structure, and pH Hysteresis of Rb + and Sr 2+, vol.360, pp.701-715, 2011.

, Adsorption at the Muscovite (001)-Solution Interface, Langmuir, vol.24, pp.13993-14004, 2008.

M. L. Schlegel, K. L. Nagy, P. Fenter, L. Cheng, N. C. Sturchio et al., Cation Sorption on the Muscovite (0 0 1) Surface in Chloride Solutions Using High-Resolution XRay Reflectivity, Geochim. Cosmochim. Acta, vol.70, pp.3549-3565, 2006.

A. Manceau, B. Lanson, M. L. Schlegel, L. Eybert-berard, J. L. Hazemann et al., Quantitative Zn Speciation in Smelter-Contaminated Soils by EXAFS Spectroscopy, Am. J. Sci, vol.300, pp.289-343, 2000.

D. A. Sverjensky, Physical Surface-Complexation Models for Sorption at the MineralWater Interface, Nature, vol.364, pp.776-780, 1993.

T. Hiemstra and W. H. Van, On the Relationship between Charge Distribution, Surface Hydration, and the Structure of the Interface of Metal Hydroxides, J. Coll. Interf. Sci, vol.301, pp.1-18, 2006.

R. Rahnemaie, T. Hiemstra, and W. H. Van, A New Surface Structural Approach to Ion Adsorption: Tracing the Location of Electrolyte Ions, J. Coll. Interf. Sci, vol.293, pp.312-321, 2006.

S. S. Lee, C. Park, P. Fenter, N. C. Sturchio, and K. L. Nagy, Changes in Adsorption Free Energy and Speciation During Competitive Adsorption between Monovalent Cations at the

, Muscovite (0 0 1)-Water Interface, Geochim. Cosmochim. Acta, vol.123, pp.416-426, 2013.

Y. Kim, R. J. Kirkpatrick, and R. T. Cygan, Cs-133 NMR Study of Cesium on the Surfaces of Kaolinite and Illite, Geochim. Cosmochim. Acta, vol.60, pp.4059-4074, 1996.

C. Poinssot, B. Baeyens, and M. H. Bradbury, Experimental and Modelling Studies of Caesium Sorption on Illite, Geochim. Cosmochim. Acta, vol.63, pp.3217-3227, 1999.
DOI : 10.1016/s0016-7037(99)00246-x

J. M. Zachara, S. C. Smith, C. Liu, J. P. Mckinley, R. J. Serne et al., Sorption of Cs + to Micaceous Subsurface Sediments from the Hanford Site, Geochim. Cosmochim. Acta, vol.66, pp.193-211, 2002.
DOI : 10.1016/s0016-7037(01)00759-1

A. Koning and R. N. Comans, Reversibility of Radiocaesium Sorption on Illite, Geochim. Cosmochim. Acta, vol.68, pp.2815-2823, 2004.

J. P. Mckinley, J. M. Zachara, S. M. Heald, A. Dohnalkova, M. G. Newville et al.,

R. Microscale, Distribution of Cesium Sorbed to Biotite and Muscovite, Env. Sci. Technol, vol.38, pp.1017-1023, 2004.

A. Benedicto, T. Missana, and A. M. Fernández, Interlayer Collapse Affects on Cesium Adsorption onto Illite, Env. Sci. Technol, vol.48, pp.4909-4915, 2014.

T. J. Yasunari, A. Stohl, R. S. Hayano, J. F. Burkhart, S. Eckhardt et al., Cesium-137 Deposition and Contamination of Japanese Soils due to the Fukushima Nuclear Accident, Proc. Natl. Acad. Sci. U.S.A, vol.108, pp.19530-19534, 2011.

M. Okumura, H. Nakamura, and M. Machida, Mechanism of Strong Affinity of Clay Minerals to Radioactive Cesium: First-Principles Calculation Study for Adsorption of Cesium at Frayed Edge Sites in Muscovite, J. Phys. Soc. Jpn, vol.82, pp.33802-33807, 2013.

