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Motivation

Neutron stars have been extensively studied since Baade and Zwicky
in 1934 proposed their existence [Baade and Zwicky, 1934]. Their de-
scription is at the interface of numerous domains of physics, e.g.,
X-ray astrophysics [Giacconi et al., 1962], pulsar signal observation
[Hewish et al., 1968, ATNF, 2016], gravitational waves [Riles, 2013], solid
state physics [Oyamatsu et al., 1984, Chamel, 2013], general relativ-
ity [Oppenheimer and Volkoff, 1939, Tolman, 1939] and nuclear physics
[Glendenning, 1982, Ravenhall et al., 1983, Douchin and Haensel, 2000,
Avancini et al., 2008].

In the present thesis we will concentrate on the nuclear physics de-
scription especially of the inner crust. Actually, neutron stars can be
divided in three majors layers: the outer crust, the inner crust and
the core [Chamel and Haensel, 2008]. The outer crust consists of nu-
clei coexisting with an electron gas to ensure charge neutrality. The
Coulomb interaction between the nuclei leads to their lattice arrangement
[Oyamatsu et al., 1984]. If one goes deeper into the crust, the ratio of
neutrons with respect to the total nucleon number increases. This is re-
quested to satisfy β-equilibrium and is driven by the increase of the den-
sity in the star. Eventually, the excess of neutrons in the nuclei gets
so high that they drip out from the nuclei and create a dilute neutron
gas. From now on, we will speak of nuclear clusters instead of nuclei
[Ravenhall et al., 1983]. This phenomenon defines the limit between the
outer crust and the inner crust. In consequence, to the mechanical equi-
librium is added the chemical equilibrium between the clusters and the neu-
tron gas. In a few words: the inner crust is inhomogeneous and presents
two nuclear fluids in equilibrium. This complicated structure and compo-
sition is at the origin of many characteristic properties of neutron stars
[Chamel and Haensel, 2008, Page and Reddy, 2012].

The dilute neutron gas in which clusters are immersed, is assumed to
be superfluid. In fact the temperature of a neutron star T ∼ 10−100 keV
[Yakovlev et al., 2001], is much lower than the critical temperature of the
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2 MOTIVATION

superfluid neutron gas Tc ∼ 1−2 MeV [Gezerlis and Carlson, 2010]. Under
these conditions we expect the appearance of a Goldstone mode in the gas
[Anderson, 1958]. This collective mode is responsible of another contribution
to the heat capacity of the star and may affect its cooling. Actually, cooling
calculations are done thanks to heat capacity and thermal conduction calcu-
lations. However, the contribution of the collective modes to heat capacity
is in general neglected, because of the strong (exponential) suppression of
the contribution calculated from BCS theory [Fortin et al., 2010]. Hence,
in Part II we treat the contribution to the heat capacity of the superfluid
neutron gas. We propose to compare two approaches: a microscopic (the
so-called quasi-particle random phase approximation, QRPA) and a macro-
scopic one (hydrodynamics).

Concerning the nuclear clusters, they play a major role because of their
impact on the equation of state of the crust of the star, and on thermodynam-
ical and transport properties. One can approximate the inner crust as two
fluids coexisting in chemical and mechanical equilibrium. Such approxima-
tions neglect the properties of the surface of the clusters and the Coulomb
interaction. Nevertheless, these interactions play a major role as Ravenhall
and Pethick pointed out in 1983 [Ravenhall et al., 1983]. The competition
between these two energy contributions affects the shape of the clusters.
The deformation of the clusters is expected to be important, up to exotic
phases of rods or plates of bound nucleons. In addition, the clusters remain
arranged in a lattice (as in the outer crust) [Oyamatsu et al., 1984]. The in-
homogeneities affect the physical properties of the inner crust, such as the
pressure (which may affect the mass-radius relation), and also the transport
properties (neutrino scattering). Actually, since Oppenheimer, Volkoff and
Tolman [Oppenheimer and Volkoff, 1939, Tolman, 1939], the inner crust de-
scription has been improved and has modified the neutron star descriptions
[Avancini et al., 2008, Erler et al., 2013]. In Part III the inner crust struc-
ture and composition will be discussed within the extended Thomas-Fermi
framework [Brack et al., 1985] and compared to other simple models.

The superfluidity of the neutron gas affects the dynamics of the in-
ner crust collective modes [Magierski and Bulgac, 2004b, Chamel, 2013,
Page and Reddy, 2012]. In fact, the nuclear clusters are made of neutrons
and the surrounding gas too, so the dynamics of the clusters cannot be
independent of that surrounding gas. This effect is called entrainment

and leads to an modification [Chamel, 2013, Magierski and Bulgac, 2004b]
of the effective number of nucleons moving with the cluster compared
to the number of nucleons bound in the cluster. This effect modifies
the ratio of superfluid neutrons, which are considered responsible for
glitches [Anderson and Itoh, 1975, Pines and Alpar, 1985, Link et al., 1999,
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Shapiro and Teukolsky, 2004, Chamel and Carter, 2006]. Some of the pul-
sars (rotating neutron stars) present glitches, i.e., sudden changes of the
rotation period. It is understood as a transfer of angular momentum from
the superfluid part of the star (non-viscous fluid) and the normal fluid part.
The hydrodynamics of the inner crust and its impacts on the astrophysical
observations will be detailed in Part IV.

Let us begin in Part I by introducing the basics of neutron stars and of
nuclear physics.
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Chapter 1

Neutron star generalities

1.1 History and discovery

The existence of the neutron stars was proposed by Baade and Zwicky in
1934 [Baade and Zwicky, 1934]. They supposed that the neutron stars are
compact objects, i.e., they have a small size and a high mass. In addition,
they early predicted that neutron stars could be formed in the supernova
explosions.

The first calculations of the neutron star structure were done by Oppen-
heimer and Volkoff [Oppenheimer and Volkoff, 1939] and based on the calcu-
lations of Tolman [Tolman, 1939], both published in 1939. In order to calcu-
lated the Equation of State (EoS) of the neutron star matter, they assumed
that the star is made of an ideal gas of free neutrons. Nowadays, the Tolman-
Oppenheimer-Volkoff (TOV) equation is still used for non-rotating stars or
slowly rotating, i.e., spinning less than ∼ 200Hz (beyond this frequency the
deformation cannot be neglected anymore). Nevertheless, since the work of
Oppenheimer and Volkoff, the EoS have been improved by including the pro-
tons, the interactions (between nucleons), and the inhomogeneities within
the crust, e.g., see Refs. [Avancini et al., 2008, Erler et al., 2013].

The interest in the neutron stars grew with new observations. In 1962,
Giacconi et al. identified the first sources of cosmic X-rays outside the solar
system [Giacconi et al., 1962]. Some of these sources where identified as
neutron stars, while the X-ray signal received is a marker of their cooling.
Few years later, in 1968, J. Bell and A. Hewish observed the first pulsar
signal [Hewish et al., 1968]. However, when they did the observation, the
nature of this radio source was not known, so they named it Little Green

Men 1 (LGM-1). Then, it turned out that the pulsed signal came from a
rotating neutron star, which emits only from its magnetic poles. In a more

7
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simple scheme, the pulsar signal can be interpreted as the rotating light
signal of a lighthouse.

Since these essential discoveries, the description of the neutron star
have become more complete. The pulsar signal has been observed in X
and Gamma rays. And concerning the neutron star cooling, it has been ob-
served in the visible and in the infrared wave lengths. In parallel, theoretical
studies of neutron stars have provided explanations of theses observations,
and have predicted more precise characteristics, e.g., internal structure
[Ravenhall et al., 1983], superfluidity [Pines and Alpar, 1985], mass-radius
relations [Avancini et al., 2008], etc.

1.2 Formation

Remarkably, Baade and Zwicky [Baade and Zwicky, 1934] predicted already
in 1934 the formation of neutron stars in the supernova explosions. Actually,
this assumption was verified by the observation of neutron stars in nebulae
formed after a supernova, e.g., the Crab nebula (Fig. 1.1). The supernova
corresponds to the end of the stellar evolution of a massive star and causes
its destruction. This explosion is extremely violent and bright enough to
be visible even during daylight. Supernovae can be dived in two different
explosion mechanisms: (i) the thermonuclear supernovae (kind Ia) and (ii)
the gravitational core-collapse supernovae (kinds Ib, Ic and II). With respect
to the mechanism of the explosion, only the core-collapse one produces a
remnant body.

The core-collapse happens to massive stars M ∼ 10− 20M⊙, with M⊙
the mass of the sun [Chamel and Haensel, 2008]. Theses stars are orga-
nized in layers of different chemical elements, which have been produced
by the nuclear burning of the star (fusion reactions). The less dense lay-
ers are at the surface of the star, while the most dense are closer to the
core. Because of the high temperature and the high pressure inside the
massive star, the fusion reactions can reach the iron (56Fe) production
[Shapiro and Teukolsky, 2004] (the most stable element with respect to its
binding energy per nucleon). In consequence, the core is made of iron, and
is kept gravitationally stable because of the pressure of the degenerate elec-
tron gas [Shapiro and Teukolsky, 2004]. However, the nuclear burning is
continuously producing more and more iron nuclei, which increase the den-
sity of the core. The density will be, at some point, sufficient to modify the
β-equilibrium. It corresponds to the equilibrium between the neutron decay
n → p e− ν̄e, and the electronic capture p e− → n νe. In terms of energy the β-
equilibrium reads as: µn−µp =µe, with µi the chemical potential of neutron,
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Figure 1.1: The Crab nebula and its pulsar viewed in X-rays (Chandra,
blue), optical wave length (Hubble, yellow and red) and in infrared (Spitzer,
purple). The Crab pulsar is clearly visible as the bright dot in the cen-
ter of the image. Surrounding the pulsar, the hot gas (in blue) emits in
X-rays. The remnant cloud (mainly purple) is the Crab nebula, colder
than the center, it emits in optical and infrared. This cloud is formed of
the ejecta of the outer layers of the former massive star. Credits: X-ray:

NASA/CXC/SAO/F.Seward; Optical: NASA/ESA/ASU/J.Hester & A.Loll;

Infrared: NASA/JPL-Caltech/Univ. Minn./R.Gehrz.

proton and electron, respectively. This displacement of the β-equilibrium is
in favor of the electron capture. In fact, the Fermi level of the electrons grows
faster with the density than the nucleon one, the electrons are relativistic.
This displacement makes the neutron decay less favored than the electronic
capture, and rarefies the number of electrons in the medium. The last effect
is catastrophic for the stability of the core, strongly dependent of the elec-
tron pressure. Thus, the density of the core will reach an upper limit1, above
which the electron pressure is not enough sufficient to keep the core stable,
and the core-collapse begins [Shapiro and Teukolsky, 2004].

The core of the massive star collapses in a few tenths of a second
[Foglizzo et al., 2015], into a Proto-Neutron-Star (PNS). In these few mo-

1Typically, one speaks about the Chandrasekar mass.
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ments the radius of the core contracts from about 1.5 · 103 km to ∼
50 km. In contrast, the upper layers (H, He, C, Ne) did not collapse
[Yakovlev et al., 2001], and start a supersonic free fall, until reaching the
PNS just formed. Then, they bounce on the PNS, which creates a first
shock wave, but not sufficient enough to trigger the supernova explosion
[Bethe and Wilson, 1985]. However, the β-equilibrium yields a huge number
of neutrinos2. Some of them escape from the supernova but, those which are
trapped inside are heating the medium. This neutrino flare is extremely im-
portant for the supernova, indeed it generates a big convection in the collaps-
ing star, and generates the restart of the explosion [Bethe and Wilson, 1985].
Consequently, this restart initiates the full supernova explosion.

The remnant object after the supernova explosion could be a either neu-
tron star or a black hole (this depends of the mass of the massive star).
Finally, the external layers are dispersed in the interstellar medium, and
will form a nebula.

1.3 Characteristics

The neutron stars are produced by a sudden contraction of the core of a
massive star. Typically, the mass of a neutron star is between M⊙ and
2M⊙ [Demorest et al., 2010], for a radius of ∼ 10 km [Yakovlev et al., 2001].
This is an extremely compact object, in contrast to the radius of the sun
is 7 ·105 km. Hence, the gravitational field surrounding a neutron star is
extremely intense and gives rise to relativistic effects. In this case the com-
pactness Ξ of the star, is close to 0.1. It is defined as ratio of the gravitational
radius Rg (half of the Schwarzschild radius3) over the observed radius:

Ξ=
Rg

R
=

GM

Rc2 , (1.1)

with G the gravitational constant, M the mass and R the radius of the star.
The order of magnitude of Ξ of a neutron star is ∼ 0.1, while that of the sun

2In 1987, the supernova SN1987A, was the first one for which a neutrino signal
was detected. Indeed the supernova was detected by three different neutrino detectors
(Kamiokande, IMB, Baskan), about two hours before the light of the explosion arrived on
Earth [Arnett et al., 1989]. Usually one considers that most of the gravitational energy
gained during the contraction is released in the neutrino flare [Foglizzo et al., 2015]. Here,
the graviational energy released is expected to be in the order of magnitude of 1046 Joules
[Arnett et al., 1989]

3The Schwarzschild radius Rs = 2GM/c2 is defined as the radius, for an object of mass
M, at which the escape velocity is the equal to the speed of light c.
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is ∼ 10−6. Therefore, the density inside the neutron star can reach up to
1015 g cm−3.

1.3.1 Structure

The internal structure of a neutron star is not homogeneous, but presents
three main layers [Chamel and Haensel, 2008] (Fig. 1.2):

(i) The outer crust (0.3−0.5 km) is first layer of the neutron star. It cor-
responds to a crystalline arrangement of nuclei immersed in a rela-
tivistic electron gas which ensures charge neutrality. With respect to
the Coulomb energy, the most favorable arrangement is the Body Cen-
tered Cubic (BCC) lattice. At the surface of the outer crust one can find
iron nuclei, but by descending inside the outer crust the medium den-
sity produces exotic neutron-rich nuclei. This last point is due to the
β-equilibrium displacement driven by the increasing density.

