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Abstract. We present an analysis of effective operators in the shell model with up

to three-body interactions in the Hamiltonian and two-body terms in electromagnetic

transition operators when the nucleons are either neutrons or protons occupying a

single-j orbital. We first show that evidence for an effective three-body interaction

exists in the N = 50 isotones and in the lead isotopes but that the separate components

of such interaction are difficult to obtain empirically. We then determine higher-

order terms on more microscopic grounds. The starting point is a realistic two-body

interaction in a large shell-model space together with a standard one-body transition

operator, which, after restriction to the dominant orbital and with use of stationary

perturbation theory, are transformed into effective versions with higher-order terms.

An application is presented for the lead isotopes with neutrons in the 1g9/2 orbital.

1. Introduction

Three-body forces have become an accepted feature of the nuclear shell model [1].

They can be either real, arising because of the composite nature of the nucleon, or

effective, induced by a renormalization to a given truncated model space. There is now

considerable evidence for the existence of real three-body interactions in light nuclei [2]

(see also the review [3]). Effective three-body interactions, on the other hand, are

expected to occur in heavier nuclei since for such systems the effect of orbitals that are

excluded because of model-space limitations can be important. If effective three-body

interactions are included in the Hamiltonian, a consistent treatment requires effective

higher-order corrections to other operators as well [4]. For electromagnetic transitions

the usual approach is to introduce effective g factors or effective charges in the one-body

operator (see, e.g. [5, 6]). However, one may question the use of a single effective g factor

or effective charge, which can be state dependent. State-dependent renormalization can,

in principle, be described by an effective two-body electromagnetic-transition operator

but this is rarely done in shell-model calculations. (An exception is the two-body M1

operator of Ref. [7].)
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In this paper we report on a study of effective Hamiltonians with up to three-

body interactions and effective electromagnetic transition operators with up to two-

body terms. For simplicity we limit ourselves to the manifestation of such higher-order

corrections in nuclei with one kind of valence nucleon, and study the T = 3/2 three-body

component of the nuclear interaction on top of its usual T = 1 two-body component.

Therefore, our attention is focused on semi-magic nuclei with only nucleons of one

kind, neutrons or protons, in the valence shell. The approach is further simplified by

considering nuclei where the valence nucleons are dominantly in a single-j orbital.

While these are extreme simplifications of more realistic situations, this approach

presents certain advantages. First of all, the shell-model calculations in the full space

can be carried out for some of the nuclei that we consider here, thus enabling to

check whether an expansion to a given order yields satisfactory results. Also, given

the simplifying assumptions made, the perturbation method of Bloch and Horowitz [8]

can be pushed to third order in the Hamiltonian and second order in the transition

operators without an unwieldy proliferation of diagrams. Finally, for a single-j orbital

the energy matrices are known analytically in terms of the interaction matrix elements,

and calculations are easily carried out. In fact, it would be relatively straightforward to

extend the current approach to test the performance of effective four-body interactions.

An early application of the shell model was the description of Ca isotopes (Z = 20)

and N = 28 isotones with a two-body Hamiltonian in the 0f7/2 orbital [9, 10]. To

improve results for binding energies and spectra, several authors considered, already

many years ago, the inclusion of three-body interactions [11, 12]. In view of the current

interest in three-body forces, the issue was revisited more recently by Volya [13], who

studied the same semi-magic nuclei with a two-plus-three-body Hamiltonian. It was later

shown [14] that the extracted three-body component can to some extent be understood

as the result of excluded higher-lying orbitals, in particular 1p3/2. It the purpose of

this paper (i) to present an application in the same spirit but to different nuclei, (ii) to

extend perturbation theory for the effective two-plus-three-body Hamiltonian to third

order, and (iii) to determine the effective one-plus-two-body transition operators to

second order.

This paper is organized as follows. In Sect. 2 we define the Hamiltonian appropriate

for identical nucleons in a single-j orbital. An effective single-j Hamiltonian with up

to three-body interactions is derived in Sect. 3 and electromagnetic transition operators

with up to two-body terms are derived in Sect. 4. With the recurrence relations for

scalar and non-scalar k-body operators, as given in Sect. 5, we are then in a position to

obtain all results, analytical if needed, in the context of a single-j orbital. In Sect. 6 we

present the results of two applications, namely to the N = 50 isotones with protons in

0g9/2 and to the lead isotopes (Z = 82) with neutrons in 1g9/2. Finally, in Sect. 7 the

conclusions of this study are summarized.
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2. The single-j Hamiltonian

We use a rotationally invariant Hamiltonian with up to three-body interactions, acting

between identical nucleons in a single-j orbital. Following the notation of Volya [13] we

write the Hamiltonian as

Ĥ = Ĥ1 + V̂2 + V̂3, (1)

with

Ĥ1 = εjn̂j = εj

+j∑
m=−j

a†jmajm,

V̂2 =
∑
J even

VJ

+J∑
M=−J

T̂
(2)†
JM T̂

(2)
JM ,

V̂3 =
∑
J

∑
αα′

WJαα′

+J∑
M=−J

T̂
(3)†
αJM T̂

(3)
α′JM , (2)

where n̂j is the nucleon-number operator. The operator a†jm (ajm) creates (annihilates)

a nucleon in the orbital j with projection m; T̂
(n)†
αJM and T̂

(n)
αJM are the generalization to

operators that create and annihilate a normalized n-nucleon state with total angular

momentum J and projection M . The notation α represents any additional label

necessary to characterize fully the n-body state |jnαJM〉. The single-particle energy εj
and the interactions

VJ ≡ 〈j2JM |V̂2|j2JM〉, WJαα′
≡ 〈j3αJM |V̂3|j3α′JM〉, (3)

completely determine the Hamiltonian (1) in a single-j orbital. In the two-body matrix

elements no additional label α is needed and J must be even. In the three-body matrix

elements additional labels are needed for certain values of J if j ≥ 9/2 [15, 16].

Following Refs. [11, 12, 13] one can treat εj, VJ and WJαα′
as parameters to be fitted

to the available binding energies of ground and excited states of semi-magic nuclei.

Alternatively, one considers them as the matrix elements of an effective interaction,

which arises due to truncation effects from a larger shell-model space to a single-j

orbital. Expressions relevant to the latter approach are given in the next section.

3. Effective two- and three-body interactions

We consider a system of identical nucleons (neutrons or protons) in a valence shell

containing several orbitals j, j1, j2,. . . with single-nucleon energies εj, εj1 , εj2 ,. . . The

nucleons interact through a two-body force V̂2 and transitions of multipolarity λ between

states are induced by one-body operators T̂
(λ)
1 . We assume that the orbital j is well

below the others, εj � εj1 ≤ εj2 ≤ · · ·. An equivalent problem arises for a system of

orbitals j, j1, j2,. . . with single-nucleon energies εj � εj1 ≥ εj2 ≥ · · ·, which can be

reformulated in terms of holes. All formulas given below apply to this case as well after

the substitution ε→ −ε.
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The aim is to replace operators Ô, defined for the entire shell-model space

{j, j1, j2, . . .}, by effective operators Ôeff that act in the single orbital j. This can

be achieved most simply by considering, in the total Hamiltonian Ĥ = Ĥ1 + V̂2, the

two-body interaction V̂2 as a perturbation on the single-nucleon Hamiltonian Ĥ1, and

by applying the perturbation method of Bloch and Horowitz [8]. For the definition of

an effective interaction that contains up to and including three-body components, it is

necessary to consider the perturbation due to V̂2 of one-, two- and three-nucleon states.

