Using TensorFlow for amplitude fits
Adam Morris, Anton Poluektov, Andrea Mauri, Andrea Merli, Abhijit Mathad, Maurizio Martinelli

To cite this version:

HAL Id: in2p3-01917564
http://hal.in2p3.fr/in2p3-01917564
Submitted on 9 Nov 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Adam Morris1, on behalf of the TensorFlowAnalysis developers

Anton Poluektov2, Andrea Mauri3, Andrea Merli4, Abhijit Mathad2, Maurizio Martinelli5, Adam Morris1

1Aix Marseille Univ, CNRS/IN2P3, CPPM
2University of Warwick
3Universität Zürich
4Università degli Studi e INFN Milano
5European Organization for Nuclear Research

PyHEP Workshop, Sofia, 7–8 July, 2018
Overview

1. Amplitude analysis
2. TensorFlow
3. TensorFlowAnalysis
4. Performance
Amplitude analysis
Amplitude analysis: introduction

Amplitude fits:
- Extract information about intermediate states in multi-body decays
- PDFs can be *computationally expensive* to evaluate
 - Complex models (in both meanings of ‘complex’)
 - Many free parameters
 - Multi-dimensional phase space
 - Often numerically integrated
- Writing fitters can be *labour-intensive* without the right framework

Used in:
- Hadron spectroscopy
 - Discovery of pentaquarks
- Measurement of CKM parameters
 - \mathcal{CP} violation
 - γ angle
Amplitude analysis: tools

Amplitude fitting:
- Laura++: https://laura.hepforge.org/
 - C++ with ROOT as its only dependency
 - Powerful tool for Dalitz plot fits
 - Can do time-dependent fits
 - Single-threaded, but many clever optimisations
- MINT: https://twiki.cern.ch/twiki/bin/view/Main/MintTutorial
 - C++ interface
 - Can do 3- and 4-body final states
 - Can be used as a generator in the LHCb simulation package Gauss

Generic GPU-based fitting:
- GooFit: https://github.com/GooFit
 - C++ with python bindings
 - Has a third-party library for amplitude fits
- Ipanema-β: https://gitlab.cern.ch/bsm-fleet/Ipanema
 - Based on pyCUDA
 - HEP-specific functions
 - Lacks amplitude analysis functions

Tool for covariant tensors:
- qft++: https://github.com/jdalseno/qft
Existing frameworks lack functionality and/or flexibility to cover all cases that might be encountered in amplitude analysis. Users may spend a lot of time altering the framework itself to suit their needs, *e.g.*:

- Non-scalars in the initial/final states
- Complicated relationships between parameters
- Fitting projections of the full phase space
- Fitting partially-reconstructed decays

For n-body final states with complicated models, we need:

- Speed (of computation)
- Speed (of development)
- Flexibility
Amplitude analysis: similarities with machine learning

Maximum-likelihood fitting (particularly amplitude analysis) is very similar to machine-learning:

- Large amounts of data — many evaluations of the same function
- Complicated models
- Optimisable parameters
- Minimisation (cost function/NLL)
- Both abbreviate to ‘ML’

Many of the challenges faced in amplitude analysis have been overcome for machine learning.
Open source library developed by Google: https://www.tensorflow.org/

- Primarily a machine learning library, but the core functionality is suitable for other tasks
 - Symbolic mathematics
- High-performance numerical computation using dataflow graphs
 - Calling functions builds a directed graph, which can then be optimised and compiled
- TF can find analytic derivatives of a graph
- Python, C++ and Java interfaces
- Runs on many architectures out-of-the-box, including GPUs
TensorFlow: principles

Functions: symbolic dataflow graphs
- Each node is an operation
- Edges represent the flow of data

Data: tensors (n-dimensional arrays)
- Input and output of mathematical operations
- Operations are vectorised

Input:
- Placeholders: used to represent data when building dataflow graphs.
- Variables: can change value during a session, e.g. fit parameters.

Output:
- Numpy arrays

Evaluation:
- Construct a ‘session’
- Run the session by passing a graph and a dict relating placeholders to data samples

```
a*tf.sin(w*x+p)
```
import tensorflow as tf

Define input data (x) and model parameters (w,p,a)
x = tf.placeholder(tf.float32, shape = (None))
w = tf.Variable(1.)
p = tf.Variable(0.)
a = tf.Variable(1.)