(ii) The inner crust (1−2 km) starts when the neutron excess gets so strong
that some neutrons are no longer bound to the nuclei. The bound
nuclear structures (clusters) remain stable, and are surrounded by a
neutron and electron gas. The system tends to reach the most favor-
able state. Remarkably, the surface and Coulomb energies play a rel-
evant role in the energy minimization. The surface energy tends to
increase the size of the clusters, while Coulomb energy tends to re-
duce it. This competition affects the geometry and give rise to ex-
otic structures, the so-called pasta phases. They were introduced by
[Ravenhall et al., 1983], and they predicted the following geometries:

• The crystalline phase, is in the continuity of the outer crust. It
corresponds to spherical clusters, arranged in a BCC lattice. They
are immersed in a neutron and electrons gas.

• The spaghetti phase is expected to be the result of the merging of
the former spherical clusters into rods. By being cylindrical the
clusters reduce their contribution to the surface energy.

• Finally the lasagna phase, is the superposition of bound nucle-
ons and neutron gas layers. It is obtained by merging the rods
into plates, i.e., it consists of alternating dense and dilute layers.
Similarly, this modification of the geometry decreases the surface
energy.

• The inverse phases are also expected. They correspond to the ones
detailed previously, but with the geometries of higher and lower
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density interchanged: tubes, holes (“Swiss cheese”). This point
will be discussed in detail in the Part III.

(iii) The core of the star (∼ 10 km) is defined as the uniform part of it. The
inhomogeneities discussed (in the preceding points) disappeared, and
matter becomes homogeneous. In the upper layers of the core we ex-
pect a coexistence of neutrons, protons and electrons. Nevertheless, in
the deepest parts of the star the density is high and the emergence of
hyperons or quark gluon plasma might be energetically favorable.

1.3.2 Cooling of the neutron star

When the PNS is formed after a very hot supernova explosion, its inter-
nal temperature is T ∼ 1011 K [Yakovlev et al., 2001]. About 10− 20 s af-
ter its formation, the star become transparent to neutrinos and starts to
cool down [Chamel and Haensel, 2008]. Surprisingly, the cooling of the
star is not uniform. In fact, during the first year, the core, the inner
and the outer crust are cooling almost independently [Yakovlev et al., 2001].
Within less than a month the outer crust cools to 109 K and the core stars
to cool down thanks to neutrino emission due to electron capture and β-
decay. However, the inner crust temperature remains almost constant while
the other layers are cooling. After ∼ 10 years the inner crust suddenly
cools down, the luminosity of the star drops by four orders of magnitude
[Yakovlev et al., 2001]. This phenomenon is the named crust relaxation. Fi-
nally, ∼ 50 years after the formation of the PNS, the star is considered to be
isothermal [Yakovlev et al., 2001] and starts a slow cooling process driven by
X-ray emission [Chamel and Haensel, 2008, Fortin et al., 2010]. Figure 1.3
provides some theoretical and observed cooling curves of the surface temper-
ature.

Nevertheless, we remarked in the preceding paragraph that the inner
crust plays a major role in explaining the cooling. It turns out that its
heat capacity and conduction affect strongly the entire cooling of the star
[Fortin et al., 2010]. The major contribution to the inner crust heat capacity
comes from the electron contribution and phonons of the Coulomb lattice.
However, the superfluidity of the inner crust plays also non-negligible role.
Indeed, the dilute neutron gas is cold enough to be superfluid. The work
by [Fortin et al., 2010] focused on the superfluidity effect on the cooling, by
modifying its strength. Even so, only thermal neutron quasiparticle exci-
tation were taken into account, whole collective excitations of the neutrons
were neglected. In the next chapters, we will focus on the contribution of the
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Figure 1.3: Temperature seen by an observer for different neutron star
masses, as function of the age of the neutron star. Theoretical calcula-
tions are compared to observations (dots). The dashed lines include the
proton superfluidity in the core, while the solid lines correspond to calcu-
lations with neutron superfluidity in the crust. Credits: Yakovlev et al.
[Yakovlev et al., 2001].

collective excitations originating from the neutron superfluidity, because of
the broken U(1) symmetry of the pairing field, see Part II.

1.3.3 Pulsar signal and glitches

Pulsars were discovered by J. Bell and A. Hewish [Hewish et al., 1968] in
1968, as a rapidly and regularly pulsating radio source, see Fig. 1.4. It
turned out to be a rotating neutron star emitting from its magnetic poles.
Since this essential discovery, many other pulsars have been observed, from
rotation periods of few seconds to milliseconds (the full pulsar catalog is
available on-line [ATNF, 2016]). This pulse periodicity is extremely regu-
lar, e.g., the frequency Ω of the Vela pulsar (J0835-4510) slows down with
Ω̇ = −1.57 ·10−11 s−2 [ATNF, 2016]. The loss of angular momentum is due
to the emission of electromagnetic radiation by the rotating magnetic field.
However, for some neutron stars one observes from time to time “glitches”:
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suddenly the pulsar rotates faster [Shapiro and Teukolsky, 2004]. This gain
of rotation velocity is explained by a transfer of angular momentum, from
the superfluid neutrons to the rigid part that rotates at the observed rate.
Thus, glitches are witnesses of the superfluidity [Anderson and Itoh, 1975,
Pines and Alpar, 1985, Chamel and Haensel, 2008] inside the neutron star.
In addition, not only the superfluidity, but also the structure of the inner
crust affects the glitches [Chamel, 2013], refer to Chapter 9.
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Figure 1.4: The pulsar signal from LGM-1 (PSR B1919+21 or CP 1919),
the first pulsar to be observed by Jocelyn Bell in 1968 [Hewish et al., 1968].
Credits: The figure is extracted from the PhD thesis of Harold D. Craft

[Craft Jr., 1970].



Chapter 2

Interactions between nucleons

2.1 The nuclear many-body problem

The nuclear many-body problem is hard to solve because of experimental
and theoretical limitations [Ring and Schuck, 1980]. Actually, the form of
the nuclear interaction is not precisely known. Also, one knows that the
interaction contains higher interaction terms between nucleons, such as 3-
body or 4-body interactions. It leads to a very complicated solution of the
system. In addition, the direct measurement of higher interaction terms
is practically impossible. Nowadays, only two-nucleon scatterings can be
performed. Let us introduce a typical expression of an Hamiltonian of a
nucleus which contains A nucleons:

Ĥ =
A∑

i=1

k̂2
i

2m
+

A∑

i< j

v̂i, j +
A∑

i< j<k

v̂i, j,k +·· · , (2.1)

with v̂i, j and v̂i, j,k the 2 and 3-body interaction terms, respectively. In this
example, the higher terms of the interaction between nucleons are not ex-
plicitly written only for simplicity. In practice, the exact solution of the sys-
tem is given by the Schrödinger equation

Ĥ
∣∣ψ

〉
= E

∣∣ψ
〉

, (2.2)

with
∣∣ψ

〉
the wave function. Nevertheless, the analytical solution of the pre-

ceding equation does not exist if A > 2. (Note that the conclusion is similar
for the time dependent Schrödinger equation.)

Thus, three main approaches were developed to solve the nuclear many-
body problem:

(i) The ab-initio method tries to solve the Schrödinger equation exactly.
The framework uses the most general form of the wave function for a

17
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“realistic” NN interaction. However, the ab-initio method is limited
to light nuclei because of numerical computing limitations (processor
power and memory).

(ii) The shell model describes the excitations of a nucleus, by assuming
that it is made of valence nucleons moving in a mean-field potential
created by the core nucleons [Ring and Schuck, 1980]. The number of
valence nucleons is a parameter of the calculation and has to be chosen
as big as necessary to describe the excited configurations. The valence
nucleons interact via an effective residual interaction, which depends
on the number of levels one uses for the valence nucleons. The model is
limited by the number of valence nucleons, which increases the number
of configurations, so that the complexity of the calculations.

(iii) The mean field approach treats the nucleons as independent particles
in an effective mean field [Ring and Schuck, 1980]. The mean field is
the averaged field created by all nucleons in the system and felt by one
of them. Thus we have to proceed iteratively until convergence. In
contrast to the shell model, the mean field approximation does not give
directly excited states. This approach turned out to be most success-
ful for big nuclei (A & 20), while it is less precise for light nuclei. In
the next sections and chapters, we will only focus on the mean field
approach.

2.2 Hartree-Fock approximation

The mean field approach is based on the assumption that nucleons are in-
dependent particles moving in a mean field potential. This leads to the
Hartree-Fock (HF) approximation. In this case, the HF wave function ΨHF

is expressed as a Slater determinant of the single-particle wave functions
{ψi} [Fetter and Walecka, 1971]:

ΨHF =
1

p
A!

det |ψ1 · · ·ψA| . (2.3)

The single-particle wave function are determined by minimizing the total
energy of the nucleus

EHF =
〈ΨHF | Ĥ |ΨHF〉
〈ΨHF |ΨHF〉

. (2.4)

The energy minimization is performed with the help of the variational prin-
ciple [Ring and Schuck, 1980].
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It turns out that the optimal single-particle wave functions satisfy the
Schrödinger equation, which contains of the HF mean field. The mean field
is fully determined by all the single-particle wave functions ψ= {ψi}, so the
system is self-consistent. Hence, the Schrödinger equation is expressed as
follows {

−
∇2

2m
+UHF

[
ψ

]}
ψi = ǫiψi . (2.5)

In conclusion, the solution is obtained after numerical iterations, when the
HF energy converged.

2.3 Nuclear interaction

So far, we introduced a general Hamiltonian (2.1) made of a NN interaction.
However, if one wants to use HF approximations, an effective interaction is
required, which accounts in some way for the correlations neglected in the
HF wave function. Within the framework of the nuclear many-body problem,
numerous effective interactions have been built, such as Skyrme, Gogny or
relativistic mean-field (RMF). In the next subsections, we will detail the form
and the properties of the Skyrme forces.

2.3.1 Skyrme energy-density functional

Let us start by briefly summarizing the description of neutron matter us-
ing the Skyrme energy-density functional (EDF). The Skyrme functionals
[Vautherin and Brink, 1972] have been fitted to a large variety of nuclear
data. In addition, in order to be more predictive for neutron-rich nu-
clei, they have also been fitted to the equation of state of neutron matter
[Chabanat et al., 1997, Chabanat et al., 1998]. The functional can be writ-
ten as a sum of many contributions [Chabanat et al., 1998]:

ESkyrme =
1

2m
(τn +τp) kinetic energy

+
1
4

t0
[
(2+ x0)ρ2 − (2x0 +1)(ρ2

n +ρ2
p)

]
central term

+
1

24
t3ρ

σ
[
(2+ x3)ρ2 − (2x3 +1)(ρ2

n +ρ2
p)

]
density dependent

+
1
8

[t1(2+ x1)+ t2(2+ x2)]ρτ effective mass

+
1
8

[t2(2x2 +1)− t1(2x1 +1)](ρnτn +ρpτp) idem
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+
1

32
[3t1(2+ x1)− t2(2+ x2)] (∇ρ)2 finite range

−
1

32
[3t1(2x1 +1)+ t2(2x2 +1)]

[
(∇ρn)2 + (∇ρp)2] idem

+
1
2

W0
[
J ·∇ρ+Jn ·∇ρn +Jp ·∇ρp

]
spin-orbit

−
1
16

(t1x1 + t2x2)J2 +
1
16

(t1 − t2)
[
J2

n +J2
p

]
, tensor (2.6)

with the parameters t0,...,3 and x0,...,3 defined for each Skyrme parametriza-
tion, e.g., see Refs. [Negele and Vautherin, 1973, Chabanat et al., 1998,
Goriely et al., 2013]. The densities of the functional ρ = ρn +ρp, τ = τn +τp

and J=Jn +Jp are expressed as:

ρq(r)=
∑

i,σ

∣∣ψq

i
(r,σ)

∣∣2 , (2.7a)

τq(r)=
∑

i,σ

∣∣∇ψ
q

i
(r,σ)

∣∣2 , (2.7b)

Jq(r)=
∑

i,σ,σ′
ψ

q∗
i

(r,σ′)∇ψ
q

i
(r,σ)×

〈
σ′∣∣σ

∣∣σ
〉

, (2.7c)

with ψ
q

i
(r,σ) the single-particle wave function. The quantum numbers i, σ

and q denote the orbital, the spin and the isospin, respectively. The sums in
Eqs. (2.7a)–(2.7c) run over the occupied states only. The isospin is defined
q = (n, p) for neutrons and protons, respectively.

In addition, because of the velocity-dependent terms of the functional
(2.6), one can define an effective mass:

1
2m∗

q

=
1

2m
+

1
8

[t1(2+ x1)+ t2(2+ x2)]ρ

+
1
8

[t2(1+2x2)− t1(1+2x1)]ρq . (2.8)

2.3.2 Pure neutron matter

Focusing on the Pure Neutron Matter (PNM), the energy density functional
(2.6) can be written as

ESkyrme =
1

2m
τ+

s0

4
ρ2 +

s3

24
ρα+2 +

s1 +3s2

8
(ρτ− j2)+3

s1 − s2

16
(∇ρ)2 , (2.9)

with parameters s0,...,3 and α which are defined in Appendix A. In Eq. (2.9),
ρ denotes the number density of neutrons (ρ = ρn), τ is the kinetic energy
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density (multiplied by 2m, where m is the neutron mass), and j is the cur-
rent. In the limit of neutron matter, the density can be expressed in terms
of the density matrix

ρk,k′ = 〈a†
k′↑ak↑〉 , (2.10)

where a and a† denote, respectively, neutron annihilation and creation oper-
ators. The densities of Eq. (2.9) are defined as

ρ(r)= 2
∑

k,k′
ρk,k′ ei(k−k′)·r , (2.11a)

τ(r)= 2
∑

k,k′
k ·k′ρk,k′ ei(k−k′)·r , (2.11b)

j(r)=
∑

k,k′
(k+k′)ρk,k′ ei(k−k′)·r . (2.11c)

Here we have assumed that the density matrices for both spin projections
(↑,↓) are equal. The term proportional to j2 in Eq. (2.9) is necessary to ensure
Galilean invariance [Engel et al., 1975]. Note that we did not write the spin-
orbit interaction since it is absent in spin-unpolarized matter.

