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Introduction

Different patterns of high-performance computing usage in HEP:

Filtering, histogramming, etc. of large datasets.

Machine learning tasks: jet, cluster reconstruction, particle identification,
etc.

Heavy computations on relatively small datasets�
Only covering the latter use case.

A typical pattern for many analyses in flavour physics.

Although relatively small dataset has rather broad meaning
(10-100 of millions of events for charm datasets at LHCb,
expect more after upgrade).
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Introduction: amplitude analyses at LHCb

Example: pentaquark discovery: [PRL 115 (2015) 072001]

∼ 26000 events, 6D kinematic phase space, unbinned maximum likelihood fit
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Introduction: amplitude analyses at LHCb

Fitting function: a coherent sum of ∼ 20 helicity amplitudes

← Decay density

← Amplitudes for intermediate resonances

← Complex couplings

← Dynamical term

Angles entering the expressions are functions of 6D decay kinematics (Lorentz
boosts, rotations).
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Introduction: amplitude analyses at LHCb

Something else to take into account in addition to the theory model:

Acceptance and backgrounds.

Parametrised multidim. density, ∼ easy.

Resolutions, partially reconstructed states.

Integration/convolution: expensive computations

Unbinned maximum likelihood fit.

− lnL = −
(∑

ln f (xdata)− Ndata ln
∑

f (xnorm)
)

Easily vectorised (compute PDF values for each data/normalisation point
in parallel).

Typically need hundreds/thousands of fits for a single analysis:

Model building

Nominal data fit

Systematic variations

Toy MC studies
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Amplitude analysis tools in LHCb

Writing an amplitude fitting code from scratch is painful and time consuming.
Several frameworks are in use at LHCb:

Laura++

A powerful tool for traditional 2D Dalitz plot analyses (including
time-dependent)
Single-threaded, but many clever optimisations

MINT

Can do 3-body as well as 4-body final states

GooFit

GPU-based fitter

AmpGen

Amplitude analysis extension for GooFit (code generation, JIT).

Ipanema-β

GPU-based, python interface (pyCUDA)

qft++

Not a fitter itself, but a tool to operate with covariant tensors

... and a lot of private code in use (e.g. based on RooFit).

Anton Poluektov TensorFlow as a compute engine in HEP analyses HSF WLCG workshop, 11–13 May 2020 6/30

https://laura.hepforge.org/
https://twiki.cern.ch/twiki/bin/view/Main/MintTutorial
https://github.com/GooFit
https://github.com/GooFit/AmpGen
https://arxiv.org/abs/1706.01420
https://github.com/jdalseno/qft


Amplitude analysis tools in LHCb

The problem with frameworks is that they are not flexible enough.

Trying to do something not foreseen in the framework design becomes a pain.

Non-scalars in the initial/final states

Complicated relations between fit parameters

Fitting projections of the full phase space/partially-rec decays

At some point, it becomes easier to write an own framework (that’s why there
are so many?)

For the analyses that go beyond a readily available frameworks, need a more
flexible solution:

Efficient from the computational point of view

Tradeoff between person×hours to implement the code vs. CPU×hours to
do the actual fits.
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Machine learning tools for HEP calculations?

Amplitude analyses

Large amounts of data

Complex models

... which depend on
optimisable parameters

Optimise by minimising neg.
log. likelihood (NLL)

Need tools which allow

Convenient description of
models
Efficient computations

and don’t require deep
low-level hardware knowledge.

Machine learning

Large amounts of data

Complex models

... which depend on
optimisable parameters

Optimise by minimising cost
function

Need tools which allow

Convenient description of
models
Efficient computations

and don’t require deep
low-level hardware knowledge.

We can reuse the tools developed by a much broader ML community for our
needs.
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TensorFlow framework

[Tensorflow webpage]

[White Paper]

“TensorFlow is an open source software library for
numerical computation using data flow graphs.”
Released by Google in October 2015.