Build graph
f = a*tf.sin(w*x+p)

Create TF session and initialise variables
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)

Run calculation of y by feeding data to tensor x
f_data = sess.run(f, feed_dict = {x: [1., 2., 3., 4.]})
print f_data # [0.84147096, 0.90929741, 0.14112, -0.7568025]
TensorFlow: features for amplitude analysis

Vectorisation:
- Most functions will calculate element-wise over a tensor
- Ideal for maximum-likelihood fits, where the same function must be evaluated repeatedly for a large number of points

Analytic gradient:
- TF can derive analytic gradients from graphs
- Greatly speed up convergence when passed to a minimiser

Partial execution:
- TF can cache parts of a graph unaffected by changes in parameters
- In practice, this does not work as expected, but one can manually inject the value of a tensor when running a session

Minimisation:
- TF has minimisers for training machine-learning algorithms...
- ... which not particularly suitable for fitting
 - No uncertainties on parameters
 - Cannot do likelihood scans
TensorFlowAnalysis

Using TensorFlow for amplitude fits

PyHEP, 7-8 July, 2018
TensorFlow alone is almost a suitable framework for amplitude fits. TensorFlowAnalysis (https://gitlab.cern.ch/poluekt/TensorFlowAnalysis/) adds some crucial features:

- Read/write ROOT ntuples
- Fit parameter class (extends tf.Variable)
- Interface to Minuit
- Toy generation
- Fit fractions
- Functions commonly for calculating amplitudes
 - Kinematics: lorentz vectors, boosts, rotations, two-body momenta, helicity angles...
 - Dynamics: lineshapes, form factors...
 - Helicity amplitudes, LS couplings, Zemach tensors...
 - Elements of covariant formalism (polarisation vectors, γ matrices...)
- Phase space classes
 - Check if a datapoint is within the phase space
 - Generate uniform distributions
 - Return/calculate specific variables from a datapoint
• Simple 2D Dalitz plot model:

```python
# Phase space object
phsp = DalitzPhaseSpace(ma, mb, mc, md)
# Fit parameters
mass = Const(0.770)
width = FitParameter("width", 0.150, 0.1, 0.2, 0.001)
a = Complex( FitParameter("Re(A)", ...), FitParameter("Im(A)", ...) )
# Fit model as a function of 2D tensor of data
def model(x):
    m2ab = phsp.M2ab(x) # Phase space class provides access to
    m2bc = phsp.M2bc(x) # individual kinematic variables
    ampl = a*BreitWigner(mass, width, ...)*Zemach(...) + ...
    return Density(ampl)
```
Using MC integration for the normalisation:

```python
# Call the model on placeholders to build the dataflow graphs
model_data = model(phsp.data_placeholder)
model_norm = model(norm.data_placeholder)
# Assemble into a negative log-likelihood graph to be minimised
nll = UnbinnedNLL(model_data, Integral(model_norm))
```

Input data samples are numpy arrays:

```python
# Both samples of the form data[event][variable]
data_sample = ReadNTuple(tree, [branches...])
norm_sample = sess.run(phsp.RectangularGridSample(400, 400))
```

Minimise the NLL with Minuit:

```python
result = RunMinuit(sess, nll, {phsp.data_placeholder: data_sample,
                                 phsp.norm_placeholder: norm_sample})
WriteFitResults(result, "result.txt")
```
TensorFlowAnalysis: fitting

Straightforward to modify the NLL to add functionality, e.g.:

- **Weighted fit:**

```python
# Assume the weight is the last element in the list
def event_weight(datapoint, norm = 1.):
    return tf.transpose(datapoint)[-1] * norm

integral = WeightedIntegral(model_norm, event_weight(norm_ph))
weight_correction = sum([dp[-1] for dp in data_sample])
    /sum([dp[-1]**2 for dp in data_sample])
nll = UnbinnedWeightedNLL(model_data, integral,
    event_weight(data_ph, norm = weight_correction))
```

- **Simultaneous fit:**

```python
norm = Integral(model1_norm) + Integral(model2_norm)
nll = UnbinnedNLL(model1_data, norm) + UnbinnedNLL(model2_data, norm)
```
• Complex combinations of parameters:

def HelicityCouplingsFromLS(ja, jb, jc, lb, lc, bls):
 a = 0.
 for ls, b in bls.iteritems():
 # Where b is a Complex(FitParameter(...), FitParameter(...))
 l = ls[0]
 s = ls[1]
 coeff = math.sqrt((l+1)/(ja+1))*Clebsch(jb, lb, jc, -lc, s, lb-lc)
 a += Const(coeff)*b
 return a
Some recent features allow the user to quickly build an amplitude model of an n-body decay.