In uniform matter, the functional (2.9) gives rise to a constant Hartree-
Fock (HF) potential UHF and an effective mass m∗. The former is the first
derivative of Eq. (2.9) with respect to ρ, while the effective mass is due to
the τ dependence of the Skyrme functional [Chabanat et al., 1998]:

UHF =
s0

2
ρ+

α+2
24

s3ρ
α+1 +

s1 +3s2

8
τ , (2.12a)

1
2m∗ =

1
2m

+
s1 +3s2

8
ρ . (2.12b)

We absorb UHF in an effective chemical potential µ∗ = µ−UHF, so that the
single-particle spectrum can be written as

ξk = ǫk−µ=
k2

2m∗ −µ∗ . (2.13)

To study collective excitations within the RPA (or QRPA), one needs the
residual interaction between quasiparticles. The corresponding matrix ele-
ments in the particle-hole (ph) channel are obtained from the Skyrme func-
tional as follows [García-Recio et al., 1992]:

V
ph
k1,k2,k4,k3

=
δ2ESkyrme

δρk1,k2 δρk4,k3

, (2.14)

where ESkyrme =
∫

d3rESkyrme is the energy. The conservation of the total
momentum q of the ph pair implies that V ph is proportional to δk1−k2,k3−k4 .
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After transformation to relative and total momenta of the ph pairs, the ma-
trix element can conveniently be written in the form [Navarro et al., 1999]

V
ph

k+q
2 ,k−q

2 ,k′−q′
2 ,k′+q′

2

= [W1(q)+W2 (k−k′)2]δq,q′ . (2.15)

The explicit expressions for W1(q) and W2 in terms of the parameters of the
Skyrme functional are given in the Appendix A.

2.4 Pairing correlations

2.4.1 Bardeen-Cooper-Schrieffer theory

In order to account for the superfluidity of the neutron gas, we have to in-
clude pairing. We do this in the framework of the Bardeen-Cooper-Schrieffer
(BCS) theory [Bardeen et al., 1957], which treats the ground state with a
variational wave function:

|Ψ0〉 =
∏

k

(uk +vk a
†
k↑a

†
−k↓) |0〉 , (2.16)

where uk and vk are the variational parameters. By convention, spins up are
associated to particles of momentum k, and spins down to −k. The ansatz
(2.16) for the ground state implies a superposition of states and does not
conserve the number of particles in the system. This could be problematic in
a system with a small number of particles, e.g., a nucleus. Here, in contrast,
the neutron matter is assumed to be uniform and infinite. The variational
parameters are normalized as [Fetter and Walecka, 1971]:

|uk|2 +|vk|2 = 1 . (2.17)

We introduce a Lagrange multiplier µ to obtain the correct average num-
ber of particles in the system. The Hamiltonian is thus modified:

H′ = H−µN , (2.18)

with N =
∑

k,σ a
†
k,σa

k,σ the total number of particles. Because of the
preceding transformation, one can define the Hamiltonian as follows
[Fetter and Walecka, 1971]:

H′ =
∑

k,σ
(ǫk −µ)a

†
k,σa

k,σ

+
1
2

∑

k1,σ1,...,k4,σ4

〈k1,σ1,k2,σ2|V pp |k4,σ4,k3,σ4〉a
†
k1,σ1

a
†
k2,σ2

a
k4,σ4

a
k3,σ3

×δ
k1+k2,k3+k4

, (2.19)

with the particle-particle (pp) potential V pp negative (attractive interac-
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tion).
In contrast to the previous section, here we neglect the HF mean-field.

Furthermore, we consider only pairing in the 1S0 channel, i.e., of neutrons
with opposite spins, and disregard the 3P2 channel, which becomes domi-
nant at higher densities [Tamagaki, 1970]. So, the Hamiltonian (2.19) sim-
plifies to:

H′ =
∑

k,σ
ξk a

†
k,σa

k,σ

+
∑

k1,...,k4

V
pp
k1,k2,k4,k3

a
†
k1↑a

†
−k2↓a−k4↓ak3↑×δ

k1−k2,k3−k4
, (2.20)

with V
pp
k1,k2,k4,k3

= 〈k1 ↑,−k2 ↓|V pp |−k4 ↓,k3 ↑〉 the matrix element of the
pairing interaction (for outgoing particles k1 ↑ and −k2 ↓, and incoming par-
ticles k3 ↑ and −k4 ↓).

2.4.2 Gap equation

Inside the Hamiltonian (2.20), one can identify the pairing gap ∆ defined by
the gap equation

∆k1,k2 =−
∑

k3,k4

V
pp
k1,k2,k4,k3

κ
k3,k4

, (2.21)

and the anomalous density

κk,k′ = 〈ak↑a−k′↓〉 . (2.22)

The BCS wave function (2.16) can be rewritten as:

|Ψ0〉 =
∏

k

1
vk

αkβ−k |0〉 . (2.23)

where αk and βk are Bogoliubov operators [Bogoliubov et al., 1959]. The mo-
tivation of Bogoliubov is to treat the ground state of a system as a quasipar-
ticle vacuum, while the so-called quasiparticles are its low-lying excitations
[Ring and Schuck, 1980]. Hence, the canonical Bogoliubov transformation
in the BCS framework is written in the form [Fetter and Walecka, 1971]

αk = uka
k↑−vka

†
−k↓ and β−k = uka−k↓+vka

†
k↑ , (2.24)

and the quasiparticle operators act on the ground state as follows

αk |Ψ0〉 =βk |Ψ0〉 = 0 . (2.25)
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With help of Eq. (2.17) one can show that the operators αk and βk are quan-
tized by the following anti-commutators:

{α
k
,α†

k′}= {β−k
,β†

−k′}= δk,k′ , (2.26)

while all other combinations are zero.
Thanks to the Bogoliubov transformations, one can calculate the aver-

age values of creation and annihilation operator products, as function of the
variational parameters (for more detail see Apx. C.1)

〈Ψ0|a−k↓ak↑ |Ψ0〉 = 〈Ψ0|a†
k↑a

†
−k↓ |Ψ0〉 = ukvk . (2.27)

Hence, the expectation value of Eq. (2.20) is entirely determined by varia-
tional parameters:

〈Ψ0|H′ |Ψ0〉 =
∑

k

(
4ξkv2

k −2∆kukvk

)
, (2.28)

where ∆k denotes the diagonal elements of ∆k,k′ . (In the ground state κ is
diagonal, so that ∆ is diagonal too.)

Because of the variational principle, the BCS ground state energy has to
minimized by the variational parameters, and the variation of 〈Ψ0|H′ |Ψ0〉
has to be zero [Ring and Schuck, 1980]. The preceding properties read as:

(
δ

δuk

+
dvk

duk

δ

δvk

)
〈Ψ0|H′ |Ψ0〉 = 0 , (2.29)

and one finds after derivation

2ξkukvk +∆k(v2
k −u2

k)= 0 , (2.30)

The result for u2
k

and v2
k

are obtained by combining the preceding result and
Eq. (2.17):

u2
k =

1
2

(
1±

ξk√
ξk +∆k

)
, (2.31)

v2
k =

1
2

(
1∓

ξk√
ξk +∆k

)
. (2.32)

(2.33)

By convention we choose “+” for uk and “−” for vk, because in the limit of
zero paring ∆k = 0, we expect vk = 1 and uk = 0 within the Fermi sea. Then
the gap equation reads

∆k =−
∑

k′
V

pp

k,k,k′,k′
∆k′

2Ek′
, (2.34)

with the usual quasiparticle energy

Ek =
√

ξ2
k
+∆

2
k

. (2.35)
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2.4.3 Pairing interaction

So far we derived the ph interaction from Skyrme functional. We notice that
the interactions we use for the pairing (pp channel) and for the mean-field
(ph channel) are different. In principle, we have to use a realistic NN in-
teraction for the description of the pairing. Since short-range correlations
are included when we computed the gap equation. This is different from
the effective interactions to be used in Hartree-Fock mean field, where the
correlation effects are accounted for in an effective way via the density de-
pendence of Skyrme EDF. Usually, in nuclear structure calculations with
Skyrme, a contact interaction with (possibly) density dependent coupling
constant is employed as pairing interaction (see e.g. [Khan et al., 2002]).
However, the gap equation diverges if one uses such interactions. In or-
der to solve this problem a cut-off is included (by hand) into the gap equa-
tion. In contrast to the latter pairing interaction, we use a simple separa-
ble approximation to a low-momentum interaction (Vlow-k) derived from a
realistic nucleon-nucleon force [Bogner et al., 2007]. Here, the calculation
of the gap equation is equivalent to a T-matrix calculation and converges
naturally. In addition, this interaction gives a reasonable density depen-
dence of the superfluid critical temperature in low-density neutron matter
[Ramanan and Urban, 2013]. Hence, for the pairing the approximation we
use is

V
pp
k1,k2,k4,k3

=−gF(1
2 |k1 +k2|)F(1

2 |k3 +k4|)δk1−k2,k3−k4 , (2.36)

where g is the strength of the interaction and F is a Gaussian form factor

F(k)= e−k2/k2
0 . (2.37)

The separable form of the pairing interaction simplifies a lot the solution
of the gap equation: it is evident that ∆k is of the form ∆k = ∆0F(k), and
instead of an integral equation for the function ∆k one has to solve only an
equation for the number ∆0.

2.4.4 Uncertainties

The pairing interaction in nuclear or neutron matter presents some uncer-
tainties related to in-medium effects and the bare interaction. Actually solv-
ing the BCS gap equation (2.34) is the most simple way of calculating the
pairing gap energy. Beyond BCS, screening effects may appear and reduce
the maximum of the gap energy [Cao et al., 2006], as displayed in Fig. 2.1
denoted with the label Cao 06. For low density, there are “exact” quantum
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Monte-Carlo (QMC) calculations [Gezerlis and Carlson, 2010], see Fig. 2.1
labeled QMC AV4. This calculations give a gap about one half times smaller
than the one calculated in BCS.

Figure 2.1: Comparison of different 1S0 pairing gaps versus the Fermi mo-
mentum. The figure includes the QMC calculations performed by the au-
thors. Credits: A. Gezerlis and J. Carlson [Gezerlis and Carlson, 2010].
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Chapter 3

Collective modes formalisms

3.1 Time Dependent Hartree-Fock-Bogoliubov

3.1.1 Motivations

In the preceding sections we exposed theories treating respectively particles
or quasiparticles moving independently in a potential. The Hartree-Fock-
Bogoliubov (HFB) theory is a generalization of the Hartree-Fock method
to the pairing correlations between particles [Ring and Schuck, 1980]. We
have to account for the superfluidity because of the observed temperature of
the neutron star crust [Chamel and Haensel, 2008], which is far below from
critical temperature of the superfluid neutron gas [Pines and Alpar, 1985].
In the HFB framework we consider quasiparticles in two potentials: (i)
h the self-consistent mean-field potential, already introduced within the
Hartree-Fock method, and (ii) ∆ the pairing field treated in the BCS the-
ory. The HFB only considers quasiparticles in a static picture, while the
collective mode description requires a time-dependent approach. Hence,
let us introduce the Time-Dependent HFB (TDHFB), the extension of the
HFB theory to dynamical processes, including variations of large amplitude
[Ring and Schuck, 1980].

3.1.2 Formalism

The starting point of the TDHFB is to build the equation of motion for the
generalized density matrix quantities defined in the Hamiltonian. Gener-
ally, the equation of motion for an expectation value 〈A〉 is expressed in
terms of the Hamiltonian H as:

i〈Ȧ〉 = 〈[A,H]〉 , (3.1)

29
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with 〈Ȧ〉 the time derivative of 〈A〉.
As mentioned before, the TDHFB treats both ph correlations and pairing

correlations, in second quantization the one-body mean-field Hamiltonian
read as:

H =
∑

k,k′

(
hk,k′

∑
σ

a
†
k,σa

k′,σ
−∆k,k′a

†
k↑a

†
−k′↓−∆

†
k,k′a−k↓ak′↑

)
. (3.2)

Let us now write the equation of motion (EOM) of the normal and anomalous
density matrices ρ and κ introduced in Eqs. (2.10) and (2.22), and also their
complementary quantities:

ρ̄k,k′ = 〈a†
−k↓a−k′↓〉 , κ

†
k,k′ = 〈a†

k′↑a
†
−k↓〉 , (3.3)

where ρ̄k,k′ = ρ−k,−k′ denotes the time reversed.
The commutation rules of a and a† required in the definition of the EOM

of ρ and κ, are easily evaluated if they are expressed in terms of anti-
commutators:

[AB,CD]= A{B,C}D− AC{B,D}+ {A,C}DB−C{A,D}B , (3.4)

where A, . . . ,D, stand for arbitrary operators.
By injecting Eqs. (2.10), (2.22) and (3.3) in Eq. (3.1), we can derive the

equations of motion for κ, κ†, ρ and ρ̄:

−i κ̇k,k′ =−(κh)k,k′ − (hκ)k,k′ − (ρ∆)k,k′ +
[
∆(I−ρ)

]
k,k′ , (3.5)

−i (κ̇†)k,k′ = (hκ†)k,k′ + (κ†h)k,k′ + (∆†ρ)k,k′ −
[
(I−ρ)∆†

]
k,k′ , (3.6)

i ρ̇k,k′ = (hρ)k,k′ − (ρh)k,k′ − (∆κ†)k,k′ + (κ∆†)k,k′ , (3.7)

−i ρ̇k,k′ = (hρ)k,k′ − (ρh)k,k′ − (∆†κ)k,k′ + (κ†
∆)k,k′ . (3.8)

The former equations of motion (3.5)–(3.8) describe the variations of the
HFB ground state with respect to time. These equations build the general
TDHFB equation of motion, and can be expressed in a short-hand form:

i Ṙ = [H ,R] , (3.9)

where H and R are the matrices defined below:

H =
(

h ∆

∆
† −h

)
, (3.10)

R =
(

ρ −κ
−κ† 1−ρ

)
. (3.11)

Here, it is important to mention that the TDHFB equation of motion (3.9)
has an opposite sign compared to Eq. (3.1).
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3.2 Quasiparticle Random Phase Approxima-

tion

The QRPA treats small oscillations around the Hartree-Fock-Bogoliubov
(HFB) ground state (which, in the case of uniform matter, is obtained by
combining the HF and BCS frameworks discussed in the preceding sections)
[Ring and Schuck, 1980]. It can be derived by linearising the time depen-
dent HFB (TDHFB) equations, see, e.g., Ref. [Khan et al., 2002], or, equiva-
lently, by using the formalism of normal and anomalous Green’s functions,
see, e.g., Refs. [Sedrakian and Keller, 2010, Baldo and Ducoin, 2011]. Here
we use the TDHFB formalism.