Uses declarative programming paradigm: instead of
actually running calculations, you describe what you
want to calculate (computational graph)

TF can then do various operations with your graph,
such as:

Optimisation (e.g. caching data, common subgraph
elimination to avoid calculating same thing many
times).
Compilation for various architectures (multicore,
multithreaded CPU, GPU, distributed clusters, mobile
platforms).
Analytic derivatives to speed up gradient descent.

Front-ends for several languages. Python is the most
natural. Faster development cycle, more compact and
readable code.
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https://www.tensorflow.org/
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TensorFlow v1 vs. v2

What is said below is mostly applied to
TensorFlow v1.

I mostly have experience with TF v1, and the
library I’m speaking about is made for this version.

TF v2 is significantly different:

The distinction between declaration and execution
is less expressed (“Eager mode”)
Easier to debug (e.g. can print out intermediate
results), but more difficult to figure out what
happens under the hood.

More about migration to v2 towards the end of the
presentation.
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TensorFlow: basic structures

TF represents calculations in the form of directional data
flow graph.

Nodes: operations

Edges: data flow

f = a*tf.sin(w*x + p)

Data are represented by tensors (arrays of arbitrary dimensionality)

Most of TF operations are vectorised, e.g. tf.sin(x) will calculate
element-wise sin xi for each element xi of multidimensional tensor x.

Useful for ML fits, need to calculate same function for each point of large
dataset.

Input structures are:

Placeholders: abstract structure which is assigned a value only at execution
time. Typically used to feed training data (ML) or data sample to fit to
(our case).

Variables: assigned an initial value, can change the value over time.
Tunable parameters of the model.
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TensorFlow: graph building and execution

To build a graph, you define inputs and TF operations acting on them:
import tensorflow as tf

# define input data (x) and model parameters (w,p,a)
x = tf.placeholder( tf.float32, shape = ( None ) )
w = tf.Variable( 1. )
p = tf.Variable( 0. )
a = tf.Variable( 1. )

# Build calculation graph
f = a*tf.sin(w*x + p)

(note that calculation graph is described using TF building blocks. Can’t use
existing libraries directly)
Nothing is executed at this stage. The actual calculation runs in the TF session:

# Create TF session and initialise variables
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)

# Run calculation of y by feeding data to tensor x
f_data = sess.run( f, feed_dict = { x : [1., 2., 3., 4.] })

print(y_data) # [ 0.84147096 0.90929741 0.14112 -0.7568025 ]

Input/output in sess.run is numpy arrays.
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TensorFlow: minimisation algorithms

TensorFlow has its own minimisation algorithms:

# Placeholder for data
y = tf.placeholder( tf.float32, shape = ( None ) )

# Define chi2 graph using previously defined function f
chi2 = (f-y)**2

# TF optimiser is a graph operation as well
train = tf.train.GradientDescentOptimizer(0.01).minimize( chi2 )

# Run 1000 steps of gradient descent inside TF session
for i in range(1000) :
sess.run(train, feed_dict = {

x : [1., 2., 3., 4., 5.], # Feed data to fit to
y : [3., 1., 5., 3., 2.] } )

print(sess.run( [a,w,p] ) ) # Watch how fit parameters evolve

Built-in minimisation functions seem to be OK for ANN training, but not
for physics (no uncertainties, likelihood scans, check for global minimum)

MINUIT seems more suitable. Use it instead, and run TF only for likelihood
calculation (custom FCN in python, run Minuit using PyROOT).
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TensorFlow: useful features for amplitude analyses

Analytic gradient

Extremely useful feature of TF is automatic calculation of the graph for analytic
gradient of any function (speed up convergence!)

tfpars = tf.trainable_variables() # Get all TF variables
grad = tf.gradients(chi2, tfpars) # Graph for analytic gradient

This is called internally in the built-in optimizers, but can be called explicitly
and passed to MINUIT.

Partial execution

In theory, TF should be able to identify which parts of the graph need to be
recalculated (after, e.g. changing value of tf.Variable), and which can be
taken from cache.