In the approximation outlined above, a state |j〉, with one nucleon in the orbital j

and all others empty, cannot be perturbed by V̂2 since 〈j|V̂2|jk〉 = 0. The energy of this

single-nucleon state is therefore

E(0)(j) = εj, (4)

to all orders of perturbation theory and its perturbed wave function |j) is the

unperturbed wave function |j〉. Two-nucleon states have zeroth-order energies

E(0)(j2J) = 2εj, (5)

and a first-order contribution of V̂2, which is its expectation value in the state |j2J〉,

E(1)(j2J) = 〈j2J |V̂2|j2J〉 ≡ VJ . (6)

Similarly, three-nucleon states have zeroth-order energies

E(0)(j3αJ) = 3εj, (7)

and a first-order contribution of V̂2, which is its expectation value in the state |j3αJ〉,

E(1)(j3αJ) = 〈j3αJ |V̂2|j3αJ〉 = 3
∑
R

(cR3αJ)2VR, (8)

where c
αn−1R
nαnJ

≡ [jn−1(αn−1R)jJ |}jnαnJ ] is an n → n − 1 coefficient of fractional

parentage [15, 16]. The expressions for E(n)(j2J) and E(n)(j3αJ) in second (n = 2)

and third (n = 3) order are given in Appendix A and Appendix B, respectively.

Up to order n of perturbation theory, an effective Hamiltonian with up to three-

body interactions,

Ĥ
(n)
eff = Ĥ

(n)
1eff + V̂

(n)
2eff + V̂

(n)
3eff , (9)

can be constructed from

〈j|Ĥ(n)
1eff |j〉 = E(0)(j) = εj,

〈j2J |Ĥ(n)
eff |j

2J〉 =
n∑
i=0

E(i)(j2J),

〈j3αJ |Ĥ(n)
eff |j

3αJ〉 =
n∑
i=0

E(i)(j3αJ), (10)

where the first, second, and third equation defines the 1-body, (1 + 2)-body, and

(1 + 2 + 3)-body part of the effective Hamiltonian, respectively. The one-body part of
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Figure 1. Second- and third-order contributions to the effective two-body interaction

V̂2eff . The black unlabeled lines correspond to particles in the orbital j. Particle

excitations into the orbitals jk, jl,. . . are indicated in red and labeled with the

corresponding indices k, l,. . .

the effective Hamiltonian is Ĥ1eff = εn̂j to all orders. The effective two-body interaction

to order n is specified by the matrix elements

〈j2J |V̂ (n)
2eff |j

2J〉 =
n∑
i=1

E(i)(j2J). (11)

The effective three-body interaction to order n can be calculated from the third equation

in Eq. (9). The contribution from the effective two-body interaction must be subtracted,

leading to the following expression for the matrix elements of the effective three-body

interaction:

〈j3αJ |V̂ (n)
3eff |j

3αJ〉 =
n∑
i=1

E(i)(j3αJ)− 3
n∑
i=1

∑
R

(cR3αJ)2E(i)(j2R). (12)

Care must be taken to compute both sums in this equation to the same order in

perturbation theory. Because of Eqs. (6) and (8), this immediately shows that no

three-body interaction occurs in first-order perturbation, n = 1. This is no longer the

case for n > 1, as shown in Appendix A and Appendix B.

The different contributions to the effective Hamiltonian can be visualized with

diagrams [8]. In view of the assumption εj � εj1 ≤ εj2 ≤ · · ·, only particle excitations

can occur and this considerably simplifies the enumeration of the diagrams. Still, a

significant number of them survives, as shown in Figs. 1 and 2. In second order,

two processes contribute to the effective two-body interaction V̂2eff while only a single

one is important for the effective three-body interaction V̂3eff since the contribution of

diagram (b) will be cancelled by that of the effective two-body interaction. This is a

diagrammatic proof that, up to second order, V̂3eff does not contain any contribution

from the |jkjl(L)jJ〉 configurations [14]. In third order, the diagrams proliferate and,

with the exception of diagram (c) of the effective three-body interaction V̂3eff , they all

contribute.
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Figure 2. Same caption as Fig. 1 for the effective three-body interaction V̂3eff .

4. Effective one- and two-body transition operators

The same procedure can be followed to determine effective transition operators up two-

body terms, starting from a one-body transition operator T̂1. The one-body part of the

effective operator follows from the identity

〈j‖T̂ (n)
1eff‖j〉 = (j‖T̂1‖j) = 〈j‖T̂1‖j〉, (13)

which holds since the two-body interaction V̂2 does not perturb the single-nucleon state

|j〉. We conclude that the one-body part of the effective operator coincides with the

bare operator. This is not a general result from perturbation theory but specific to

the zeroth-order approximation of one nucleon in the orbital j and completely empty

orbitals j1, j2,. . .

Up to order n of perturbation theory, an effective operator with up to two-body

terms,

T̂
(n)
eff = T̂

(n)
1eff + T̂

(n)
2eff , (14)

is obtained from the identity

〈j2Jf‖T̂ (n)
eff ‖j

2Ji〉 = (n)(j2Jf‖T̂1‖j2Ji)
(n), (15)

where on the right-hand side wave functions to nth order in perturbation theory are

used. The two-body part of the effective operator is therefore

〈j2Jf‖T̂ (n)
2eff‖j

2Ji〉 = 〈j2Jf‖T̂ (n)
eff ‖j

2Ji〉 − 〈j2Jf‖T̂ (n)
1eff‖j

2Ji〉
= (n)(j2Jf‖T̂1‖j2Ji)

(n) − 〈j2Jf‖T̂1‖j2Ji〉. (16)

Explicit expressions up to second order are given in Appendix C.
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5. Recurrence relations

The matrix elements of a scalar k-body interaction V̂k between two states belonging to

the jn configuration of n nucleons in the j orbital can be calculated from the recurrence

relation [15, 16, 17, 18]

〈jnαJ |V̂k|jnα′J〉 =
n

n− k
∑
α1α′1J1

cα1J1
nαJ c

α′1J1
nα′J〈j

n−1α1J1|V̂k|jn−1α′1J1〉. (17)

This process is continued until matrix elements of V̂k between states of the jk

configuration are reached. At that point the matrix elements (3) are inserted on the

right-hand side of the recurrence relation, or their expressions in terms of the matrix

elements of a larger shell-model space. Likewise, the matrix elements of a non-scalar

k-body operator T̂k(λ), where λ is its tensor character, can be obtained from

〈jnαJ‖T̂k(λ)‖jnα′J ′〉 =
n

n− k
∑

α1J1α′1J
′
1

(−)J1+j+J ′+λ[J ][J ′]cα1J1
nαJ c

α′1J
′
1

nα′J ′

×
{J1 J ′1 λ

J ′ J j

}
〈jn−1α1J1‖T̂k(λ)‖jn−1α′1J

′
1〉, (18)

with [x] ≡
√

2x+ 1, and this process can be applied up to the matrix elements

〈jkα1J1‖T̂k(λ)‖jkα′1J ′1〉.