As mentioned before, the QRPA is the linearization of the TDHFB equa-
tions for small oscillations around the ground state. We therefore split the
matrices R and H into their ground-state values R

(0) and H
(0) and small

deviations R
(1) and H

(1):

H =H
(0) +H

(1) , (3.12)

R =R
(0) +R

(1) . (3.13)

Let us first look at the ground state, which of course has to satisfy
Eq. (3.9) with Ṙ

(0) = 0. This is the case because H
(0) and R

(0) can be simul-
taneously diagonalized. In the ground state, we have h(0)

k,k′ = h̄(0)
k,k′ = ξkδk,k′

and ∆
(0)
k,k′ =∆

†(0)
k,k′ =∆kδk,k′ . So, the matrix H

(0) reads as:

H
(0) =

(
ξ ∆

∆ ξ

)
. (3.14)

The matrix H
(0) is diagonalized by the transformation

H̃
(0) =W

T
H

(0)
W =

(
E 0
0 −E

)
, (3.15)

with the eigenvalues Ek,k′ = Ekδk,k′ and the transformation matrix

W =
(
u −v

v u

)
, (3.16)

where u and v are the usual factors appearing in BCS theory

uk =

√
1
2
+

ξk

2Ek

, vk =

√
1
2
−

ξk

2Ek

. (3.17)



32 CHAPTER 3. COLLECTIVE MODES FORMALISMS

The normal and anomalous density matrices in the ground state are given
by ρ(0)

k,k′ = ρ̄(0)
k,k′ = v2

k
δk,k′ and κ(0)

k,k′ = κ
†(0)
k,k′ = ukvkδk,k′ , so that the same trans-

formation diagonalizes R
(0), too:

R̃
(0) =W

T
R

(0)
W =

(
0 0
0 1

)
. (3.18)

Let us now consider a small perturbation of the system. By keeping
in Eq. (3.9) only the first order in the deviations, we obtain the linearized
equation of motion

iṘ(1) = [H (0),R(1)]+ [H (1),R(0)] . (3.19)

The equation can be simplified by applying again the transformation that
diagonalizes H

(0) and R
(0). After a Fourier transform with respect to time

one obtains the following equation:

ωR̃
(1) =

(
[E,R̃(1)

11 ] {E,R̃(1)
12 }+H̃

(1)
12

−{E,R̃(1)
21 }−H̃

(1)
21 −[E,R̃(1)

22 ]

)
. (3.20)

From the former matrix one can easily determine the non-vanishing ele-
ments:

(ω−Ek+Ek′)R̃(1)
11,kk′ = 0 , (3.21)

(ω−Ek−Ek′)R̃(1)
12,kk′ =−H̃

(1)
12,kk′ , (3.22)

(ω−Ek+Ek′)R̃(1)
21,kk′ = H̃

(1)
21,kk′ , (3.23)

(ω−Ek−Ek′)R̃(1)
22,kk′ = 0 . (3.24)

The matrix R
(1) is then obtained by transforming R̃

(1) back. The result-
ing expressions are lengthy, but they can be simplified by using the following
linear combinations:

ρ± = ρ± ρ̄ , κ± = κ±κ† , (3.25)

h± = h± h̄ , ∆
± =∆±∆

† . (3.26)

In the case of spin-independent excitations studied here, ρ+ is responsible
for density oscillations, while ρ− describes the corresponding current. (In
the case of spin modes, the situation would be reversed.) The quantities κ+

and ∆
+ are related to oscillations of the amplitude of ∆, while κ− and ∆

−

describe phase oscillations which are extremely important in the context of
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the low-energy collective mode (Goldstone mode). The solution for ρ±(1) and
κ±(1) can be written in the form




ρ+(1)
k1,k2

ρ−(1)
k1,k2

κ+(1)
k1,k2

κ−(1)
k1,k2



=Π

(0)
k1,k2

(ω)




h+(1)
k1,k2

h−(1)
k1,k2

∆
+(1)
k1,k2

∆
−(1)
k1,k2




(3.27)

where Π
(0)
k1,k2

(ω) is a 4×4 matrix whose components denoted by Π
ρ+,h+

k1,k2
, . . . ,

Π
κ−,∆−

k1,k2
are given in Appendix B.

So far, we have not specified the perturbation of the hamiltonian, h(1).
There are two contributions of different origin. First, to probe the system,
we apply an external perturbation at t = 0 of the form of a plane wave, i.e.,
Vexeiq·rδ(t), which after Fourier transformation becomes Vexδk1−k2,q. The
second contribution to h(1) comes from the oscillations of the mean field due
to the density oscillations :

h(1)
k1,k2

=Vexδk1−k2,q+
∑

k3,k4

V
ph
k1,k2,k4,k3

ρ(1)
k3,k4

. (3.28)

Analogously, the oscillation of the gap, ∆(1), is related to the oscillation of the
anomalous density,

∆
(1)
k1,k2

=−
∑

k3,k4

V
pp
k1,k2,k4,k3

κ(1)
k3,k4

. (3.29)

Looking at Eq. (3.27) and taking into account the momentum conservation
in the interactions V ph and V pp, one sees that an external perturbation pro-
portional to δk1−k2,q leads to non-vanishing elements of ρk1,k2 and κk1,k2 only
for k1 −k2 =q. This could have been anticipated, since in a uniform system
a perturbation having the form of a plane wave can only excite oscillations
which are also plane waves with the same wave vector as the perturbation.
We therefore introduce the short-hand notation k± = k± q

2 and denote the
non-vanishing matrix elements by ρk+,k− , etc.

The advantage of the Skyrme functional is that h(1) depends only on local
quantities. With the notation of Eq. (2.15), we have

h+(1)
k+,k−

=W1(q)ρ+(1)
q +W2k2ρ+(1)

q +W2τ
+(1)
q +2Vex , (3.30a)

h−(1)
k+,k−

= 2W2kcosθ j−(1)
q , (3.30b)

where θ is the angle between k and q and

ρ+(1)
q =

∑

k

ρ+(1)
k+,k−

, (3.31a)
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τ+(1)
q =

∑

k

k2ρ+(1)
k+,k−

, (3.31b)

j−(1)
q =

∑

k

k cosθρ−(1)
k+,k−

. (3.31c)

Similarly, in the pp channel, the calculation is simplified by the fact that
our pairing interaction (2.36) is separable:

∆
±(1)
k+,k−

= gF(k)κ±(1)
q (3.32)

with
κ±(1)

q =
∑

k

F(k)κ±(1)
k+,k−

(3.33)

Now we are able to calculate the linear response by inserting Eqs. (3.27),
(3.30) and (3.32) into Eqs. (3.31) and (3.33). In this way we obtain




ρ+(1)
q

τ+(1)
q

j−(1)
q

κ+(1)
q

κ−(1)
q



=

(
I−〈〈Π(0)

q V 〉〉
)−1




〈〈Πρ+,h+
k+,k−

〉〉
〈〈k2

Π
ρ+,h+

k+,k−
〉〉

〈〈kcosθΠρ−,h+

k+,k−
〉〉

〈〈F(k)Πκ+,h+

k+,k−
〉〉

〈〈F(k)Πκ−,h+

k+,k−
〉〉




2Vex , (3.34)

where the short-hand notation 〈〈 f (k)〉〉 denotes the sum of f (k) over k,

〈〈 f (k)〉〉 =
∑

k

f (k) , (3.35)

and the matrix 〈〈Π(0)
q V 〉〉 is given in Appendix B.

It is well known that superfluidity leads to the existence of the so-called
Bogoliubov-Anderson sound [Bogoliubov et al., 1959, Anderson, 1958], a col-
lective mode with linear dispersion relation ω ∝ q (for small q) which can
be interpreted as a Goldstone boson corresponding to the broken U(1) sym-
metry [Weinberg, 2005]. This implies that the QRPA response function has
a pole at low energy. The energy ω of this collective mode can be found by
searching for a given q the root of the determinant of the matrix appearing
in Eq. (3.34):

∣∣∣I−〈〈Π(0)
q V 〉〉

∣∣∣= 0 . (3.36)

This collective mode exists only at low momentum q, as long as its en-
ergy ω lies below the pair-breaking threshold ∼ 2∆kF

, where kF denotes the
Fermi momentum. At higher values of q, the collective mode enters the two-
quasiparticle continuum and gets a width (finite lifetime).
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3.3 Landau approximation

In some recent work [Baldo and Ducoin, 2011, Keller and Sedrakian, 2013],
the QRPA response was calculated within the Landau approximation
[Nozières, 1964]. In this approximation, one exploits the fact that for small
q the change of the density matrix ρk,k′ is concentrated at the Fermi surface,
|k| ≈ |k′| ≈ kF . Keeping only the Landau parameter F0 amounts to replacing
Eq. (3.30) by

h+(1)
k+,k−

= (W1(0)+2W2k2
F )ρ+(1)

q (3.37)

and neglecting h−(1)
k+,k−

. However, because of the effective mass m∗ 6= m, this
approximation violates Galilean invariance [Nozières, 1964] and one should
also include the parameter F1. In this case one has

h−(1)
k+,k−

= 2W2kF cosθ j−(1)
q , (3.38)

where the current j−(1)
q (3.31c) is simplified to

j−(1)
q = kF

∑

k

cosθρ−(1)
k+,k−

. (3.39)

As a consequence, the 5×5 matrix in Eq. (3.34) reduces to a 3×3 or 4×4 one
if one keeps only F0 or F0 and F1, respectively.

3.4 Long wavelength limit

3.4.1 Derivation from QRPA

The broken symmetry U(1) of the pairing field ∆ yields a collective mode
of zero-energy (Goldstone mechanism). Considering the QRPA equa-
tions within the limit of excitations of small momentum q and energy
ω, one expects to find the Bogoliubov-Anderson mode. As in Bogoliubov
[Bogoliubov et al., 1959] and Anderson [Anderson, 1958] we start by consid-
ering an ideal Fermi-gas. In this limit one neglects V ph in the perturbed
Hamiltonian, so that h+(1)

k,k′ reads as:

h+(1)
k,k′ =Vexδk+q,k′ . (3.40)

In the gap equation (2.21), the anomalous density κ can be expressed as
a function of the QRPA response functions (3.34). Thus, one has for the gap
equation:



36 CHAPTER 3. COLLECTIVE MODES FORMALISMS

∆
−(1)
k,k′ = F(1

2 |k+k′|)
∑

k1,k2

gF(1
2 |k1 +k2|)

[
Π

κ−,∆−
k1,k2

∆
−(1)
k1,k2

+Π
κ−,h+
k1,k2

h+(1)
k1,k2

]

×δk2−k1,k′−k . (3.41)

The former expression of ∆
−(1)
k,k′ can be reduced because of the momentum

conservation. In addition, by making use of Eq. (3.40) and performing the
summation over k1, the perturbation of the gap reads as:

∆
−(1)
k,k′ = F(1

2 |2k−q|)∆̃−(1)
q δk′−k,q . (3.42)

The term ∆̃
−(1)
q is defined self-consistently and satisfies:

∆̃
−(1)
q

[
1−

∑

k

gF2(1
2 |2k−q|)Πκ−,∆−

k−q,k

]
=

∑

k

gF(1
2 |2k−q|)Πκ−,h+

k−q,kVex . (3.43)

The collective mode of the neutron gas is described by the pole of ∆−(1)
kk′ . How-

ever, one sees clearly that the pole of the gap equation is fully contained in
the expression of ∆̃−(1)

q . The analytical solution of the collective mode can be

obtained thanks to the expansion of the response function Π
κ−,∆−
k−q,k for small

q and ω, thus one has:

1−
∑

k

gF2(k)
1

2Ek

−
∑

k

gF2(k)

[
1

8E3
k

ω2 +
1

8E3
k

(
1−3

∆
2
k

E2
k

)
(vk ·q)2 +

ξk

E3
k

q2

m

]
= 0 (3.44)

where vk = k/m is the velocity associated with the momentum k. The sum-
mation can be simplified if one exploits that the major contribution of the
form factor and the gap energy are located at the Fermi surface, because
the factors 1/Ek and 1/E3

k
are strongly peaked at |k| = kF . Hence we re-

place F(k) and ∆k by F(kF ) and ∆kF
≡ ∆, respectively. On the first line of

Eq. (3.44) a major simplification can be performed by identifying it with the
gap equation (2.34).

In the limit of low momentum excitations (q → 0), it becomes more con-
venient to integrate Eq. (3.44) over ξ = k2/2m−µ. Hence, Eq. (3.44) reduces
to:

N(0)ω2 gF2(kF )
8

∫
dξ

1

E3

+N(0)
gF2(kF )

8

v2
F

q2

3

∫
dξ

1

E3

(
1−3

∆
2

E2

)
= 0 , (3.45)
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where density of states has been replaced by its value at the Fermi surface

N(0)=
∫

d3k

(2π)3 δ(ξk)=
mkF

2π2 . (3.46)

In Eq. (3.45), the isotropy of the Fermi velocity vF is responsible for the
factor one-third. A further approximation consists in replacing the lower
integration limit −µ by −∞. Actually, the contribution is concentrated at
the Fermi surface (ξ ≈ 0). By performing the integration over ξ, the (odd)
term ξ/E cancels.