In practice, this does not work between sess.run calls, but there is a possibility
to inject a value of a tensor in sess.run using feed_dict manually.
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TensorFlow: useful features for amplitude analyses

Interface with sympy

sympy is a symbolic algebra system for python. Consider it as mathematica

with python interface. Free and open-source.

sympy has many extensions for physics calculations
See. e.g. sympy.physics module.

Recent versions of sympy can generate code for TensorFlow. Avoid
re-implementing functions missing in TF. E.g. create TF tree for Wigner d
function:
def Wignerd(theta, j, m1, m2) :

"""
Calculate Wigner small-d function. Needs sympy.
theta : angle
j : spin
m1 and m2 : spin projections

"""
from sympy.abc import x
from sympy.utilities.lambdify import lambdify
from sympy.physics.quantum.spin import Rotation as Wigner
d = Wigner.d(j, m1, m2, x).doit().evalf()
return lambdify(x, d, "tensorflow")(theta)
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TensorFlowAnalysis package

Project in gitlab: [TensorFlowAnalysis].

TF can serve as a framework for maximum likelihood fits (and amplitude fits in
particular). Missing features that need to be added:

ROOT interface to read/write ntuples (use root-numpy or uproot)

MINUIT interface for minimisation.

Library of HEP-related functions.

Trying to be as much functional as possible: pure functions, stateless objects.

def RelativisticBreitWigner(m2, mres, wres) :
return 1./Complex(mres**2-m2, -mres*wres)

def UnbinnedLogLikelihood(pdf, data_sample, integ_sample) :
norm = tf.reduce_sum(pdf(integ_sample))
return -tf.reduce_sum(tf.log(pdf(data_sample)/norm ))

Avoid complicated structure of classes:

Primitives are standalone and can be reused in e.g. other libraries

Easier for external developers to contribute

Primitives are glued together in TF itself.
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TensorFlowAnalysis: structure

Components of the library:

Phase space classes (Dalitz plot, four-body, baryonic 3-body, angular etc.):
provide functions to check if variable is inside the phase space, to generate
uniform distributions etc.

Fit parameter class: derived from tf.Variable, adds range, step size etc.
for MINUIT

Interface for MINUIT, integration, unbinned log. likelihood

Functions for toy MC generation, calculation of fit fractions.

Collection of functions for amplitude description:

Lorentz vectors: boosting, rotation
Kinematics: two-body breakup momentum, helicity angles
Helicity amplitudes, Zemach tensors
Dynamics: Breit-Wigner functions, form factors, non-resonant shapes
Elements of covariant formalism (polarisation vectors, γ matrices, etc.)
Multilinear interpolation of ROOT histograms
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zfit

TFA is a low-level library of functions

LEGO bricks to build your own fitter.

More high-level package: zfit [github].

The project to use TensorFlow for generic fitting (a-la RooFit).

Hide TensorFlow technicalities from the user

Choice of fitters, integration techniques

No ROOT dependencies (iminuit for fitting, uproot for tuples)

Can still use TFA functions to create custom PDFs
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TensorFlow: issues

TF is heavy (distribution size, loading time)

E.g. impacts performance if the large number of quick and simple fits has to
be done.

Memory usage: can easily exceed a few Gb of RAM for large datasets
(charm) or complicated models.

Especially with analytic gradient
Limiting factor with consumer-level GPU.
Tesla V100 works great, but $8000...

Double precision performance is essential

Single precision not sufficient except for simplest models, poor convergence.
Again, look for high-end GPU cards for performance.

Results are not 100% reproducible between different GPUs and CPU

Subtle differences in FP implementation?
Minimisation can go different ways and even converge to different minima

Less efficient than dedicated code developed with e.g. CUDA/Thrust, but
way more flexible and easy to hack.
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Hardware usage pattern

Code development, tests: any machine (even w/o GPU).