6. Applications

6.1. Empirical fits

We first ask the question whether there exists any evidence for the presence of three-

body forces in the context of a single-orbital calculation. This question can be answered

by considering either the Hamiltonian Ĥ1+V̂2 or the Hamiltonian Ĥ1+V̂2+V̂3, adjusting

the interaction matrix elements (3) to the available data, and comparing the relative

merits of both calculations. Theoretical spectra are obtained after minimizing, with

respect to VJ and WJαα′
, the quantity

χ =

√√√√ 1

N −Np

∑
k

[BEexp(k)−BEth(k)]2

σ2
exp(k) + σ2

, (19)

where ‘BE’ stands for binding energy, either experimental or calculated, and where

the sum runs over all data points, which are N in number, and Np is the number of

parameters. Furthermore, σexp(k) is the experimental uncertainty on the kth energy.

This uncertainty, predominantly due to that on the binding energies, is in most cases of

the order of a few keV and therefore well below the root-mean-square deviation defined

as

σ =

√
1

N

∑
k

[BEexp(k)−BEth(k)]2. (20)
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Figure 3. The difference between calculated and experimental ground-state binding

energies of N = 50 isotones. The theoretical values are calculated with two-body

interactions (Th2) or with two- and three-body interactions (Th2+3), with the χ-

minimum parameters of Table 1.

We include therefore in Eq. (19) the deviation σ, which can be viewed as an additional

‘theoretical uncertainty’ on the energy.

6.1.1. The N = 50 isotones A good test case is provided by the N = 50 isotones

with Z ranging from 40 (zirconium) to 50 (tin) when the protons are dominantly in the

0g9/2 orbital. A total of 45 energies are known experimentally. The ground-state binding

energies are taken from Ref. [19] and the excitation energies from NNDC [20], with some

additional information from Refs. [21, 22]. Two fits are carried out, one with two-body

interactions (Th2) and another one with two-plus-three-body interactions (Th2+3). In

the former case there are five matrix elements VJ with J = 0, 2, 4, 6 and 8. In the

Th2+3 calculation this set is augmented with the three-body matrix elements WJαα′
with

J = 3/2, 5/2, 7/2, 9/2, 11/2, 13/2, 15/2, 17/2 and 21/2. States are unique for J 6= 9/2

and no additional label α is needed. For J = 9/2 there are two independent states in the

|j3αJ〉 configuration, and therefore two diagonal matrix elements and an off-diagonal

one. In following we only consider the diagonal matrix elements, WJαα , which we denote

as WJα , and neglect the off-diagonal matrix element WJαα′
. As absolute energies are

calculated, the single-particle energy ε9/2 must be considered as an additional parameter

in both fits.

The results concerning the binding energies are shown in Fig. 3 and energy spectra

are plotted in Fig. 4, which contains most of the levels included in the fits. In each case

we display the results of the two fits, Th2 and Th2+3. One observes from Fig. 3 that

the addition of a three-body interaction does not notably improve the quality of the fit.

Comments about the energy spectra will be made at the end of Subsect. 6.1.2.

The interaction matrix elements resulting from the two fits are shown in the two

columns labeled ‘χ minimum’ of Table 1. Although the number of parameters increases

from six to sixteen between the two fits Th2 and Th2+3, the value of χ at the minimum

is smaller by about 30 % in the latter calculation. This indicates that the three-body

interaction meaningfully improves the results. The value of σ is about the same in the
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Figure 4. Excitation spectra of the even-mass and odd-mass N = 50 isotones.

Experimental energies (Exp) are compared to those calculated with two-body

interactions (Th2) or with two- and three-body interactions (Th2+3), with the χ-

minimum parameters of Table 1.

two calculations because of a single large deviation in Th2+3 for 100Sn (see Fig. 3). As

the uncertainty on the binding energy of this nucleus is large (300 keV) [19] this has not

much impact on the value of χ but it does increase σ significantly.

Table 1 also lists the uncertainties on the different matrix elements. They are

obtained from the diagonalization of the covariance matrix, leading to uncorrelated

parameters and their associated uncertainties, from which those on the initial parameters

can be computed. The uncertainties thus obtained must be considered as an extreme

lower limit on the actual uncertainties on the fitted matrix elements because they do not

include effects from the variation of the input data. The latter effects are illustrated in

the fits labeled ‘σ minimum’ and ‘χ′ minimum’ in Table 1. In the former fit experimental

uncertainties are ignored and the minimized quantity is the root-mean-square deviation

σ in Eq. (20). As the uncertainties on the binding energies of 97Ag, 98Cd and 100Sn are

rather large [19], the ‘χ-minimum’ fit gives therefore less weight to the data concerning

the proton-rich isotopes. It is seen that, while the Th2 results are stable against this

change, the Th2+3 results are not, and in particular the three-body matrix elements

fluctuate wildly. Likewise, in the fit labeled ‘χ′ minimum’ in Table 1 a single level is

added to the input data, namely a second 6+ level 94Ru, for which there exists some
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Table 1. Two- and three-body matrix elements (in keV) and the χ and σ deviations

of Eqs. (19) and (20) for the various fits to the N = 50 isotones described in the text.

χ minimum σ minimum χ′ minimum

Th2 Th2+3 Th2 Th2+3 Th2 Th2+3

ε9/2 −5251 −5204 (1) −5249 −5227 −5255 −5209

V0 −2011 −2174 (3) −2002 −2157 −2000 −2158

V2 −548 −659 (3) −550 −637 −564 −682

V4 189 108 (2) 188 149 197 124

V6 407 399 (2) 405 432 414 416

V8 532 528 (2) 533 537 531 523

W3/2 — 256 (63) — 397 — 293

W5/2 — −54 (16) — −46 — −94

W7/2 — 53 (6) — 42 — 43

W9/21 — 47 (1) — 37 — 43

W9/22 — −112 (57) — −256 — −125

W11/2 — 35 (8) — 33 — 58

W13/2 — 46 (2) — 32 — 70

W15/2 — 55 (18) — 92 — 55

W17/2 — −43 (5) — −62 — −81

W21/2 — −12 (4) — −17 — −1

χa 0.946 0.671 0.954 1.039 0.987 0.885

σ 63 62 63 46 78 70
aDimensionless.

evidence [21]. Again one observes stability of the Th2 and fluctuations of the Th2+3

matrix elements.

6.1.2. The lead isotopes A similar application is possible for the Pb isotopes, where

the protons form a closed shell and the neutrons are predominantly in the 1g9/2 orbital.

Less data are available as compared to the case of the N = 50 isotones, and in

particular measured quantities are lacking for the most neutron-rich Pb isotopes. The

ground-state binding energies are taken from Ref. [19] and the excitation energies from

Refs. [20, 23]. To extend the fit over the entire range of isotopes from 208Pb to 218Pb, we

use extrapolated atomic masses for 216,217,218Pb together with their associated (rather

large) estimated uncertainties [19]. The angular momentum of the single-particle orbital

is j = 9/2 as in the case of the N = 50 isotones and therefore the same set of two- and

three-body matrix elements is adjusted to the data.

The results concerning the binding energies are shown in Fig. 5 and energy spectra

are plotted in Fig. 6, which contains most of the levels included in the fits. In each case

we display the results of the two fits, Th2 and Th2+3. Again one observes from Fig. 5

that the addition of a three-body interaction does not notably improve the quality of
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Figure 5. The difference between calculated and experimental ground-state binding

energies of Pb isotopes. The theoretical values are calculated with two-body

interactions (Th2) or with two- and three-body interactions (Th2+3), with the χ-

minimum parameters of Table 2.
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Figure 6. Excitation spectra of the the even-mass and odd-mass Pb isotones.