The integral of ∆2/E3 is non-trivial, so that a hint is to express it in terms
of ξ derivatives

d
dξ

(
ξ

E3

)
=−

2

E3 +3
∆

2

E5 . (3.47)

Finally, by inserting the preceding results into Eq. (3.45), one has

ω2
∫

dξ
1

E3 −
v2

F
q2

3

∫
dξ

1

E3 = 0 . (3.48)

From the previous expression, one sees immediately the dispersion relation
of the Bogoliubov-Anderson sound [Bogoliubov et al., 1959, Anderson, 1958]:

ω=
vF q
p

3
. (3.49)

This result is valid in an ideal Fermi gas, and was generalized by Leggett
[Leggett, 1966] to an interacting Fermi gas in the framework of Landau’s
Fermi-liquid theory.

3.4.2 Derivation from superfluid hydrodynamics

In the limit of zero temperature, the superfluid hydrodynamics equations
describe the superfluid flow. (Otherwise the normal component has to be
included, two-fluids hydrodynamics [Leggett, 1966]). Thanks to this major
simplification we expect to find the dispersion relation of the Bogoliubov-
Anderson [Bogoliubov et al., 1959, Anderson, 1958] sound. First, we con-
sider the standard equations for an ideal (inviscid) flow

∂ρ

∂t
+∇(ρv)= 0 , (3.50)

m
∂v

∂t
+∇·

(
1
2

mv2 +µ

)
= 0 , (3.51)
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with the continuity and the Euler equation, respectively. The density of
the fluid is denoted by ρ = k3

F
/(3π2) and its velocity by v. The Bogoliubov-

Anderson mode corresponds to a small amplitude excitation. Therefore, the
chemical potential of the superfluid µ can be linearized around its equilib-
rium (ρ = ρ0):

µ(ρ)=µ(ρ0)+
∂µ

∂ρ

∣∣∣∣
ρ=ρ0

(ρ−ρ0) . (3.52)

By injecting the linearized expression of µ into the Euler equation one finds:

m
∂v

∂t
+
∂µ

∂ρ
∇ρ = 0 , (3.53)

Now, we focus on the continuity equation (3.50). We only keep the dominant
term ρ∇·v provided by the gradient ∇(ρv). Hence, thanks to the simplifica-
tions detailed above, one can find the sound propagation equation. This is
done by injecting the simplified Euler equation (3.53) in the continuity equa-
tion (3.50) derived with respect to the time, which leads to wave equation

∂2ρ

∂t2 −
ρ

m

∂µ

∂ρ
∇2ρ = 0 , (3.54)

with the sound velocity u given by:

u2 =
ρ

m

∂µ

∂ρ
. (3.55)

We consider that the pairing does not affect the density of the system, so
that the chemical potential is close to µ ≃ ǫF the Fermi energy. In this ap-
proximation, the gradient of the chemical potential simply reads as:

∂µ

∂ρ
=

2
3
ρ

µ
. (3.56)

Finally we recover the result of the previous section:

ω2 =
k2

F

3m2 q2 =
(

vFp
3

q

)2

, (3.57)

if one knows that u =ω/q with the collective mode energy ω as a function of
q the excitation momentum.

At a first glance, it is surprising that hydrodynamics is applicable here.
In a normal fluid, hydrodynamics requires collisions that restore local equi-
librium. Otherwise, in the collisionless regime, the local Fermi sphere gets
deformed during the oscillation, which gives rise to the so-called zero-sound
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modes [Nozières, 1964]. The situation is completely different in a super-
fluid at T = 0: although there are no collisions, the local Fermi sphere stays
spherical during the oscillation because of pairing. This “superfluid hydro-
dynamics” was also used to describe collective modes in trapped (i.e., non-
uniform) Fermi gases [Menotti et al., 2002], and in Ref. [Grasso et al., 2005]
it was demonstrated that also in that case hydrodynamic and QRPA results
for T = 0 agree if pairing is strong enough.

In order to calculate the hydrodynamic speed of sound of the interacting
system, we use in Eq. (3.52) the chemical potential obtained with the Skyrme
functional (with pairing). Let us remind that dP = ρdµ, with P the pressure,
so that Eq. (3.55) reads as:

u2 =
1
m

∂P

∂ρ
. (3.58)

3.5 Numerical computation

In Appendix B we give the equations needed to determine the QRPA re-
sponse function. In practice, the summations over k are integrals. In our
numerical calculations we start by evaluating numerically the imaginary
parts of the matrix 〈〈Π(0)

q V 〉〉. According to Eqs. (B.1) and (B.3), each element
of this matrix can be written in the form

〈〈Π(0)
q (ω)V 〉〉αβ =

∫
d3k

(2π)3 fαβ(k, q, z)G±
k,q(ω) . (3.59)

Then the the imaginary part is given by :

Im〈〈Π(0)
q (ω)V 〉〉 =

1

2π2

∫zmax

0
dz

∑

i

k2
i
f (ki, q, z)

∣∣∣∂Ωk,q

∂k

∣∣∣
ki

, (3.60)

where {ki} is the set of solutions of the equation Ωk,q = ω for a given angle
z, and zmax is either 1 or the angle beyond which the equation Ωk,q =ω does
not have a solution any more. The form of the function Ωk,q is illustrated
in Figure 3.1 for a fixed density and different values of z. It is important
to notice that the minimum of Ωk,q is not located exactly at k = kF , with
the Fermi momentum kF = (3π2ρ)1/3. The minimum is shifted because of a
strong pairing gap, which affects the relation between ρ and the chemical
potential µ∗, in consequence kF 6=

√
2m∗µ∗.

After the calculation of the imaginary part, we compute the real part
with the help of a dispersion relation,

Re〈〈Π(0)
q (ω)V 〉〉 =−

1
π

P
∫∞

0
dω′ Im〈〈Π(0)

q (ω′)V 〉〉
(

1
ω−ω′ ±

1
ω+ω′

)
, (3.61)
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Figure 3.1: The form of Ωk,q = Ek++Ek− for a fixed neutron gas density of
ρ = 0.02 fm−3. The figure displays the evolution of Ωk,q for different values
of z = cosθ, with θ the angle between k and q.

where the sign ± is chosen according to the sign in G± in Eq. (3.59). In
the last integral we note that it presents a pole for ω−ω′ = 0. In order to
evaluate the principal value numerically, the real part of the integral can be
expressed as:

Re〈〈Π(0)
q (ω)V 〉〉 =−

1
π

[∫∞

0
dω′ Im〈〈Π(0)

q (ω′)V 〉〉− Im〈〈Π(0)
q (ω)V 〉〉

ω−ω′

+
∫∞

0
dω′ Im〈〈Π(0)

q (ω)V 〉〉
ω−ω′

]
, (3.62)

with the first term being well behaved for ω = ω′ and the second one ana-
lytically solvable. The integration does not run up to infinity, we suppose
a cut-off Λ above which the imaginary part is not supposed to contribute
anymore. Thus one has to evaluate numerically the following integral:

Re〈〈Π(0)
q (ω)V 〉〉 =−

1
π

[∫
Λ

0
dω′ Im〈〈Π(0)

q (ω′)V 〉〉− Im〈〈Π(0)
q (ω)V 〉〉

ω−ω′

±
∫

Λ

0
dω′ Im〈〈Π(0)

q (ω′)V 〉〉
ω+ω′ + Im〈〈Π(0)

q (ω)V 〉〉 ln
∣∣∣ ω

ω−Λ

∣∣∣
]

, (3.63)

with ± chosen according to the sign of the Green’s functions G±.



Chapter 4

Results uniform neutron matter

In this chapter we focus on the collective modes in the uniform neutron
matter. These calculation are made thanks to the formalisms developed
in the preceding Chapters 2 and 3. This chapter is essentially based on
Ref. [Martin and Urban, 2014].

4.1 Ground state

Before we turn to the linear response, let us briefly discuss the ground state
properties. For the mean field, we use the SLy4 parametrization of the
Skyrme force, whose parameters are given in Ref. [Chabanat et al., 1998].
This interaction was not only fitted to nuclei, but also to the Equa-
tion of State (EOS) of neutron matter. Since pairing has only a
marginal effect on the EOS, our EOS agrees with that shown, e.g., in
Ref. [Douchin and Haensel, 2000].

To determine the two parameters g and k0 of our pairing interaction,
Eqs. (2.36) and (2.37), we first solve the gap equation (2.34) with the (non-
separable) Vlow-k interaction1. The resulting gap at the Fermi surface, ∆kF

,
as a function of kF = (3π2ρ)1/3, is displayed in Fig. 4.1 (dashes). Then we fit
g and k0 to reproduce this result with the separable interaction. The result
of this fit is also shown in Fig. 4.1 (solid line), and the corresponding param-
eter values are listed in Table 4.1. We see that with this pairing interaction,
the maximum of the gap, ∆kF

∼ 2.7 MeV, is reached at kF ∼ 0.8 fm−1, corre-
sponding to a density of ρ ∼ 0.017 fm−3. At low density, the gap increases
with density because of the increasing level density at the Fermi surface.
The decrease of the gap at high density is due to the form factor, Eq. (2.37),

1The matrix elements used here are those obtained in Ref. [Bogner et al., 2007] with a
Fermi-Dirac regulator with Λ= 2 fm−1 and ǫ= 0.5 fm−1.
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Figure 4.1: Value of the gap at the Fermi surface, ∆kF
, as function of the

Fermi momentum kF , obtained with the separable interaction (solid line)
and with the Vlow-k interaction of [Bogner et al., 2007] (dashes).

Table 4.1: Parameters of the pairing interaction, Eqs. (2.36) and (2.37).

g (MeV fm3) 853
k0 (fm−1) 2.73
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and not due to an explicit density dependence of the pairing interaction as
it is often used in HFB and QRPA calculations with Skyrme forces (see,
e.g., Ref. [Khan et al., 2002]). The fact that our maximum gap is reduced
by ∼ 10% compared to typical BCS results obtained with the free nucleon
mass [Hebeler et al., 2007] is a consequence of the reduction of the density
of states due to the effective mass m∗ < m.

However, it should be pointed out that there is no consensus
in the literature about the correct density dependence of the gap
[Dean and Hjorth-Jensen, 2003, Chamel and Haensel, 2008], mainly
because of screening effects beyond BCS theory (analogous to the Gorkov–
Melik-Barkhudarov correction [Gor’kov and Melik-Barkhudarov, 1961]),
which could lead to a dramatic suppression of the gap. At low density,
recent Quantum-Monte-Carlo calculations [Gezerlis and Carlson, 2008,
Gezerlis and Carlson, 2010] seem to be reliable and show a suppression of
the gap between 30 and 50% compared to the BCS result (discussed and
illustrated in the preceding Chapter 3).

4.2 QRPA response function and collective

mode

We will now study the QRPA response function in neutron matter for dif-
ferent densities and compare it with the RPA one. In the present work
we consider the density response, which is defined by Π(ω, q) = ρ+(1)

q /(2Vex).
Since its real and imaginary parts are related to each other via dispersion
relations, it is enough to discuss the imaginary part, the so-called strength
function.

We choose densities between 0.016 and 0.04 fm−3, corresponding to typ-
ical densities of the neutron gas surrounding the clusters in the inner crust
of a neutron star [Negele and Vautherin, 1973]. At higher densities, as they
are realized in the neutron star core, our approach is not valid because there
the neutrons are paired in the 3P2 channel [Tamagaki, 1970]. As we have
seen in the preceding subsection, the 1S0 gap decreases with increasing
density. We therefore expect that at high density, our QRPA response ap-
proaches the RPA one. The latter is the response calculated without pairing,
i.e., by setting ∆k = 0 and keeping only the upper left 3×3 part of the matrix
in Eq. (3.34), and we checked that it coincides with the RPA response func-
tions that can be found in the literature [García-Recio et al., 1992]. As one
can see in Fig. 4.2, where the strength function is shown for ρ = 0.04 fm−3,
the RPA (dashes) and QRPA (solid lines) responses are indeed similar and
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momentum transfers q = kF (a) and 2kF (b).
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approach each other with increasing excitation energy ω and momentum
transfer q. For q = kF (upper panel) and 2kF (lower panel), the RPA strength
function has a broad continuum. The effect of pairing is to shift the thresh-
old of the continuum from zero to the pair-breaking threshold ∼ 2∆kF

. At
excitation energies much larger than 2∆kF

, the response is practically not
affected by pairing. At energies around the threshold, however, the response
is strongly modified by pairing. The peak visible at the threshold corre-
sponds to a collective mode which is damped since it lies in the continuum,
i.e., it can decay into two quasiparticles. In RPA, one does not see any collec-
tive mode, since the ph interaction is attractive and a collective zero-sound
mode, as it can be described by RPA, exists only for repulsive ph interaction
[Nozières, 1964].

In the preceding examples the collective mode was damped because we
considered a high momentum q and relatively weak pairing. In order to
see more clearly the collective mode, let us now choose a lower density
ρ = 0.016 fm−3 and smaller momenta. In the upper panel of Fig. 4.3, we see
the imaginary part of the response function for momenta between q = 0.5kF

and 1.3kF . Now there is a pole in the real part of the response function below
the continuum threshold, corresponding to an undamped collective mode. In
principle, the imaginary part has a δ-function peak at this energy, which
is represented as an arrow in Fig. 4.3. The height of each arrow indicates
the strength contained in the peak, which is proportional to the derivative
d(Π−1)/dω calculated at the pole of Π. We can see that the strength is highest
for small q and decreases as the mode approaches the continuum threshold.
At momenta higher than ∼ 1.5 fm−1 (see lower panel of Fig. 4.3), the collec-
tive mode enters again into the continuum, as in Fig. 4.2.