The Particle class:
- Holds intrinsic properties and mother/daughter relationships
- Useful to quickly define different decay chains within an amplitude model
- Handles rotations and boosts

HelicityMatrixDecayChain:
- Takes the head Particle of the decay chain and a dict of helicity amplitude parameters
- Builds a dict of matrix elements in the helicity formalism for a specific decay chain

PHSPGenerator and NBody:
- Construct a phase space object given the mother mass and a list of final-state daughter masses
Some issues with using TensorFlow for amplitude fits:

- Python 2 only (for now)
- TF not readily available on LXplus
 - Binary distributions available from debian-based distros and Mac
 - Available from pip without machine-specific optimisations
 - Can install from source: tricky (especially with CUDA) but possible.
- Memory usage can be several GB:
 - Especially with analytic gradient/large datasets/complicated models
 - Limiting for consumer-grade GPUs
- Double precision essential
 - Limiting for consumer-grade GPUs
- Slow RAM–VRAM transfer
 - Has been mitigated since earlier versions of TFA
- Errors at graph execution time are hard to debug
 - Dedicated debugger: https://www.tensorflow.org/programmers_guide/debugger
TensorFlowAnalysis: plans

- Port to python 3
- Expand the library
 - K-matrix formalism
 - Analytical coupled-channel approaches
- Save/load compiled graphs
 - Graph-building can sometimes take longer than minimisation
- Optimisations of CPU and memory usage; better caching
- More symbolic maths
 - Sympy, in particular, works well with TF
- Self-documentation
 - Generate LaTeX description of formulae entering the fit
- Automatic code generation: share standalone models with theorists
Performance
Benchmark runs (fit time only), compare 2 machines:

- CPU1: Intel Core i5-3570 (4 cores), 3.4GHz, 16 Gb RAM
 GPU1: NVidia GeForce 750Ti (640 CUDA cores), 2 Gb VRAM
- CPU2: Intel Xeon E5-2620 (32 cores), 2.1GHz, 64 Gb RAM
 GPU2: NVidia Quadro p5000 (2560 CUDA cores), 16 Gb VRAM

Two isobar models:

- $D^0 \rightarrow K_s^0 \pi^+ \pi^-$: 18 resonances, 36 free parameters
- $\Lambda_b \rightarrow D^0 p \pi^-$: 3 resonances, 4 non-resonant amplitudes, 28 free parameters
<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Iterations</th>
<th>Time, sec</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>CPU1</td>
</tr>
<tr>
<td>$D^0 \rightarrow K^0_S \pi^+ \pi^-$, 100k events, 500×500 norm.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Numerical grad.</td>
<td></td>
<td>2731</td>
<td>488</td>
</tr>
<tr>
<td>Analytic grad.</td>
<td></td>
<td>297</td>
<td>68</td>
</tr>
<tr>
<td>$D^0 \rightarrow K^0_S \pi^+ \pi^-$, 1M events, 1000×1000 norm.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Numerical grad.</td>
<td></td>
<td>2571</td>
<td>3393</td>
</tr>
<tr>
<td>Analytic grad.</td>
<td></td>
<td>1149</td>
<td>1587</td>
</tr>
<tr>
<td>$\Lambda_b^0 \rightarrow D^0 p\pi^-$, 10k events, 400×400 norm.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Numerical grad.</td>
<td></td>
<td>9283</td>
<td>434</td>
</tr>
<tr>
<td>Analytic grad.</td>
<td></td>
<td>425</td>
<td>33</td>
</tr>
<tr>
<td>$\Lambda_b^0 \rightarrow D^0 p\pi^-$, 100k events, 800×800 norm.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Numerical grad.</td>
<td></td>
<td>6179</td>
<td>910</td>
</tr>
<tr>
<td>Analytic grad.</td>
<td></td>
<td>390</td>
<td>133</td>
</tr>
</tbody>
</table>
TensorFlow is a good basis for an amplitude fitting framework
High-performance architectures can be exploited without expert knowledge
Models written in TFA are portable and can, with small effort, work standalone from TF: easy to share with theorists
Flexibility of TFA allows for rapid and simple development of complicated fits
TensorFlowAnalysis package: library to perform amplitude analysis fits. In active development, used for a few ongoing baryonic decay analyses at LHCb.