Experimental energies (Exp) are compared to those calculated with two-body

interactions (Th2) or with two- and three-body interactions (Th2+3), with the χ-

minimum parameters of Table 2.
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Table 2. Two- and three-body matrix elements (in keV) and the χ and σ deviations

of Eqs. (19) and (20) for the various fits to the Pb isotopes described in the text.

χ minimum σ minimum χ′ minimum

Th2 Th2+3 Th2 Th2+3 Th2 Th2+3

ε9/2 −3944 −3954 (1) −3944 −3961 −3952 −3964

V
(2)

0 −1266 −1203 (2) −1296 −1176 −1249 −1177

V
(2)

2 −450 −398 (1) −463 −381 −445 −407

V
(2)

4 −117 −109 (1) −123 −81 −150 −119

V
(2)

6 −41 −19 (1) −29 −5 −19 −3

V
(2)

8 56 55 (1) 62 44 61 66

W3/2 — 0 (14) — −46 — 219

W5/2 — −75 (2) — −104 — −42

W7/2 — −47 (1) — −46 — 5

W9/21 — −29 (1) — −42 — −34

W9/22 — −83 (4) — −117 — −50

W11/2 — 88 (2) — 60 — −99

W13/2 — −31 (1) — −31 — 5

W15/2 — 73 (1) — 64 — 42

W17/2 — −17 (2) — −5 — 5

W21/2 — −2 (1) — 36 — −4

χa 0.629 0.371 0.769 0.897 0.656 0.578

σ 60 29 53 21 59 35
aDimensionless.

the fit.

In addition, Table 2 lists the interaction matrix elements obtained in three different

fits. Two of them, labeled ‘χ minimum’ and ‘σ minimum’, adjust the parameters by

minimizing χ and σ of Eqs. (19) and (20), respectively. In the isotope 211Pb two 11/2+

levels occur at 643 and 894 keV, respectively, and it is not a priori clear which level

belongs to the (1g9/2)3 configuration and which is the 0i11/2 single-particle state. In the

χ-minimum fit we assume 11/2+
2 is the single-particle state while in the χ′-minimum fit

we identify it with 11/2+
1 . The conclusions to be drawn from these results are consistent

with those obtained from the analysis of the N = 50 isotones: stability of the Th2

matrix elements and large fluctuations of those in the Th2+3 fit.

It should be stressed that, in spite of the difficulties in determining the strengths

of the components of the three-body interaction, there is unmistakable evidence for its

presence. The spectra of even-even nuclei shown in Figs. 4 and 6 most clearly illustrate

this evidence. Both in the N = 50 isotones and in the Pb isotopes one observes a

clear variation of the experimental spectra with mass number A: In the former case the

spectrum compresses with A while in the latter case it expands. This trend cannot

be reproduced with a two-body interaction alone since, as a result of the particle-
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hole symmetry of the two-body interaction, the particle-hole conjugated spectra in the

Th2 calculation are the same. Therefore, the spectra of the pairs 92Mo-98Cd, 94Ru-
96Pd and the pairs 210Pb-216Pb, 212Pb-214Pb are identical in Th2. It is obvious that

experimentally they are not and that the observed trend can be reproduced with a

three-body interaction. However, for the N = 50 isotones and for the Pb isotopes at

least, the available spectroscopic data are insufficient to determine reliably the separate

components of the three-body interaction.

6.2. Effective operators in a single-j orbital

From the previous subsection we conclude that the three-body component of the

nuclear interaction is difficult to obtain reliably from an empirical fit. Also, if a three-

body interaction is considered in the Hamiltonian, a consistent approach requires the

consideration of two-body terms in transition operators—even less obtainable from data.

Therefore some microscopic input is needed.

We take as starting point a realistic two-body interaction in a large shell-model

space together with appropriate single-particle energies. For the N = 50 isotones

we consider protons in the orbitals 0f5/2, 1p3/2, 1p1/2 and 0g9/2, interacting via the

T = 1 force from Lisetskiy et al. [24]. For the Pb isotopes we consider neutrons in the

orbitals 0i11/2, 1g9/2, 1g7/2, 2d5/2, 2d3/2, 3s1/2 and 0j15/2, together with the Kuo-Herling

interaction [25, 26].

Before anything else, it is necessary to check whether the single-j orbital, 0g9/2 for

the protons in the N = 50 isotones and 1g9/2 for the neutrons in the Pb isotopes, is

sufficiently isolated from the other orbitals in the respective shell-model spaces for the

perturbation approximation to be valid. This can be achieved by comparing the results

of a full shell-model calculation with those obtained with an effective interaction in a

single-j orbital. This comparison is made in Table 3 for nuclei with two and three valence

proton holes in 0g9/2, and two and three valence neutron particles in 1g9/2. The second

and third columns list the binding energies obtained in a single-j orbital with an effective

two-body interaction calculated up to first and second order, respectively. The fourth

column adds to this the contribution of the effective three-body interaction, calculated

up to second order. The fifth and sixth columns give the result of the calculation up

to third order without and with an effective three-body interaction, respectively. The

seventh column, labeled ‘SM’, lists the binding energies obtained in the full shell-model

space. In all cases binding energies are given relative to the appropriate core, either
100Sn or 208Pb.

A few comments about Table 3 are in order. Convergence towards the shell-model

results is obtained to within a few tens of keV and perturbation theory up to second

order usually suffices. The third-order correction to the effective two-body interaction is

significant only for the pairing matrix element, which shows up in the 0+ binding energy

in 98Cd and 210Pb and that of the 9/2+
1 state in 97Ag and 211Pb. The contribution

of the three-body interaction is seen to be small. It is obviously the case that the
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Table 3. Binding energies of levels in 98Cd and 97Ag, relative to 100Sn, and of levels

in 210Pb and 211Pb, relative to 208Pb, calculated with various effective interactions in

a single-j orbital and compared with the full shell-model results (SM).

Energy (MeV)

Nucleus Jπ V̂
(1)

2eff V̂
(2)

2eff V̂
(2)

23eff V̂
(3)

2eff V̂
(3)

23eff SM
98Cd 0+ −4.532 −3.615 −3.615 −3.776 −3.776 −3.786

2+ −5.259 −5.145 −5.145 −5.133 −5.133 −5.132

4+ −5.897 −5.865 −5.865 −5.864 −5.864 −5.864

6+ −6.120 −6.120 −6.120 −6.120 −6.120 −6.120

8+ −6.307 −6.307 −6.307 −6.307 −6.307 −6.307
97Ag 3/2+ −9.355 −9.286 −9.286 −9.283 −9.270 −9.266