Preliminary fits to data, model building: convenient to have a single
high-performance machine with GPU (Tesla, multi-GPU server). Allows
for a fast try-and-correct cycle (no waiting for batch jobs to start).

Large-scale calculations (toy MC studies, systematic variations); batch
cluster (CPU-only or GPU). CERN lxbatch (has GPU machines), CC-IN2P3
in Lyon for CNRS.
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Beyond TensorFlow

The following is my personal vision:

It’s important not to be locked-in with TensorFlow

Possible bugs in TF: cross-checks needed.
Newer frameworks appearing.
Eventual end of support by Google?

Design the code such that TensorFlow is only one of computational
backends. Possible candidates for other backends:

pyTorch: probably not the best option (maths not as well developed, no
complex maths).
Pure numpy (of course, w/o automatic differentiation)
JAX: more recent ML tool by Google

numpy replacement with GPU/TPU support and autograd.
Much lighter than TF: ideal fit for us?

numpy and TF interfaces are similar enough that this should be easy.

Approach already used in pyhf (pure Python implementation of
HistFactory).
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Further developments

It is clear that TF v1 support should be dropped. Can make some changes
at the same time.

New library that is a successor of TensorFlowAnalysis, but
based on TF v2: AmpliTF

WIP, but used for one early-stage analysis at LHCb
Drop ROOT dependency, use iminuit for minimisation (or
rely on zfit)
Keep the same philosophy of standalone primitives,
functional style
Plan to try jax instead of TF, make it possible to switch
backends?
Gradually identify boundaries between existing and planned
HEP packages based on TF

zfit: Choice of different optimisers, general-purpose
PDFs, statistical tools, toy MC, etc.
ComPWA/tensorwaves: higher-level modular
amplitude/partial-wave fitting framework with TF backend
AmpliTF: lower-level primitives (kinematics, dynamics,
QFT)

A gitter channel is set up for communication (thanks Stefan Pflueger and
Jonas Eschle for initiating this and setting things up).
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Summary

TensorFlow is gaining popularity as a general-purpose compute engine in
HEP

Can utilise modern computing architectures (mutithreaded,
massively-parallel, distributed) without deep knowledge of their structure.
Interesting optimisation options, e.g. analytic derivatives help a lot for fits
to converge faster.
Transparent structure of code. Only essence of things, no low-level stuff.
Fast development cycle with python backend.
Training value for students who will leave HEP for industry.

As any generic solution, possibly not as optimal as specially designed tool.
But taking development time into account, very competitive.

Establishing communication between TFA/AmpliTF, zfit and
ComPWA/tensorwaves.

Other TF-based packages I became aware of: VegasFlow (Monte-Carlo
techniques), internal BESIII/LHCb library by UCAS (Beijing).
Should we organise under the Scikit-HEP umbrella?
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Backup
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TensorFlowAnalysis: structure of a fitting script

Experimental data are represented in TensorFlowAnalysis as a 2D tensor
data[candidate][variable]

where inner index corresponds to event/candidate, outer to the phase space
variable. E.g. 10000 Dalitz plot points would be represented by a tensor of
shape (10000, 2).

In the fitting script, you would start from the definitions of phase space, fit
variables and fit model:

phsp = DalitzPhaseSpace(ma, mb, mc, md) # Phase space

# Fit parameters
mass = Const(0.770)
width = FitParameter("width", 0.150, 0.1, 0.2, 0.001)
a = Complex( FitParameter("Re(A)", ...), FitParameter("Im(A)", ...) )

def model(x) : # Fit model as a function of 2D tensor of data
m2ab = phsp.M2ab(x) # Phase space class provides access to individual
m2bc = phsp.M2bc(x) # kinematic variables
ampl = a*BreitWigner(mass, width, ...)*Zemach(...) + ...
return Abs(ampl)**2
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TensorFlowAnalysis: structure of a fitting script

Fit model f (x) enters likelihood via data and normalisation terms:

− lnL = −
(∑

ln f (xdata)− Ndata ln
∑

f (xnorm)
)

Create two graphs for the model as a function of data and normalisation sample
placeholders:

model_data = model( phsp.data_placeholder )
model_norm = model( phsp.norm_placeholder )

Now can create normalisation sample, and read data e.g.
norm_sample = sess.run( phsp.RectangularGridSample(500,500) )
data_sample = ReadNTuple(...)

