Fax: +33 251 125 567; Tel: +33 251 125 571; E-mail: nicolas.galland@univnantes .fr b Laboratoire SUBATECH, IN2P3/CNRS, EMN Nantes Eur. J. Nucl. Med, vol.6230, issue.25, pp.1341-1351, 1998. ,
[211At]Astatine-Labeled Compound Stability: Issues with Released [211At]Astatide and Development of Labeling Reagents to Increase Stability, Current Radiopharmaceuticalse, vol.1, issue.3, pp.144-176, 2008. ,
DOI : 10.2174/1874471010801030144
Astatine Radiopharmaceuticals: Prospects and Problems, Current Radiopharmaceuticalse, vol.1, issue.3, pp.177-196, 2008. ,
DOI : 10.2174/1874471010801030177
URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818997/pdf
pseudopotentials for Hg through Rn, Molecular Physics, vol.270, issue.6, pp.1245-1263, 1991. ,
DOI : 10.1063/1.459823
Two-component calculations for the molecules containing superheavy elements: Spin???orbit effects for (117)H, (113)H, and (113)F, The Journal of Chemical Physics, vol.110, issue.18, pp.8969-8975, 1999. ,
DOI : 10.1063/1.450454
states: Scalar relativistic and two-component configuration-interaction calculations, Physical Review A, vol.74, issue.3, pp.32506-55, 2002. ,
DOI : 10.1080/00268979100102941
group 16???18 elements, The Journal of Chemical Physics, vol.119, issue.21, pp.11113-11123, 2003. ,
DOI : 10.1063/1.460941
Extended Douglas???Kroll transformations applied to the relativistic many-electron Hamiltonian, The Journal of Chemical Physics, vol.119, issue.8, pp.4105-4111, 2003. ,
DOI : 10.1007/s002140050296
An analysis of core effects on shape-consistent pseudopotentials, The Journal of Chemical Physics, vol.121, issue.18, pp.8687-8698, 2004. ,
DOI : 10.1016/0009-2614(93)85670-J
Basis-set extensions for two-component spin???orbit treatments of heavy elements, Phys. Chem. Chem. Phys., vol.77, issue.8, pp.4862-4865, 2006. ,
DOI : 10.1007/BF01114537
Making four- and two-component relativistic density functional methods fully equivalent based on the idea of ???from atoms to molecule???, The Journal of Chemical Physics, vol.19, issue.10, pp.104106-104101, 2007. ,
DOI : 10.1063/1.478237
Relativistic quantum chemistry: the MOLFDIR program package, Computer Physics Communications, vol.81, issue.1-2, pp.120-144, 1994. ,
DOI : 10.1016/0010-4655(94)90115-5
Relativistic and correlation effects in CuH, AgH, and AuH: Comparison of various relativistic methods, The Journal of Chemical Physics, vol.102, issue.5, pp.2024-2031, 1995. ,
DOI : 10.1016/0009-2614(90)80073-M
Relativistic total energy using regular approximations, The Journal of Chemical Physics, vol.101, issue.11, pp.9783-9792, 1994. ,
DOI : 10.1016/0009-2614(93)80060-3
On the physical meaning of the ZORA Hamiltonian, Molecular Physics, vol.101, issue.14, pp.2295-2302, 2003. ,
DOI : 10.1063/1.1510118
Spin-Orbit Coupling and Other Relativistic Effects in Atoms and Molecules, Adv. Quantum Chem, vol.19, pp.139-182, 1988. ,
DOI : 10.1016/S0065-3276(08)60615-2
Observation of Astatine Compounds by Time-of-Flight Mass Spectrometry, Inorganic Chemistry, vol.5, issue.5, pp.766-769, 1966. ,
DOI : 10.1021/ic50039a016
The stability constants of chloride complexes of mono-valent astatine in nitric acid solution, Journal of Inorganic and Nuclear Chemistry, vol.30, issue.12, pp.3239-3243, 1968. ,
DOI : 10.1016/0022-1902(68)80118-6
Pseudohalogen compounds of astatine: Synthesis and characterization of At/I/-tricyanomethanide-and At/I/-azide-compounds, Journal of Radioanalytical and Nuclear Chemistry Letters, vol.59, issue.5, pp.275-283, 1987. ,
DOI : 10.1080/10256018608623606