5/2+ −8.993 −8.879 −8.879 −8.869 −8.857 −8.842

7/2+ −8.580 −8.386 −8.386 −8.367 −8.354 −8.357

9/2+
1 −8.414 −7.639 −7.639 −7.764 −7.694 −7.734

9/2+
2 −9.502 −9.449 −9.449 −9.446 −9.445 −9.444

11/2+ −9.313 −9.216 −9.216 −9.209 −9.211 −9.210

13/2+ −9.229 −9.119 −9.119 −9.109 −9.109 −9.104

15/2+ −9.883 −9.870 −9.870 −9.870 −9.870 −9.870

17/2+ −9.949 −9.921 −9.921 −9.920 −9.918 −9.918

21/2+ −10.274 −10.274 −10.274 −10.274 −10.274 −10.274
210Pb 0+ 8.402 8.804 8.804 9.067 9.067 9.091

2+ 8.156 8.228 8.228 8.248 8.248 8.254

4+ 7.953 7.982 7.982 7.989 7.989 7.992

6+ 7.877 7.895 7.895 7.899 7.899 7.900

8+ 7.837 7.852 7.852 7.856 7.856 7.856
211Pb 3/2+ 11.986 12.064 12.072 12.083 12.098 12.109

5/2+ 12.097 12.202 12.211 12.230 12.243 12.253

7/2+ 12.252 12.392 12.402 12.430 12.435 12.436

9/2+
1 12.310 12.687 12.688 12.911 12.892 12.936

9/2+
2 11.939 12.012 12.001 12.029 12.011 12.012

11/2+ 12.016 12.108 12.092 12.131 12.106 12.106

13/2+ 12.043 12.145 12.135 12.171 12.156 12.161

15/2+ 11.822 11.879 11.871 11.891 11.878 11.878

17/2+ 11.823 11.882 11.879 11.895 11.890 11.892

21/2+ 11.728 11.776 11.775 11.786 11.783 11.784
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effective three-body interaction cannot contribute to the binding energy of 98Cd and
210Pb. In second order it also does not contribute to that of the three-hole nucleus 97Ag.

This can be understood from Eq. (B.4) [or, alternatively, the second-order diagram (a)

in Fig. 2] which contains the matrix elements V R
k = 〈j2R|V̂2|jjkR〉, with j = 0g9/2

and jk = 0f5/2, 1p3/2, 1p1/2, and which therefore vanish because of parity conservation.

However, in third order the effective three-body interaction in 97Ag does not vanish

because the diagrams (d) and (h) in Fig. 2 are parity conserving.

If we compare the results of the calculation with a two-plus-three-body effective

interaction up to third order (penultimate column ‘V̂
(3)

23eff ’ in Table 3) with those of the

shell model, we can conclude that the numbers agree closely, except for the 0+ state in

the two-nucleon and the 9/2+
1 state in the three-nucleon nuclei. For example, the 0+

level in 210Pb is underbound by 24 keV and the 9/2+
1 level in 211Pb by 44 keV. These

discrepancies correspond to a two-body pairing matrix element

V0 = 〈j2, υ = 0, J = 0|V̂2|j2, υ = 0, J = 0〉, (21)

that is 24 keV less attractive than it should be and a ‘three-body pairing matrix element’

W9/21 = 〈j3, υ = 1, J = j|V̂3|j3, υ = 1, J = j〉, (22)

that is 24.2 keV less attractive than it should be. These discrepancies might seem

insignificant for low valence nucleon number n but they lead to important deviations

for higher n. An estimate of the resulting corrections can be obtained by noting that

a Hamiltonian with a two-body and a three-body pairing interaction in the j = 9/2

orbital has the ground-state eigenvalues [29]

(n− υ)(12− n− υ)

[
1

20
V0 +

1

16
(n− 2)W9/21

]
, (23)

where the seniority υ is 0 (1) for even (odd) n. If the strengths of the pairing interactions

are off by tens of keV, we conclude from Eq. (23) that it leads to deviations of several

hundreds of keV for n = 10.

Corresponding results forE2 transitions are shown in Table 4 for the nuclei 98Cd and
210Pb. The structure of the initial and final two-particle states is fixed and therefore the

B(E2) values do not depend on the effective interaction. The third column lists B(E2)

values obtained with the standard one-body E2 operator
∑

i r
2
i Y2µ(θi, φi) in a single-j

orbital. The fourth and fifth columns add to this the contribution from the effective

two-body operator, calculated up to first and second order, respectively. Perturbation

theory converges reasonably close to the full shell-model results, except for the 2+ → 0+

transitions. This might be due to the difficulty in capturing the structure of a correlated

pairing state in a perturbation approach. Furthermore, in 98Cd the two-body part of the

E2 operator vanishes in first-order perturbation theory, which can be understood from

Eq. (C.6) and the zero matrix elements V J
k = 〈j2J |V̂2|jjkJ〉. Corrections to the one-body

operator then only arise because of some second-order terms in the expression (C.8) and

they are seen to be small or unreliable in the case of the 2+ → 0+ transition.

We conclude that the model space employed here for the N = 50 isotones, consisting

of the 0f5/2, 1p3/2, 1p1/2 and 0g9/2 orbitals, leads to an effective three-body interaction
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Table 4. B(E2; Jπi → Jπf ) values (in units e2b4, with b the oscillator length) for

transitions in 98Cd and 210Pb, calculated with various effective E2 operators in a

single-j orbital and compared with the full shell-model results (SM).

B(E2; Jπi → Jπf )

Nucleus Jπi → Jπf T̂1 T̂
(1)
12eff T̂

(2)
12eff SM

98Cd 2+ → 0+ 2.334 2.334 1.661 2.243

4+ → 2+ 2.682 2.682 2.614 2.649

6+ → 4+ 1.855 1.855 1.848 1.847

8+ → 6+ 0.743 0.743 0.743 0.743
210Pb 2+ → 0+ 4.341 5.050 4.918 4.462

4+ → 2+ 4.987 5.671 5.820 5.933

6+ → 4+ 3.449 3.947 4.046 4.152

8+ → 6+ 1.381 1.633 1.704 1.754

and an effective two-body E2 operator that vanish in leading order. A recent study [27]

of 94Ru and 96Pd arrives at a related conclusion, namely that the spectroscopy of the

N = 50 isotones is best reproduced in a large-scale shell-model calculation with a single-

particle space that includes the orbitals 0g, 1d and 2s of the N = 4 major oscillator

shell. On the other hand, the model space employed for the Pb isotopes leads to effective

operators that do not vanish in leading order and, therefore, we concentrate from now

on on the latter. We also conclude from Table 3 that it is necessary to include diagrams

up to at least third order, which is what is done in the following.

The results concerning the binding energies of the Pb isotopes are displayed in

Fig. 7 and those concerning their excitation spectra in Fig. 8. Calculations with four

different effective interactions are shown: (a) an effective two-body interaction V̂
(3)

2eff

calculated up to third order; (b) an ‘exact’ effective two-body interaction V̂
(∞)

2eff ; (c)

an effective two-plus-three-body interaction V̂
(3)

23eff calculated up to third order; (d) an

‘exact’ effective two-plus-three-body interaction V̂
(∞)

23eff . The approximations (a) and (c)

are obtained with use of the perturbation expressions given in Sect. 3 and in Appendix A

and Appendix B. The exact effective two-body interaction is obtained by reproducing

the shell-model results for two nucleons and the exact effective two-plus-three-body

interaction by reproducing the shell-model results for two and three nucleons.