Let us study in more detail the dispersion relation ωq of the collective
mode. In Fig. 4.4, the solid lines represent the dispersion relations of the un-
damped collective mode at densities ρ = 0.016 (upper panel) and 0.04 fm−3

(lower panel). We see that at small q, the dispersion relation is practically
linear. The fact that ω→ 0 for q → 0, as required by the Goldstone theorem,
is in practice a very good test of our numerics, since ωq=0 is extremely sen-
sitive to small numerical errors in the matrix 〈〈Π(0)

q V 〉〉. Another test is the
slope dω/dq at q = 0, which agrees perfectly with the hydrodynamic speed
of sound calculated from Eq. (3.58) (dash-dotted lines). We see that ωq stays
more or less linear as long as ω≪ 2∆kF

. Since in the case ρ = 0.04 fm−3 the
gap ∆kF

is smaller and the speed of sound u is higher, the range of appli-
cability of the hydrodynamic approximation is smaller than in the case ρ =
0.016 fm−3. At larger q, the mode frequency starts to bend and approaches
the pair-breaking threshold, which is represented by the dots (approaching
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Figure 4.3: QRPA response functions for q/kF = 0.5,1,1.3 (a) and 2,2.5,3 (b)
at ρ = 0.016 fm−3 as functions of the excitation energy ω. The arrows in
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2∆kF
and q(q/2− kF )/m∗, respectively, in the limits of very small and very

large q/kF ). Above a certain q, (e.g., ∼ 1.5 fm−1 for ρ = 0.016 fm−3 and
∼ 0.9 fm−1 for ρ = 0.04 fm−3) the mode enters into the continuum (dashes)
but it stays practically at the threshold (cf. also lower panel of Fig. 4.3).
This behavior of the collective mode is qualitatively different from the one
shown in Ref. [Keller and Sedrakian, 2013] but similar to the one obtained
in Ref. [Baldo and Ducoin, 2011]. Also in the context of ultracold atoms, re-
sults similar to ours have been found, see Ref. [Combescot et al., 2006] for
a QRPA calculation and Ref. [Forbes and Sharma, 2014] where the collec-
tive mode was studied as small-amplitude oscillation in a time-dependent
density-functional theory implementation (similar to TDHFB).

4.3 Comparison with the Landau approxima-

tion

Now we discuss the results obtained within the Landau approximation
as explained in Sec. 3.3. This approximation has recently been used in
Refs. [Baldo and Ducoin, 2011, Keller and Sedrakian, 2013]. In Fig. 4.5
we display response functions for two different densities (ρ = 0.016 and
0.04 fm−3) and momenta (q = 0.3 and 1.5 fm−1) within the Landau approxi-
mation keeping only F0 (dotted lines), and within the Landau approximation
keeping F0 and F1 as required by Galilean invariance (dashes), and compare
them with the full QRPA results (solid lines). In the case of small momentum
transfer (q = 0.3 fm−1, left panels of Fig. 4.5), the three calculations give very
similar results. As in Fig. 4.3, the arrows indicate the energy and strength
of the undamped collective mode. We see that the Landau approximation
(with F0 and F1, and even with F0 only) works very well for the energy of
the collective mode, only the strength (height of the arrow) is slightly differ-
ent from that obtained in the full QRPA 2. At excitation energies above ∼ 10
MeV one starts to see a difference between the two Landau approximations.
As expected, the result obtained with F0 and F1 is in better agreement with
the full QRPA than that obtained with F0 only, as one can see in the upper
left panel of Fig. 4.5.

The situation is completely different at higher momentum transfer. In

2It is well known that the sound velocity is given by u2 = k2
F

/(3m∗2)(1+ F0)(1+ F1/3)
[Leggett, 1966]. However, the last term depending on F1 does not originate from the resid-
ual interaction, but from the effective mass m∗, which is related to F1 by Galilean invari-
ance: u2 = k2

F
/(3mm∗)(1+F0) [Nozières, 1964]. Therefore, if one calculates the response

function with the effective mass m∗, one already obtains the correct sound velocity by in-
cluding only F0 in the residual interaction.
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the right panels of Fig. 4.5, we show results for q = 1.5 fm−1. In this case,
the collective mode has disappeared in the continuum. Now the responses
obtained within the Landau approximation and within the full QRPA are
clearly different. This is not surprising, since the basic assumption under-
lying the Landau approximation, namely that the excited quasiparticles are
close to the Fermi surface, is no longer fulfilled, and also the q dependence of
the residual ph interaction [term W1(q)] is no longer negligible. We note that
the inclusion of the F1 Landau parameter does not improve the agreement
of the Landau approximation with the full QRPA in this case.

To conclude, the Landau approximation seems to be sufficient to estab-
lish the dispersion curve of the collective mode of the neutron gas. However,
it may strongly affect calculations that need the entire response function,
e.g. the neutrino mean free path in neutron stars [Margueron et al., 2003].

4.4 Heat capacity

In Ref. [Fortin et al., 2010] it was pointed out that neutron pairing results in
a strong suppression of the heat capacity at low temperature, which might
have observable effects on the neutron star cooling. The relevant tempera-
ture range is T . 109 K ∼ 100 keV, which is much smaller than ∆kF

in the
region we are interested in. The quasiparticle contribution to the specific
heat at temperature T can be obtained from

cv,qp = T
∂ sqp

∂T

∣∣∣∣
ρ

, (4.1)

where sqp denotes the entropy density of thermally excited quasiparticles
[Tinkham, 1975]

sqp =−2
∑
p

[(
1− f (Ep)

)
ln

(
1− f (Ep)

)
+ f (Ep) ln

(
f (Ep)

)]
(4.2)

with f (E) = 1/(eE/T + 1). Indeed, cv,qp is suppressed by a factor of
e−∆kF

/T at low temperature, as it is the case in superconducting metals
[Fetter and Walecka, 1971]. Note that in a superconductor, the Bogoliubov-
Anderson mode is shifted upwards to the plasma frequency by the Coulomb
interaction [Nambu, 1960] and therefore its contribution to the specific heat
is negligible. However, in a superfluid such as the neutron gas the situation
is different because here the Bogoliubov-Anderson mode is the dominant
contribution to the specific heat at low temperature, and not the quasiparti-
cles.
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At T ≪∆kF
, we can neglect the temperature dependence of the collective

mode itself, i.e., we can calculate its contribution to the specific heat by using
its dispersion relation ωq obtained at T = 0:

cv,coll =
1

T2

∑
q

ω2
qeωq/T

(eωq/T −1)2
. (4.3)

At low temperatures, this reduces to

cv,coll =
2π2T3

15u3 , (4.4)

where u is the sound velocity of the collective mode. The T3 behav-
ior is analogous to the specific heat of phonons in a solid [Debye, 1912,
Ashcroft and Mermin, 1976]. So, we see that at low temperatures the con-
tribution of the neutron gas to the specific heat is reduced as compared to
the specific heat of unpaired neutrons, which would be linear in T. But the
reduction is not as drastic as the exponential suppression of cv,qp. This is il-
lustrated in Fig. 4.6, where the specific heats of the quasiparticles, Eq. (4.1)
(dashed lines), and of the collective mode, Eq. (4.3) (solid lines), are dis-
played as functions of temperature. As densities of the neutron gas we take
ρ = 0.003 (upper panel) and 0.0184 fm−3 (lower panel), which appear in the
neutron-star crust at total baryon densities of ρB ≈ 0.00373 and 0.0204 fm−3,
respectively [Negele and Vautherin, 1973].

In addition to the QRPA results, we also show approximate re-
sults for the contribution of the collective mode obtained with the
hydrodynamic sound velocity and Eq. (4.4) (dashed-dotted lines).
At low temperatures, Eq. (4.4) is in perfect agreement with the
QRPA result. This is a reassuring result since in many stud-
ies [Di Gallo et al., 2011, Aguilera et al., 2009, Chamel et al., 2010,
Cirigliano et al., 2011, Chamel et al., 2013a, Kobyakov and Pethick, 2013]
the contribution of the collective mode was calculated assuming the validity
of the hydrodynamic approximation (long-wavelength limit). At higher
temperatures, where the QRPA result starts to deviate considerably from
Eq. (4.4), also our approximation to neglect temperature effects in the QRPA
itself becomes questionable, as one can see from the increasing contribution
of thermal quasiparticles.

Let also mention that at very low densities (such as ρ = 0.003 fm−3),
the sound velocity is close to that of an ideal Fermi gas, u ≈ kF /(

p
3m), so

that Eq. (4.4) is well approximated by cv,coll ≈ 2
p

3m3T3/(15ρ). While the
discrepancy between this simple formula and Eq. (4.4) is less than 10 % in
the case of ρ = 0.003 fm−3, it is a factor of 3 in the case of ρ = 0.0184 fm−3
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Figure 4.6: Heat capacity of a neutron gas with density ρ = 0.003 (a) and
0.0184 fm−3 (b), corresponding to total baryon densities in the neutron-star
crust of ρB ≈ 0.00373 and 0.0204 fm−3, respectively: neutron quasiparticle
contribution (dashes), contribution of the collective mode calculated within
QRPA (solid lines) and within the hydrodynamic approximation (dashed-
dotted lines). For comparison, we also display the electron contribution (dot-
ted lines) under the assumption of µe = 36.2 (a) and 50.1 MeV (b), corre-
sponding to electron densities ρe = 2.1 ·10−4 and 5.5 ·10−4 fm−3.
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where the sound velocity is considerably reduced by the attractive neutron-
neutron interaction.

To assess the importance of the contribution of the collective mode to
the specific heat of the inner crust, we show in Fig. 4.6 also the electron
contribution (dotted lines), which is linear in temperature,

cv,e =
µ2

eT

3
. (4.5)

The values of the electron chemical potentials µe = 36.2 and 50.1 MeV
used in the upper and lower panel of Fig. 4.6, respectively, were
obtained from the neutron and proton chemical potentials given in
Ref. [Negele and Vautherin, 1973] and the relation µe = µn − µp of β-
equilibrium. One sees that, at not too low temperatures, the contribution
of the collective mode is comparable to that of the electrons. In the case
ρ = 0.003 fm−3, the contribution of the collective-mode even exceeds that of
the electrons at T & 150 keV.

4.5 Conclusion

In this chapter we used the QRPA to study collective excitations in a uni-
form superfluid neutron gas. We focused on low densities such as they are
predicted in the inner crust of neutron stars. At these densities, the neutron
pairing in the s wave is relatively strong. For the interaction, we used a
Skyrme force in the ph channel and a separable interaction with a Gaussian
form factor in the pp channel. We derived the QRPA density response by
taking the small-amplitude limit of the TDHFB equations.

Since the HFB ground state breaks the global U(1) symmetry, a Gold-
stone mode, corresponding to phase oscillations of the superfluid gap, must
exist. This Bogoliubov-Anderson sound is actually a simple density wave,
in other channels (e.g., spin modes) there are no ungapped modes. Since we
treat the ph and pp residual interactions consistently with the HFB ground
state, our QRPA density response automatically exhibits the Bogoliubov-
Anderson sound with a linear dispersion relation ω= uq at low momentum
q. The speed of sound u coincides with the hydrodynamic one. However,
as ω approaches the pair-breaking threshold at ∼ 2∆kF

, substantial devia-
tions from the linear dispersion relation are found: instead of crossing the
threshold near q = 2∆kF

/u, the dispersion relation of the collective mode
bends, slowly approaches the threshold, and closely follows it, before it fi-
nally crosses it at a much higher q and enters into the two-quasiparticle
continuum.
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We also checked the quality of the Landau approximation to the resid-
ual interaction. We found that at low momenta (q . 1 fm−1) the Landau
approximation is sufficient to describe the collective mode. In this range of
momenta, also the continuum of the response function is well described if
one includes in addition to the l = 0 Landau parameter F0 also the l = 1
parameter F1, as required to satisfy Galilean invariance in the case of an
effective mass m∗ 6= m. At higher momenta (q & 1 fm−1), the QRPA response
function is not well reproduced by the Landau approximation. In this case,
the inclusion of the parameter F1 in addition to F0 does not significantly im-
prove the result. However, we note that in the case of a Skyrme interaction,
the computation of the full QRPA response is almost as simple as the calcu-
lation within the Landau approximation, so that there is no good reason not
to do the full calculation.

The existence of an ungapped collective mode has a strong effect on the
heat capacity of the neutron gas. While quasiparticle excitations are expo-
nentially suppressed at low temperature T ≪ ∆kF

because of the gap, the
collective mode can be excited at arbitrarily low temperatures and leads to
a specific heat which is proportional to T3 at low T, inceasing the neutron-
gas contribution to the specific heat by several orders of magnitude in the
temperature range relevant for neutron stars. Depending on density and
temperature, the contribution of the collective mode to the specific heat of
the inner neutron-star crust can be comparable to or even larger than that
of the electrons.

As we have seen, in a uniform gas the QRPA response at low energies
is well reproduced by simple hydrodynamics. However, in reality the neu-
tron gas in the inner crust is not uniform, but it contains clusters having
a higher density and consisting of neutrons and protons. These clusters
form a Coulomb crystal. The clusters can also take the shape of cylinders
or plates, in this case one speaks of “pasta phases”. The coupling between
the collective mode of the neutron gas and the lattice phonons of the clusters
is very important [Cirigliano et al., 2011, Chamel et al., 2013a]. As long as
the coherence length of the Cooper pairs is less than the size of these struc-
tures, the hydrodynamic approach should remain a reasonable approxima-
tion. Work in this direction has been done in Ref. [Di Gallo et al., 2011] for
the so-called “lasagne” phase and we performed calculations for crystal and
“spaghetti” phase, as detailed in the following Part III. For an extension of
the present study to the response of uniform matter with higher density, as it
exists in the neutron star core, one has to include also the proton component
and treat neutron pairing in the p wave.