Astatine Standard Redox Potentials and Speciation in Acidic Medium, The Journal of Physical Chemistry A, vol.114, issue.1, pp.576-582, 2010. ,
DOI : 10.1021/jp9077008
URL : https://hal.archives-ouvertes.fr/in2p3-00450771
Determination of stability constants between complexing agents and At(I) and At(III) species present at ultra-trace concentrations, Inorganica Chimica Acta, vol.362, issue.8, pp.2654-2661, 2009. ,
DOI : 10.1016/j.ica.2008.12.005
URL : https://hal.archives-ouvertes.fr/in2p3-00382733
Optimisation of cyclotron production parameters for the 209Bi(??, 2n) 211At reaction related to biomedical use of 211At, Applied Radiation and Isotopes, vol.54, issue.5, pp.839-844, 2001. ,
DOI : 10.1016/S0969-8043(00)00346-8
Optimisation study of ??-cyclotron production of At-211/Po-211g for high-LET metabolic radiotherapy purposes, Applied Radiation and Isotopes, vol.63, issue.5-6, pp.621-631, 2005. ,
DOI : 10.1016/j.apradiso.2005.05.041
Astatine Compounds, 1985. ,
The natural selection of the chemical elements, Cellular and Molecular Life Sciences CMLS, vol.53, issue.10, 1996. ,
DOI : 10.1007/s000180050102
Present state and future directions of modeling of geochemistry in hydrogeological systems, Journal of Contaminant Hydrology, vol.47, issue.2-4, pp.265-282, 2001. ,
DOI : 10.1016/S0169-7722(00)00155-8
Ionic strength effects in modelling radionuclide migration in environmental systems: Estimating the errors and uncertainties, Journal of Environmental Radioactivity, vol.29, issue.2, pp.121-136, 1995. ,
DOI : 10.1016/0265-931X(95)00013-Z
Spin???orbit density functional theory calculations for heavy metal monohydrides, The Journal of Chemical Physics, vol.128, issue.4, pp.2014-2019, 2003. ,
DOI : 10.1063/1.1390509
Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Canadian Journal of Physics, vol.58, issue.8, pp.1200-1211, 1980. ,
DOI : 10.1139/p80-159
Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B, vol.20, issue.2, pp.785-789, 1988. ,
DOI : 10.1103/PhysRevA.20.397
Density???functional thermochemistry. III. The role of exact exchange, The Journal of Chemical Physics, vol.98, issue.7, pp.5648-5652, 1993. ,
DOI : 10.1063/1.460205
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen, The Journal of Chemical Physics, vol.17, issue.2, pp.1007-1023, 1989. ,
DOI : 10.1063/1.452534
Electron affinities of the first???row atoms revisited. Systematic basis sets and wave functions, The Journal of Chemical Physics, vol.17, issue.9, pp.6796-6806, 1992. ,
DOI : 10.1063/1.1727484
Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon, The Journal of Chemical Physics, vol.98, issue.2, pp.1358-1388, 1993. ,
DOI : 10.1021/j100198a007
-block element monohydrides MH (M=element 113???118), The Journal of Chemical Physics, vol.63, issue.6, pp.2684-2691, 2000. ,
DOI : 10.1063/1.473437
URL : https://hal.archives-ouvertes.fr/tel-00150393
The influence of core correlation on the spectroscopic constants of HAt, Chemical Physics Letters, vol.399, issue.1-3, pp.1-6, 2004. ,
DOI : 10.1016/j.cplett.2004.09.132
URL : https://hal.archives-ouvertes.fr/hal-00820885
Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model, Journal of Computational Chemistry, vol.24, issue.6, pp.669-681, 2003. ,
DOI : 10.1002/jcc.10189
A new definition of cavities for the computation of solvation free energies by the polarizable continuum model, The Journal of Chemical Physics, vol.100, issue.8, pp.3210-3221, 1997. ,
DOI : 10.1021/ja00088a027
Essentials of Computational Chemistry : Theories and Models, 2004. ,