A word of clarification is needed concerning the use of these so-called exact effective

interactions. We in fact can show that, for two nucleons, the use of such an exact

effective interaction is entirely equivalent to the method of Okubo, Lee and Suzuki

(OLS) [30, 31], which determines effective operators in a restricted space. To see this

point, we introduce the notions of a restricted Hilbert space P̂H (i.e., here the model

space constructed from the single-j orbital) and of an excluded Hilbert space Q̂H, such

that (P̂ + Q̂)H = H is the total Hilbert space (i.e., here the full shell-model space). Any

eigenstate |φ〉 of the Hamiltonian Ĥ in the full shell-model space has a component P̂ |φ〉
in the restricted space and a component Q̂|φ〉 outside the restricted space. In the OLS



Effective operators in a single-j orbital 17

��(���)-��(��)�����
(�)

�����
(∞ )

������
(�)

������
(∞ )

��� ��� ���

-���

���

���� ������ �

�
�
��
��

(�
��

)

Figure 7. The difference between ground-state binding energies of the Pb isotopes,

calculated with various effective interactions, and those obtained in the full shell-

model space. The different effective interactions are: (a) effective two-body interaction

calculated up to third order (blue triangles, dashed line); (b) exact effective two-

body interaction (blue triangles, full line); (c) effective two-plus-three-body interaction

calculated up to third order (red squares, dashed line); (d) exact effective two-plus-

three-body interaction (red squares, full line).

method an operator η̂ is constructed that maps states in Q̂H onto states in P̂H such

that ηP̂ |φi〉 = Q̂|φi〉 for a particular subset of eigenstates |φi〉. It can be shown that the

eigenvalues of the transformed (non-Hermitian) Hamiltonian (Î − η̂)Ĥ(Î + η̂) (where Î

is the identity operator) in the restricted space P̂H coincide exactly with a subset of

the eigenvalues of Ĥ in H. The effective Hamiltonian in the OLS approach is finally

obtained after a further transformation to make (Î − η̂)Ĥ(Î + η̂) Hermitian.

For two nucleons in a single-j orbital there exists only one state of a given angular

momentum and the OLS method therefore ensures that the expectation value of the

effective Hamiltonian in this state coincides with the eigenvalue corresponding to the

eigenstate of the full Hamiltonian that has the dominant single-j component. This shows

that the effective two-body interaction V̂
(∞)

2eff used here is the same as that obtained with

the OLS method.

The same argument can be made for three nucleons in a single-j orbital provided

only one state exists with angular momentum J . For the orbitals considered here with

j = 9/2 this is always the case except when the three nucleons couple to J = 9/2, which

has two independent states. For J = 9/2 the OLS method yields a 2× 2 matrix whose

eigenvalues coincide exactly with two of the eigenvalues of the Hamiltonian in the full

space. In general, this 2× 2 matrix will have a non-zero off-diagonal element while we

have assumed in the construction of the V̂
(∞)

3eff interaction that this matrix element is

zero. We therefore conclude that the exact effective interaction used here is equivalent to

the one obtained with the OLS method, provided that the off-diagonal matrix element

for J = 9/2 can be neglected, as is done throughout this paper. Under this assumption

one can dispense with the OLS formalism, and simply fix the effective matrix elements

such that they reproduce the shell-model results of the two- and three-nucleon systems.
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Figure 8. Experimental energies (Exp) of levels in the Pb isotopes compared with

energies calculated with various effective interactions in a single-j orbital and with

those calculated in the full shell model (SM). In the upper panel the effective interaction

is calculated up to third order in perturbation theory, and is either of two-body (blue) or

two-plus-three-body (red) character. In the lower panel the exact effective interaction

is taken (see text), either of two-body (blue) or two-plus-three-body (red) character.

We first discuss the binding energies of the ground states since these are often

used to unveil the presence of three-body forces [32]. To visualize the results, we

plot in Fig. 7 the difference between binding energies, calculated with the various

effective interactions, and those obtained in the full shell-model space. The conclusion

is clear: Adding a three-body component to the effective interaction does not improve

the description of the binding energies. A possible (but unlikely) explanation is that the

off-diagonal matrix element 〈j3, υ = 1, 9/2|V̂3|j3, υ = 3, 9/2〉, here neglected, is crucial

to the description of binding energies. A more likely explanation is that the pairing

correlations are such that an effective interaction requires a four-body component.

Another conclusion that can be drawn from Fig. 7 is that a perturbation calculation

that stops at third order is not sufficient, certainly not for the effective three-body

interaction.

While it is hard to tell whether there exists any empirical evidence for higher-body

interactions based on binding energies, their presence is evident from excitation energies,

as shown in Fig. 8. With increasing mass number A the observed spectra (labeled ‘Exp’

in the figure) of the even-even Pb isotopes expand. For example, the 2+ energy increases
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Table 5. B(E2; Jπi → Jπf ) values for transitions in the even Pb isotopes, calculated

with various E2 operators in a single-j orbital and compared with the measured values

where available.

B(E2; Jπi → Jπf ) (e2fm4)

Nucleus Jπi → Jπf T̂1 T̂
(1)
12eff T̂

(2)
12eff +V̂

(3)
23eff SM Exp

A = 210 2+ → 0+ 94 109 106 106 104 105 (30)

4+ → 2+ 108 122 126 126 138 360 (68)

6+ → 4+ 74 85 88 88 97 158 (60)

8+ → 6+ 30 35 37 37 41 53 (23)

A = 212 2+ → 0+ 140 176 174 174 210 —

4+ → 2+ 12 16 18 32 68 —

6+ → 4+ 8 9 11 9 28 —

8+ → 6+ 3 3 4 2 8 ∼2

A = 214 2+ → 0+ 140 189 189 189 304 —

4+ → 2+ 12 16 13 3 9 —

6+ → 4+ 8 12 10 15 0.1 —

8+ → 6+ 3 5 4 6 0.3 ∼2

A = 216 2+ → 0+ 94 135 137 137 — —

4+ → 2+ 108 158 153 153 — —

6+ → 4+ 74 109 105 105 — —

8+ → 6+ 30 42 40 40 — ∼25

from 0.800 MeV in 210Pb to 0.887 MeV in 216Pb. This trend is correctly reproduced by

the shell model in the full space (labeled ‘SM’ in the figure). All two-body interactions

satisfy particle-hole symmetry and, as can be seen in Fig. 8, the spectra of the pairs
210,216Pb and 212,214Pb are predicted to be identical to all orders of perturbation theory,

if only two-body interactions are considered. Within a single-j approach with two- and

three-body interactions, only the latter break particle-hole symmetry. In Subsect. 6.1 it

was shown that a three-body interaction, fit to data, is indeed capable of reproducing

the evolution of spectra with mass number A. Here we find that the effective two-

plus-three-body interaction, which we derived from the Kuo-Herling interaction in the

shell-model space consisting of the 82–126 neutron orbitals and calculated up to third

order, does not have the correct behavior. As seen from the upper panel in Fig. 8, its

effect on the energies goes in the wrong direction since the Th2+3 spectrum compresses

with increasing mass number A. Only when the exact effective two-plus-three-body

interaction is taken does one reproduce the experimental trend, as seen from the lower

panel in Fig. 8.

Results concerning E2 transitions in the even Pb isotopes are shown in Table 5. The

second column of the table lists the B(E2) values for the various transitions as obtained

with an effective two-body interaction calculated up to third order and with a standard

one-body E2 operator. In the third and fourth columns are given the B(E2) values
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obtained with an additional two-body piece of the E2 operator, calculated up first and

second order, respectively. The fifth column lists the most complete results when the

effect of the three-body interaction calculated up to third order is taken into account.