Create the graph for negative log. likehood:
norm = Integral( model_norm )
nll = UnbinnedNLL( model_data, norm )

And finally call MINUIT feeding the actual data and norm samples to
placeholders

result = RunMinuit(sess, nll, { phsp.data_placeholder : data_sample ,
phsp.norm_placeholder : norm_sample } )
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TensorFlowAnalysis: structure of a fitting script

Call to
result = RunMinuit(sess, nll, ... )

internally includes calculation of analytic gradient for NLL. See benchmarks
below to get the idea how that helps.

Analyst has full control over how likelihood is constructed and what variables
serve as free parameters.

Since NLL graph is defined separately, it is easy to construct custom NLLs for
e.g. combined CPV-allowed fits of two Dalitz plots.

norm = Integral(model1_norm) + Integral(model2_norm)
nll = UnbinnedNLL(model1_data, norm) + UnbinnedNLL(model2_data, norm)

Similarly, complex combinations of fit parameters are easily constructed, e.g.
CP-violating amplitudes

a± = (ρCPC ± ρCPV )e i(δCPC±δCPV )

Example: [Ξ−
b → pK−K− CPV-enabled toy MC]
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TensorFlowAnalysis: examples

Isobar models implemented with helicity formalism and “simple” line shapes
(Breit-Wigner, Gounaris-Sakurai, Flatté, LASS, Dabba, etc.).
Examples in [TensorFlowAnalysis/work]

Traditional Dalitz plot
D0 → K 0

Sπ
+π−

Baryonic
Λ0
b → D0pπ−
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CPU profiling

Profiling feature allows to identify bottlenecks in execution speed.

Breakup of operations by CPU core (32-core Xeon).
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TensorFlowAnalysis: benchmarks

Benchmark runs (fit time only), compare 2 machines.
CPU1: Intel Core i5-3570 (4 cores @ 3.4GHz, 16Gb RAM)
GPU1: NVidia GeForce 750Ti (640 CUDA cores @ 1020MHz, 2Gb VRAM, 88Gb/s, 40 Gflops DP)
CPU2: Intel Xeon E5-2620 (32 cores @ 2.1GHz, 64Gb RAM)
GPU2: NVidia Quadro p5000 (2560 cores @ 1600MHz, 16Gb VRAM, 320Gb/s BW, 280 Gflops DP)
GPU3: NVidia K20X (2688 cores @ 732MHz, 6Gb VRAM, 250Gb/s BW, 1300 Gflops DP)

Time, sec
Iterations CPU1 GPU1 CPU2 GPU2 GPU3

D0 → K 0
Sπ

+π−, 100k events, 500× 500 norm.
Numerical grad. 2731 488 250 113 59 82
Analytic grad. 297 68 36 18 12 19
D0 → K 0

Sπ
+π−, 1M events, 1000× 1000 norm.

Numerical grad. 2571 3393 1351 937 306 378
Analytic grad. 1149 1587 633 440 148 180
Λ0
b → D0pπ−, 10k events, 400× 400 norm.

Numerical grad. 9283 434 280 162 157 278
Analytic grad. 425 33 23 18 21 32
Λ0
b → D0pπ−, 100k events, 800× 800 norm.

Numerical grad. 6179 910 632 435 266 364
Analytic grad. 390 133 62 126 32 45

D0 → K 0
Sπ

+π− amplitude: isobar model, 18 resonances, 36 free parameters
Λ0
b → D0pπ− amplitude: 3 resonances, 4 nonres amplitudes, 28 free parameters
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