For a complete description of cooling of neutron stars
[Page and Reddy, 2013], the collective modes do not only play a role in
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the specific heat, but also in the heat conductivity. A discussion of these
aspects, based on the long-wavelength approximation for the collective
modes [Cirigliano et al., 2011], can be found in Ref. [Page and Reddy, 2012].
Again, the coupling between the collective mode of the superfluid and the
lattice phonons seems to be very important. Therefore, a unified description
of the Bogoliubov-Anderson mode and the lattice phonons from a more
microscopic perspective would be desirable.
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Part III

Nuclear matter in the inner

crust

57





Chapter 5

Neutron star matter

5.1 Introduction

The usual picture of the neutron-star crust [Chamel and Haensel, 2008] is
that one starts from a Coulomb crystal of nuclei in the outer crust. As
one goes deeper into the star, the nuclei become more and more neutron
rich (as a consequence of the increasing electron chemical potential and β-
equilibrium) until the neutron drip line is reached. This defines the tran-
sition to the inner crust, where the nuclei (“clusters”) are embedded in a
dilute gas of unbound neutrons. The inhomogeneous phases in the inner
crust can also be interpreted in another way [Avancini et al., 2008], which is
quite common in the study of supernova matter (i.e., matter at finite tem-
perature and out of β-equilibrium) [Pais et al., 2015, Aymard et al., 2014],
namely as a consequence of the first-order liquid-gas instability of nuclear
matter. One aim of the present chapter is to see to what extent the simple
picture of phase coexistence can explain certain properties of the inhomo-
geneous phases of the inner crust of neutron stars. However, within the
most simple phase-coexistence picture, surface- and Coulomb energies are
neglected. An approximate way to include them is to use a more microscopic
approach, namely to parameterize the density profile and determine its pa-
rameters by minimizing the thermodynamic potential.

5.2 Thermodynamical approaches

5.2.1 Uniform matter

The most simple model of stellar matter consists in assuming uniform mat-
ter under β-equilibrium. Obviously this approach neglects the inhomo-

59
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geneities of the inner crust. However, it could be a satisfying approximation
for the outer core, i.e., where the density is uniform and of the order of satu-
ration density of nuclear matter. (Beyond a few times the saturation density,
one expects hyperons or quark-gluon plasma [Chamel and Haensel, 2008].)
The chemical composition of the uniform matter is driven by the β-
equilibrium:

µe =µn −µp , (5.1)

with µe the electron chemical potential and µq the chemical potential for q =
(n, p) neutron and proton, respectively. For practical purpose, the electron
mass can usually be neglected so that µe = (3πρ2

e)1/3
~c, with ρe the electron

number density. Furthermore, neutron star matter has to satisfy electric
charge neutrality, i.e., the electron density respects ρe = ρp, with ρp the
proton density. Thus, we can rewrite the β-equilibrium as:

~c(3π2ρp)1/3 =µn −µp . (5.2)

We use a Skyrme energy-density functional (EDF) [Chabanat et al., 1997]
to calculate the energy density ǫSk as a function of ρn and ρp. In fact, by
choosing the Skyrme functional, the expression of µq is analytical and is
strictly function of ρn and ρp:

µq =
∂ESk

∂ρq

, (5.3)

and the pressure
P =−ESk +µnρn +µpρp , (5.4)

appearing in Eqs. (5.5) and (5.6). We use different Skyrme parametriza-
tions, all fitted to the neutron-matter equation of state: the Saclay-Lyon
forces SLy4 and SLy7 [Chabanat et al., 1998] and the Brussels-Montreal
forces BSk20 and BSk22 [Goriely et al., 2013].

5.2.2 Phase coexistence

As a first approximation, the inhomogeneous inner crust could be described
as a phase coexistence of liquid drops (corresponding to the nuclear clusters)
with volume V liq and a gas (the dilute neutron gas) with volume V gas (see
Fig. 5.1), which satisfies mechanical and chemical equilibrium, i.e.,

Pgas = P liq , (5.5)

µ
gas
q =µ

liq
q , (5.6)
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Figure 5.1: A schematic view of the phase coexistence. This framework ne-
glects the surface energy, which is illustrated by an arbitrary and irregular
surface of the droplets.

with P i the pressure, and µi
q the chemical potential in the phase i.

In addition to the neutrons and protons, we consider again a uniform
electron gas to ensure charge neutrality, i.e.,

Vρe =V liqρ
liq
p +V gasρ

gas
p , (5.7)

where V = V liq +V gas is the total volume and ρ i
p is the proton density in

phase i (ρgas
p is not always zero). Instead of working with the volumes, it

is more convenient to introduce the volume fraction u filled by the liquid,
which satisfies

u =
V liq

V
=

ρe −ρ
gas
p

ρ
liq
p −ρ

gas
p

. (5.8)

Furthermore, in neutron stars, matter is in β-equilibrium (5.1). Simi-
larly to uniform matter (see Sec. 5.2.1), the electron mass can be neglected.
Thus we obtain for the volume fraction

u =
1

ρ
liq
p −ρ

gas
p

[
(µn −µp)3

3π2(~c)3 −ρ
gas
p

]
. (5.9)
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5.3 Semiclassical approach

In the phase-coexistence picture described before, we could determine the
volume fraction u, but not the actual size of the clusters. The latter is deter-
mined by finding the best compromise between the Coulomb energy (favor-
ing small clusters) and the surface energy (favoring large clusters), which
were both neglected in the phase-coexistence picture. Let us now consider a
more sophisticated approach, where these effects are included.

5.3.1 Extended Thomas-Fermi approximation

In nuclear physics the development of semiclassical approaches, and in par-
ticular of the Extended Thomas-Fermi (ETF) method dates back to the 1980s
[Brack et al., 1985]. At this time, the improvement of the fission barrier cal-
culations [Brack et al., 1985] made necessary to perform new fits of the nu-
clear effective interactions (e.g. such as Skyrme or Gogny). The latter was
too expensive in terms of computer times needed by HF calculations in the
1980s [Brack et al., 1985]. Hence, the ETF approximation turned out to be
an efficient solution to perform new fits. Actually, the ETF theory provides
local density functionals of kinetic energy τ[ρ] and spin current J[ρ] densi-
ties, defined for the Skyrme density functional in Ref. [Brack et al., 1985].
In the last years, interest has been renewed in ETF for the description of
exotic neutron-rich nuclei, in neutron star matter [Aymard et al., 2014].

The ETF functionals are improvements of the Thomas-Fermi (TF)
approximation, thanks to the semiclassical ~-expansion developed by
[Wigner, 1932] and [Kirkwood, 1933] (the so-called Wigner-Kirkwood expan-

sion). At the zeroth order (TF approximation), the kinetic energy reads as
[Brack et al., 1985]:

τTF[ρq]=
3
5

(3π2)2/3ρ5/3
q , (5.10)

with ρq the single-particle density for q = (n, p), neutron and proton, respec-
tively. By expanding to the second ~

2 order, one has [Brack et al., 1985]:

τL
2 [ρq]=

1
36

(∇ρq)2

ρq

+
1
3
∆ρq , (5.11)

τNL
2 [ρq]=

1
6

∇ρq ·∇ fq

fq

+
1
6
ρq

∆ fq

fq

−
1

12
ρq

(∇ fq

fq

)2

+
1
2

(
2m

~2

)
ρq

(
Wq

fq

)2

. (5.12)

In the two last equations, τL
2 and τNL

2 denote the second-order local and non-
local (effective mass and finite range approximation, see Eq. (2.6)) terms,
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respectively. The effective mass ratio is defined by fq = m/m∗
q, with m∗

q the
effective mass (2.8). Finally, the total kinetic energy reads as:

τETF =
∑
q

τTF[ρq]+τL
2 [ρq]+τNL

2 [ρq] . (5.13)

In addition, with respect to the ETF approximation, the spin current Jq

is expressed as follows [Brack et al., 1985]:

Jq =−
2m

~2

ρqWq

fq

, (5.14)

with Wq the spin-orbit field [Chabanat et al., 1998]

Wq =
1
2

W0(∇ρ+∇ρq) , (5.15)

and ρ = ρn +ρp the total density.

5.3.2 Surface parametrization

In the introduction of this section, we mentioned briefly the necessity of
the surface energy in order to determine the size of the clusters (in con-
trast to the phase-coexistence framework). Here, the surface energy is
computed within the semiclassical ETF approximation [Brack et al., 1985,
Aymard et al., 2014]. Instead of solving the Euler-Lagrange equation
[Lassaut et al., 1987, Baldo et al., 2014], we use a parametrization of the
density profile. Our density is parametrized with a generalized Fermi-Dirac
(FD) profile

ρq(r)= ρ
gas
q +

ρ
liq
q −ρ

gas
q{

1+exp
[
(r− rq)/aq

]}γq
, (5.16)

and the energy is minimized with respect to the 11 parameters ρ i
q, rq, aq,

γq, and the cell size. Let us note that if one fixes γq = 1 then we have a
standard Fermi-Dirac profile, so that the minimization is performed with
respect to 9 parameters. This parametrization looks similar to the shape ob-
tained in Hartree-Fock calculation, e.g., Ref. [Negele and Vautherin, 1973,
Aymard et al., 2014] and has a simple interpretation: ρ

liq
q and ρ

gas
q corre-

spond, respectively, to the asymptotic densities in the cluster and in the gas
far away from the surface, rq describes the cluster radius, including the pos-
sibility of a neutron skin if rn > rp, and aq is the surface diffuseness. The
factors γq add two degrees of freedom, which allow one to describe an “asym-
metric” surface. One can compare FD and generalized FD profiles at same
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the chemical potential in Fig. 5.2. However, the difference for a same chem-
ical potential is very slight and does not modify strongly the calculations
(see Chap. 6), so that we restrict the minimization to 9 parameters by fixing
γq = 1.
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Figure 5.2: Density profiles obtained for a spherical cluster at fixed chemical
potential µ = 11.18 MeV. The solid line corresponds to the results obtained
with 9 parameters (FD), while the dashed line describes the 11 parameters
(generalized FD) results.

Note that a similar approach was followed by [Oyamatsu, 1993] and
by [Pearson et al., 2012]. However, Oyamatsu used a completely different
parametrization of the density, which did not become constant inside the
cluster. Our parametrization (5.16) resembles more the one used by Pearson
et al.

5.3.3 Energy minimization

As discussed in the preceding subsection, we chose to parametrize the sur-
face, instead of solving the Euler-Lagrange equation, so that we have to
minimize the energy with respect to all the parameters. Concerning the
structure of the inner crust, it is belived to be periodic because a periodic
lattice minimizes the Coulomb energy [Oyamatsu et al., 1984]. Let us note
that the periodicity increases strongly the complexity of the Coulomb en-
ergy calculation, by requiring the Ewald summation. However, the Coulomb
energy is absolutely necessary for the minimization, because of its major
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Figure 5.3: Scheme of the Wigner-Seitz (WS) approximation performed
within the ETF framework. The WS cell borders are displayed by the white
circles surrounding the clusters. The surface between the liquid and the gas
is blurred in order to materialize the diffuseness of the surface.

role in the competition with the surface energy (see Sec. 1.3.1), which deter-
mines the cluster size and surface shape. Hence, we use the Wigner-Seitz
(WS) approximation, i.e., we calculate the Coulomb energy in an isolated cell
r < RWS, with RWS chosen such that the volume of the WS cell corresponds
to the volume of the unit cell, as displayed in Fig. 5.3.

In addition, it seems very hard to perform the minimization of the energy
for fixed average densities (averaged over the WS cell), since the average
densities depend on all the parameters. We therefore introduce chemical
potentials µq as Lagrange parameters to fix the densities and minimize the
thermodynamic potential instead of the energy. To be precise, we minimize
ω=−P =Ω/VWS, where

Ω= ESk −µnN −µpZ−µeZ+Ee +EC +Eex , (5.17)

which reduces to

Ω= ESk −µn(N +Z)+Ee +EC +Eex , (5.18)

because of the β-equilibrium constraint (5.1). In this equation, ESk denotes
the energy obtained with the Skyrme functional, N and Z are the total num-
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bers of neutrons and protons in the WS cell, Ee denotes the energy of the
electron gas, EC the Coulomb energy, and Eex the energy due to the Coulomb
exchange term.

The volume VWS of the WS cell depends on RWS and on the geometry
one considers (spheres, rods, or slabs). Let us define the functions Sd(r) and
Vd(r) describing, respectively, the “surface” and the “volume” of a d dimen-
sional sphere of radius r, i.e.,

S1(r)= 2 , S2(r)= 2πr , S3(r)= 4πr2 , (5.19)

V1(r)= 2r , V2(r)=πr2 , V3(r)= 4
3πr3 . (5.20)

In the case of spheres (d = 3), the volume of the WS cell is VWS =V3(RWS). In
the case of rods (d = 2), the “volume” VWS =V2(RWS) is actually an area and
consequently E, N, Z, etc. represent energies and particle numbers per unit
length. Similarly, in the case of slabs (d = 1), the “volume” VWS =V1(RWS) is
a length and E, N, Z, etc. represent energies and particle numbers per unit
area.

The integrated Skyrme energy in the WS cell, ESk, is defined as

ESk =
∫RWS

0
ddrESk[ρn(r),ρp(r)] , (5.21)

with ddr = Sd(r)dr and ESk the Skyrme EDF (2.6), the kinetic energy den-
sity τq(r) being calculated within the ETF approximation cf. Eqs. (5.10)–
(5.14).