The sixth column, labeled ‘SM”, gives the results of the shell model in the full space.

The seventh column, labeled ‘Exp’, lists the measured B(E2) values—those in 210Pb

taken from Ref. [20] and the B(E2; 8+ → 6+) values in the other isotopes estimated

from Ref. [23]. All calculated B(E2) values are obtained with a constant length of the

harmonic oscillator, b = 2.456 fm, and an effective neutron charge eν = 0.77, which is

fixed from the B(E2; 2+ → 0+) value in 210Pb.

At present the sequence of decays 8+ → 6+ → 4+ → 2+ → 0+ is measured only in
210Pb and the B(E2) values have rather large error bars. If the E2 data in 210Pb turn

out to be confirmed with smaller error bars, this would be not so much a problem of the

effective operators but rather one of the Kuo-Herling interaction in the full space, akin to

what is found in 210Po [28]. The results of Table 5 demonstrate that the two-body piece

of the effective E2 operator, calculated to first order, provides an important correction

to the B(E2) values while the contribution of the second-order term is only minor. The

three-body interaction has an important effect on the B(E2) values in 212Pb and an

equally important but opposite effect in 214Pb. Note that three-body interaction has

no influence on the B(E2) values in the two-particle or two-hole isotopes 210,216Pb, as

the structure of the states is independent of the interaction, at least in a single-orbital

approach.

The overall conclusion that can be drawn from Table 5 is that the final calculated

B(E2) values result from a delicate balance of possibly conflicting effects of an effective

three-body interaction and an effective two-body E2 operator. Given also the difficulty

in reproducing the observed B(E2) values in the two-particle nucleus 210Pb, it seems

therefore that conclusions regarding higher-order operators are difficult to draw at this

point.

7. Summary and conclusions

We presented the results of a shell-model study of Hamiltonians with two- and three-

body interactions and of transition operators with up to two-body terms. We limited

ourselves to nuclei where valence nucleons of one kind (i.e., either neutrons or protons)

occupy dominantly a single-j orbital such as 0g9/2 or 1g9/2, in particular, the N = 50

isotones and the lead (Z = 82) isotopes.

In the first part of this study we found that the three-body interaction is important

to obtain an improved description of excitation spectra of semi-magic nuclei. We argued

that the clearest evidence for the presence of effective higher-body forces in nuclei

can be obtained from the properties of spectra rather than from binding energies.

Such evidence, in particular the breaking of particle-hole symmetry, exists in the

N = 50 isotones and the lead isotopes, and we found that a three-body interaction

can adequately reproduce the experimental trends. The separate components of the
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three-body interaction, however, could not be determined reliably from an empirical

fit: A small variation in the input data was seen to lead to large fluctuations in the

three-body matrix elements.

In the second part of this study we constructed, based on the perturbation theory, an

effective single-j Hamiltonian with up to three-body interactions and an effective electric

quadrupole operator with up to two-body terms. The validity of the perturbation

approach was verified by comparing results obtained with effective operators in a single-j

orbital with those obtained in the full shell-model space. Convergence to the shell-model

energy spectra in the full space was checked by increasing the order of the interaction (up

to three-body) and by increasing the order of perturbation theory (up to third order).

Likewise, E2 transition probabilities were obtained with a single-j operator with up to

two-body terms, calculated up to third order in perturbation theory, and compared to

results obtained in the full shell model.

Concerning the effective Hamiltonian, formulas indicate that it is obtained from

an expansion in V/∆ε, the average interaction matrix element over a single-particle

energy splitting. We noted that convergence is slowest for the matrix elements that

matter most, i.e., the two- and three-body pairing matrix elements. Consequently,

calculating all matrix elements consistently up to a given order (as one is bound to

do), we found that the resulting spectroscopy was poor and that the binding energies

were not well reproduced. In particular, the breaking of particle-hole symmetry—the

clearest signature of a higher-body force—was not properly described with an effective

two-plus-three-body Hamiltonian calculated up to third order in perturbation theory.

We also showed results obtained with an ‘exact’ two-plus-three-body effective

interaction. We argued that this exact interaction is equivalent with the one obtained

with the Okubo-Lee-Suzuki (OLS) approach under the assumption that a single off-

diagonal three-body matrix element can be neglected. Although with the exact two-

plus-three-body effective interaction the breaking of particle-hole symmetry was better

accounted for and the calculation at least reproduced the trend of the shell-model

results in the full space, the description of binding energies was not convincing and

no advantage over an exact two-body effective interaction was found. The simplest

possible explanation of these failures is that the effective Hamiltonian contains a non-

negligible four-body component. As mentioned in the introduction, it is possible to

extend the present study to four-body interactions but, given also the uncertainties of a

perturbation expansion, it should be done in a OLS approach since off-diagonal matrix

elements may play an important part in the analysis.

Finally, as to effective transition operators, we found ourselves confronted with a

complex problem of several higher-order contributions of different origin, which may or

may not act constructively. It seems to us that it will be difficult to reach any firm

conclusion with regard to three-body interactions in a nucleus solely on the basis of its

electromagnetic transition properties.
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Appendix A. Energies of the two-nucleon state

In this appendix we give the expressions for the energy of the two-nucleon state |j2J〉
in second- and third-order perturbation theory. We introduce a short-hand notation for

the different matrix elements that enter the subsequent expressions,

V J
k ≡ 〈j2J |V̂2|jjkJ〉, V J

kl ≡ 〈j2J |V̂2|jkjlJ〉, V J
k,k′ ≡ 〈jjkJ |V̂2|jjk′J〉,
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V J
k,k′l′ ≡ 〈jjkJ |V̂2|jk′jl′J〉, V J

kl,k′l′ ≡ 〈jkjlJ |V̂2|jk′jl′J〉, (A.1)

and similarly for the energy differences,

∆εk ≡ εj − εjk , ∆εkl ≡ 2εj − εjk − εjl . (A.2)

By straightforward application of stationary perturbation theory, the second-order

contribution of V̂2 to the energy of the state |j2J〉 is

E(2)(j2J) =
∑
k

|V J
k |2

∆εk
+
∑
k≤l

|V J
kl |2

∆εkl
, (A.3)

and the third-order contribution equals

E(3)(j2J) =
∑
k

∑
k′

V J
k V

J
k,k′V

J
k′

∆εk∆εk′
+
∑
k≤l

∑
k′≤l′

V J
klV

J
kl,k′l′V

J
k′l′

∆εkl∆εk′l′
(A.4)

+ 2
∑
k

∑
k′≤l′

V J
k V

J
k,k′l′V

J
k′l′

∆εk∆εk′l′
− VJ

(∑
k

|V J
k |2

(∆εk)2
+
∑
k≤l

|V J
kl |2

(∆εkl)2

)
.