S. Suehara and H. Yamada, Cesium Stability in a Typical Mica Structure in Dry and Wet Environments from First-Principles, Geochim. Cosmochim. Acta, vol.109, pp.62-73, 2013.

L. K. Zaunbrecher, R. T. Cygan, and W. C. Elliott, Molecular Models of Cesium and Rubidium Adsorption on Weathered Micaceous Minerals, J. Phys. Chem. A, vol.119, pp.5691-5700, 2015.

L. N. Lammers, I. C. Bourg, M. Okumura, K. Kolluri, G. Sposito et al., Molecular Dynamics Simulations of Cesium Adsorption on Illite Nanoparticles, Journal of Colloid and Interface Science, vol.490, pp.608-620, 2017.

S. Kerisit, D. J. Cooke, A. Marmier, and S. C. Parker, Atomistic Simulation of Charged Iron Oxyhydroxide Surfaces in Contact with Aqueous Solution, Chem. Commun, pp.3027-3029, 2005.

M. F. Brigatti, S. Guggenheim, and . Mica, Crystal Chemistry and the Influence of Pressure, Temperature, and Solid Solution on Atomistic Models, Rev. Mineral. Geochem, vol.46, pp.1-97, 2002.

Y. Kuwahara, Muscovite Surface Structure Imaged by Fluid Contact Mode AFM, Phys. Chem. Minerals, vol.26, pp.198-205, 1999.

J. W. Wang, A. G. Kalinichev, R. J. Kirkpatrick, and R. T. Cygan, Structure, Energetics, and Dynamics of Water Adsorbed on the Muscovite (001) Surface: A Molecular Dynamics Simulation, J. Phys. Chem. B, vol.109, pp.15893-15905, 2005.

J. Wang, A. G. Kalinichev, and R. J. Kirkpatrick, Asymmetric Hydrogen Bonding and Orientational Ordering of Water at Hydrophobic and Hydrophilic Surfaces: A Comparison of Water/Vapor, Water/Talc, and Water/Mica Interfaces, J. Phys. Chem. C, vol.113, pp.11077-11085, 2009.

N. Loganathan and A. G. Kalinichev, On the Hydrogen Bonding Structure at the Aqueous Interface of Ammonium-Substituted Mica: A Molecular Dynamics Simulation. Zeitschrift (54) Meleshyn, A. Potential of Mean Force for K + in Thin Water Films on Cleaved Mica, Langmuir, vol.26, pp.13081-13085, 2010.

S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comp. Phys, vol.117, pp.1-19, 1995.

R. T. Cygan, J. Liang, and A. G. Kalinichev, Molecular Models of Hydroxide, Oxyhydroxide, and Clay Phases and the Development of a General Force Field, J. Phys. Chem. B, vol.108, pp.1255-1266, 2004.

C. J. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid et al., Scalable Molecular Dynamics with NAMD, J. Comp. Chem, vol.26, pp.1781-1802, 2005.

B. Roux, The Calculation of the Potential of Mean Force Using Computer Simulations, Comp. Phys. Comm, vol.91, pp.275-282, 1995.

A. Meleshyn, Potential of Mean Force for Ca 2+ at the Cleaved Mica-Water Interface, J. Phys. Chem. C, vol.113, pp.17604-17607, 2009.

S. Kumar, D. Bouzida, R. H. Swendsen, E. A. Kollman, and J. M. Rosenberg, The Weighted Histogram Analysis Method for Free-Energy Calculations on Biomolecules. I. The Method
DOI : 10.1002/jcc.540130812

, J. Comp. Chem, vol.13, pp.1011-1021, 1992.

D. Trzesniak, A. E. Kunz, and W. F. Van-gunsteren, A Comparison of Methods to Compute the Potential of Mean Force, ChemPhysChem, vol.8, pp.162-169, 2007.

S. S. Lee, C. Park, P. Fenter, N. C. Sturchio, and K. L. Nagy, Monovalent Ion Adsorption at the Muscovite (001)-Solution Interface: Relationships among Ion Coverage and Speciation, Interfacial Water Structure, and Substrate Relaxation, Langmuir, vol.28, pp.8637-8650, 2012.
DOI : 10.1021/la300032h