Appendix B. Energies of the three-nucleon state

In this appendix we give the expressions for the energy of the three-nucleon state |j3αJ〉
in second- and third-order perturbation theory. The former is given by

E(2)(j3αJ) =
∑
k,L

|V J
kL|2

∆εk
+
∑
k≤l,L

|V J
klL|2

∆εkl
, (B.1)

which contains the following three-particle matrix elements:

V J
kL ≡ 〈j3αJ |V̂2|j2(L)jkJ〉

=
√

6(−)j−jk [L]
∑
R

[R]cR3αJ

{ j R J

jk L j

}
V R
k , (B.2)

V J
klL ≡ 〈j3αJ |V̂2|jkjl(L)jJ〉 =

√
3cL3αJV

L
kl . (B.3)

With use of the expressions (A.3) and (B.1) in the general expansion (12) it can be

shown that the effective three-body interaction to second order reduces to [14]

〈j3αJ |V̂ (2)
3eff |j

3αJ〉 = 3
∑
k

∑
RR′

[R][R′]cR3αJc
R′

3αJ

{j J R

j jk R′

}V R
k V

R′

k

∆εk
, (B.4)

which does not contain any contribution from the |jkjl(L)jJ〉 configurations. The energy

of the three-nucleon state |j3αJ〉 in third-order perturbation theory is given by

E(3)(j3αJ) =
∑
k,L

∑
k′,L′

V J
kLV

J
kL,k′L′V

J
k′L′

∆εk∆εk′
+
∑
k≤l,L

∑
k′≤l′,L′

V J
klLV

J
klL,k′l′L′V

J
k′l′L′

∆εkl∆εk′l′

+ 2
∑
k,L

∑
k′≤l′,L′

V J
kLV

J
kL,k′l′L′V

J
k′l′L′

∆εk∆εk′l′

− Vj3αJ

(∑
k,L

|V J
kL|2

(∆εk)2
+
∑
k≤l,L

|V J
klL|2

(∆εkl)2

)
, (B.5)
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which contains, besides (B.2) and (B.3), the three-particle matrix elements

Vj3αJ ≡ 〈j3αJ |V̂2|j3αJ〉 = 3
∑
R

(cR3αJ)2VR, (B.6)

V J
kL,k′L′ ≡ 〈j2(L)jkJ |V̂2|j2(L′)jk′J〉

= VLδLL′δkk′ + 2(−)jk−jk′ [L][L′]

×
∑
R

[R]2
{ j j L

J jk R

}{ j j L′

J jk′ R

}
V R
k,k′ , (B.7)

V J
klL,k′l′L′ ≡ 〈jkjl(L)jJ |V̂2|jk′jl′(L′)jJ〉

= V L
kl,k′l′δLL′ + [L][L′]P̂ (jkjlL)P̂ (jk′jl′L

′)

×
∑
R

[R]2
{jl jk L

J j R

}{jl′ jk′ L′

J j R

}
V R
l,l′δkk′ , (B.8)

V J
kL,k′l′L′ ≡ 〈j2(L)jkJ |V̂2|jk′jl′(L′)jJ〉

= [L][L′]P̂ (jk′jl′L
′)
{jl′ jk′ L′

J j L

}
V L
l′ δkk′

−
√

2(−)j+jk+L′ [L][L′]
{ j j L

J jk L′

}
V L′

k,k′l′ , (B.9)

where P̂ is the exchange operator defined by

P̂ (jj′J)f(j, j′, J) =
f(j, j′, J)− (−)j+j

′−Jf(j′, j, J)√
1 + δjj′

, (B.10)

for any function f(j, j′, J) of the angular momenta j, j′, and J .

Appendix C. Effective two-body transition operator

In this appendix we give the expressions for the effective two-body transition operator

in first- and second-order perturbation theory. These can be obtained from the general

expression (16) together with the eigenstates of Ĥ1 + V̂2 up to second order

|j2J)(1+2) ≈ (1+sJ)|j2J〉+
∑
k

(fJk +sJk )|jjkJ〉+
∑
k≤l

(fJkl+sJkl)|jkjlJ〉,(C.1)

with coefficients f of the first order in V/∆ε

fJk =
V J
k

∆εk
, fJkl =

V J
kl

∆εkl
, (C.2)

and coefficients s of the second order in V/∆ε

sJ = − 1

2

(∑
k

|V J
k |2

(∆εk)2
+
∑
k≤l

|V J
kl |2

(∆εkl)2

)
,

sJk =
∑
k′

V J
k,k′V

J
k′

∆εk∆εk′
+
∑
k′≤l′

V J
k,k′l′V

J
k′l′

∆εk∆εk′l′
− V JV J

k

(∆εk)2
,

sJkl =
∑
k′

V J
kl,k′V

J
k′

∆εkl∆εk′
+
∑
k′≤l′

V J
kl,k′l′V

J
k′l′

∆εkl∆εk′l′
− V JV J

kl

(∆εkl)2
. (C.3)
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For example, the effective two-body transitions operator to first order equals

〈j2Jf‖T̂ (1)
2eff‖j

2Ji〉 =
∑
k

V Ji
k

∆εk
〈j2Jf‖T̂1‖jjkJi〉+

∑
k

V Jf
k

∆εk
〈jjkJf‖T̂1‖j2Ji〉,(C.4)

in terms of the matrix elements V J
k and energy differences ∆εk defined in Appendix A.

Let us specify to the case of most interest here, namely an electric one-body operator

of the form

T̂1,µ(λ) = e
∑
i

rλi Yλµ(θi, φi), (C.5)

with e the effective charge of the nucleon. The expression (C.4) then reduces to

〈j2Jf‖T̂ (1)
2eff(λ)‖j2Ji〉 = e(−)j+1/2+λ

√
2[j][Ji][λ][Jf ]

∑
k

[jk]
( j λ jk
−1

2
0 1

2

)
×
(
V Ji
k

∆εk

{ j jk λ

Ji Jf j

}
+
V Jf
k

∆εk

{ j jk λ

Jf Ji j

})
Iλn`nk`k ,(C.6)

with the radial integral

Iλn`n′`′ =
1√
4π

∫ +∞

0

rλRn`(r)Rn′`′(r)r
2dr, (C.7)

where it is assumed that (−)λ+`+`′ = +1.

With use of the expansion (C.1) the second-order two-body components of an

effective transition operator are

〈j2Jf‖T̂ (2)
2eff(λ)‖j2Ji〉 = (sJi + sJf )〈j2Jf‖T̂1(λ)‖j2Ji〉

+
∑
k

sJik 〈j
2Jf‖T̂1(λ)‖jjkJi〉

+
∑
k′

sJfk′ 〈jjk′Jf‖T̂1(λ)‖j2Ji〉

+
∑
k

∑
k′

fJik f
Jf
k′ 〈jjk′Jf‖T̂1(λ)‖jjkJi〉

+
∑
k

∑
k′≤l′

fJik f
Jf
k′l′〈jk′jl′Jf‖T̂1(λ)‖jjkJi〉

+
∑
k≤l

∑
k′

fJikl f
Jf
k′ 〈jjk′Jf‖T̂1(λ)‖jkjlJi〉

+
∑
k≤l

∑
k′≤l′

fJikl f
Jf
k′l′〈jk′jl′Jf‖T̂1(λ)‖jkjlJi〉, (C.8)

where, for an electric transition operator, the one-body matrix elements are

〈jajbJf‖rλYλ‖jcjdJi〉 = P̂ (jajbJf)P̂ (jcjdJi)(−)jc+
1
2

+λ+Jf [Ji][Jf ][λ][jb][jd]

×
{jb jd λ

Ji Jf ja

}( jb λ jd
−1

2
0 1

2

)
Iλnb`bnd`dδac. (C.9)