For the electron gas, we assume a constant density ρe = Z/VWS. Hence,
its energy can be written as Ee = VWSǫe. The energy density ǫe, taking into
account the electron mass me, reads [Baldo et al., 2014]

ǫe =
~ck4

F,e

4π2

[(
1+

1

2x2
e

)√
1+

1

x2
e

−
sinh−1 xe

2x4
e

]
, (5.22)

with kF,e = (3π2ρe)1/3 and xe = ~kF,e/mec.
The exchange term of the Coulomb interaction is computed within the

Slater approximation [Baldo et al., 2014]. For the protons, it is given by the
integral of

ǫex,p(r)=−
3
4

(
3
π

)1/3

e2ρ4/3
p (r) , (5.23)

over the WS cell. For the relativistic electrons, the exchange energy includes
also contributions from transverse photons and gets positive for xe & 2.53
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[Salpeter, 1961]. Its expression reads [Rajagopal, 1978]

ǫex,e =
e2k4

F,e

8π3



3

[√
1+

1

x2
e

−
sinh−1 xe

x2
e

]2

−2



 . (5.24)

5.3.4 Coulomb energy

The Coulomb energy EC is derived from the charge density ρc(r) = ρp(r)−
ρe. We first calculate the Coulomb potential VC(r) satisfying the Poisson
equation

∆VC(r)=−4πe2ρc(r) , (5.25)

with ∇VC(0) = 0. This determines VC(r) only up to a constant, which is
however irrelevant for the energy since the total charge of the WS cell is
zero. The Coulomb energy is given by

EC =
1
2

∫RWS

0
ddrρc(r)V (r) . (5.26)

Note that VC(r) and the integral (5.26) must be computed numerically, in
contrast to the approximate expressions one obtains for uniformly charged
spheres (or rods, or slabs, respectively) with a sharp surface which are
often used in the literature [Ravenhall et al., 1983, Hashimoto et al., 1984,
Avancini et al., 2010, Pais et al., 2014].

We relaxed the assumption of a constant electron density by using a
screened Coulomb potential instead of the full one, i.e., replacing the Poisson
equation (5.25) by (

∆−
1

λ2

)
VC(r)=−4πe2ρc(r) , (5.27)

where λ denotes the Debye screening length, 1/λ2 = (4α/π)k2
Fe

(neglecting
the electron mass), with α= e2/~c. From Eq. (5.27), one can define the charge
density if screening is included:

ρs
c(r)= ρc(r)−

k2
F,e

π2~c
VC(r) . (5.28)

Hence, if we consider the proton density ρp(r) to be identical in both cases
(with and without screening), from now on the electron density is not con-
stant anymore if one accounts for screening. Also, we introduce the density
difference of the electrons

∆ρe = ρs
e(r)−ρe =

k2
F,e

π2~c
VC(r) , (5.29)
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Figure 5.4: In the upper panel, we display the Coulomb potential V calcu-
lated without (blue line) and with (dashed red line) screening. This is the
results for a spherical cell with neutron chemical potential µ = 11.18 MeV.
The lower panel, shows the density difference ∆ρe = ρs

e(r)−ρe, with ρs
e(r) the

density of electrons if one accounts for the screening.

where ρs
e(r) stands for the electron density if screening is included. How-

ever, as already noticed in [Maruyama et al., 2005], the screening length
of the electrons is so large that this effect is negligible. In Figure 5.4, we
present in the upper panel the effect of screening for the Coulomb potential
V , where the difference is of the order of a few keV. While, the lower panel
of Fig. 5.4 shows the deviation of the electron density, and its maximum is
∆ρe/ρe ∼ 14%. However, the Poisson equation is function of the total charge
density ρc(r), the absolute value of maximum deviation is only ∼ 1.6%, with
respect to ρc(r). In conclusion, we neglect the screening effects in the follow-
ing calculations.

5.3.5 Numerical methods

Since the minimum of the thermodynamic potential ω=Ω/VWS (5.18) is very
flat in parameter space, the numerical minimization is highly sensitive to
slight numerical noise. One remarks that the expression of the kinetic en-
ergy τ[ρq] within the ETF framework [see Eqs. (5.11)–(5.13)], contains the
Laplacian of the density ∆ρq. This dependence is not explicitly written, but
in the Skyrme EDF framework, ∆ fq is a functional of ∆ρq, where fq = m/m∗

q

is the effective mass ratio. Hence, the density has to be constant at r = 0 if
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one wants to have a well defined Laplacian. This condition is not exactly
fulfilled if one uses a Fermi-Dirac surface parametrization. Actually, the
gradient of such parametrization is only zero in the limit r →∞.

This problem was solved by performing an integration by parts of the
Laplacian terms. One remarks that ∆ fq appears twice in the full expression
of the Skyrme energy: (i) a term ρq∆ fq/ fq in the expression of τETF and (ii)
another term in the velocity-dependent term of the Skyrme functional (2.6),
expressed as ρ2

q∆ fq/ fq. The first term can be transformed as follows:
∫

ddrρq

∆ fq

fq

=
[
Sd(r)ρq

∇ fq

fq

]RWS

0
−

∫
ddr ∇ fq

fq∇ρq −ρq∇ fq

f 2
q

. (5.30)

If the density was constant at r = 0 and r = RWS as it should be, i.e., ∇ρq = 0,
the first term would vanish. Hence the preceding equation reduces to:

∫
ddrρq

∆ fq

fq

=−
∫

ddr ∇ fq

fq∇ρq −ρq∇ fq

f 2
q

. (5.31)

Similarly, we integrate by parts the velocity-dependent term
∫

ddrρq

∆ fq

fq

=−
∫

ddrρq∇ fq

2 fq∇ρq −ρq∇ fq

f 2
q

. (5.32)

It turned out that this approximation of a constant density in the center
of the cluster and at the border of the WS cell was sufficient to solve the
numerical instabilities.

As mentioned above, the minimization was very delicate because of the
flat minimum. Actually, we had to find the most robust minimization pro-
cedure. In a first step we tried gradient methods which follow the trend of
the function until the minimum is reached. However, such approaches re-
quire precise values of the gradient and small enough steps (otherwise the
minimum could be missed). It turned out that these methods were not pre-
cise enough. Generally, the minimization stopped after reaching the bound-
aries of the parameter space. Another solution was the Nelder-Mead Sim-

plex (NMS) alorgithm [Nelder and Mead, 1965]. In contrast to the gradient
method, the NMS does not require gradients of the function to minimize. It
proceeds by mapping the space surrounding a minimization point. Never-
theless, it requires a lot of computation time to map 9 or 11 dimensions of
space. The numerical framework for a NMS minimization is available in the
GNU Scientific Library (GSL), see Chap. 35 of Ref. [Galassi et al., 2009]. It
required a binding of ❋❖❘❚❘❆◆ and ❈ codes. In fact the GSL is written in ❈,
while the core of the numerical calculation of ETF is developed in ❋❖❘❚❘❆◆.
In addition, we performed a speed up by using a multi-thread parallelization
thanks to the OpenMP library.
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Chapter 6

Results for the inner crust

After presenting methods for the description of neutron star matter, we will
concentrate on the results for the inner crust. Actually, as mentioned in
Sec 1.3.1, inhomogeneous nuclear matter is expected in the inner crust.
Most of the results shown in the present chapter have been published previ-
ously in Ref. [Martin and Urban, 2015].

6.1 Phase coexistence

Let us first discuss the results obtained within the simple phase coexistence
approach. Figure 6.1 represents the densities in the gas and in the liquid as
functions of the baryon density

ρb = u(ρliq
n +ρ

liq
p )+ (1−u)(ρgas

n +ρ
gas
p ) , (6.1)

obtained with the BSk22 [Chamel et al., 2013a] and SLy4 interaction
[Chabanat et al., 1998]. The main difference between the two parametriza-
tions is the transition to uniform matter, i.e., the point where the liq-
uid fills the whole volume (u = 1). For instance, the transition occurs at
ρb ≈ 0.09 fm−3 with SLy4, while with BSk22 it is below 0.08 fm−3.

Figure 6.2 shows the same results, but on a logarithmic scale so that
the low density region is better visible. The region below ρb ≈ 10−3 fm−3

corresponds to the outer crust, where ρ
gas
n = ρ

gas
p = 0 (i.e., µn,µp ≤ 0). In the

limit of extremely low densities, the droplets are made of symmetric nuclear
matter at saturation density (ρn = ρp = 0.08 fm−3). The kink in the densities
visible in Fig. 6.2 corresponds to the transition between the outer and the
inner crust, i.e., to the point where µn becomes positive and the neutron gas
appears.
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Figure 6.1: Neutron and proton densities in the coexisting liquid (droplets)
and gas phases, calculated with the Skyrme parameterizations SLy4 and
BSk22.
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Figure 6.2: Same as Fig. 6.1 but with a logarithmic scale for the baryon
density.
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Figure 6.3: Proton density in the gas phase (and later in uniform matter) as
function of the total baryon density calculated within the phase coexistence
approach using the SLy4, SLy7, BSk20 and BSk22 Skyrme parametriza-
tions.

Close to the transition to uniform matter, also µp becomes positive and
the gas phase does not only contain neutrons, but also a small amount of
protons. Figure 6.3 zooms on densities where protons are present in the
gas. Note that the proton density in the gas is always very low, less than
10−3 fm−3 for all Skyrme parametrizations, compared to the other densities
calculated in the phase coexistence framework.

6.2 Energy minimization

In the preceding section, we treated the inner crust as two nuclear fluids in
phase coexistence. As already mentioned in Sec. 5.3, this approach misses
surface and Coulomb effects, which are included in the minimization of the
thermodynamic potential with respect to the parameters of the density pro-
file given in Eq. (5.16). Actually, we perform the minimization for each of
the three different geometries discussed in Sec. 5.3, namely spheres (3D),
rods (2D), and slabs (1D). Let us remind that we restrict our minimization
to 9 parameters as discussed in Sec. 5.3.2. The geometry giving the lowest
thermodynamic potential should be the one that is physically realized.

From now on, we restrict ourselves to the range µn > 0 corresponding
to the inner crust and show the results as functions of the average baryon
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Figure 6.4: The thermodynamic potential ω as function of the baryon density
ρb, with the thermodynamic potential ωu of uniform matter subtracted. In
the inset, a phenomenological function ω is subtracted, which approximates
the average behavior of the three ω’s. The SLy4 interaction was used in this
calculation.

density ρb = A/VWS, where A = N +Z is the total number of nucleons in the
WS cell. Figure 6.4 displays the difference ω−ωu between the thermody-
namic potentials ω in 3D, 2D, and 1D geometry, obtained by numerical min-
imization with the SLy4 interaction, and the thermodynamic potential ωu

of uniform npe matter in β-equilibrium with the same baryon density. The
difference is negative, confirming that the inhomogeneous phase is favored
over uniform matter in this density range. In order to make the differences
between the 3D, 2D, and 1D geometries better visible, we subtract in the in-
set a purely phenomenological function ω̄ which approximates the average
behavior of the three ω’s. At densities below 0.061 fm−3, the most favorable
phase is the crystal (3D). From 0.061 to 0.073 fm−3 the preferred phase are
the rods (“spaghetti”, 2D). Finally between 0.073 and 0.081 fm−3 we find
the slabs (“lasagne”, 1D), until the system transforms into uniform matter.
In contrast to other work [Ravenhall et al., 1983, Hashimoto et al., 1984,
Lassaut et al., 1987, Oyamatsu, 1993, Pais et al., 2014, Pais et al., 2015], we
did not find “inverted” geometries such as tubes and bubbles (“Swiss
cheese”), which would correspond to ρ

gas
q > ρ

liq
q in the parametrization (5.16)

of the density profile in 2D and 3D, respectively.
Let us note that the energy differences between the three geometries are

extremely small compared to the total energy, especially between 2D and 3D
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Figure 6.5: Solid lines: densities in the cluster (ρliq
q ) and in the gas (ρgas

q ) cor-
responding to the geometry (3D, 2D, 1D, or uniform matter) that minimizes
ω in Fig. 6.4, obtained by the minimization of the SLy4 functional. Dashes:
results obtained within the phase coexistence approach as in Fig. 6.1 but
with the SLy4 interaction.

beyond ∼ 0.05 fm−3, so that one may expect coexistence of different geome-
tries. This is because, in contrast to some other studies of the pasta phases,
we do not consider a fixed proton fraction, but β-equilibrium. As pointed
out in Ref. [Piekarewicz and Sánchez, 2012], the small proton fraction (see
below) corresponding to β-equilibrium is very unfavorable for the formation
of pasta phases.

Our method results necessarily in first-order phase transitions between
the different geometries. In reality, however, it might happen that the sys-
tem passes continuously from one phase to another, e.g., by deforming the
nuclei in the 3D phase before they merge into rods [Ravenhall et al., 1983,
Lattimer and Swesty, 1991].

The densities ρ i
q in the favored geometry obtained by the minimization

are displayed in Fig. 6.5 as the solid lines. We notice a discontinuity at
the transition from 2D to 1D. It is due to the first-order phase transition
mentioned above (the corresponding jump between 3D to 2D is too small to
be seen on the figure). For comparison, the dashed lines in Fig. 6.5 were
calculated as in Fig. 6.1 within the phase coexistence framework. The den-
sities obtained within both approaches are quite similar, which means that
even with Coulomb and surface effects, the mechanical and chemical equi-
librium, Eqs. (5.5) and (5.6), are approximately satisfied for the densities
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Figure 6.6: Proton fraction Yp as function of the baryon density ρb. The
proton fraction is computed using the SLy4 interaction with the phase coex-
istence (solid line) and the energy minimization (dots) approach.

in the cluster and in the gas away from the interface. The main difference
is the transition density from the inner crust to uniform matter, i.e., to the
neutron star core. Since Coulomb and surface effects favor uniform matter,
the transition happens earlier (i.e., at lower ρb) in the minimization than in
the phase coexistence approach.

Although the differences in the densities are small, they have a sizable
effect on the proton fraction Yp = Z/A. This can be seen in Fig. 6.6, where
we compare the proton fractions obtained within the phase coexistence ap-
proach (solid lines) and by energy minimization (dashes). It appears that
at low baryon density, the proton fraction obtained by minimizing the en-
ergy is significantly lower than in the phase coexistence picture, although
the proton densities in the liquid are very close (cf. Fig. 6.5). A very similar
difference between the two approaches is observed in the Relativistic Mean-
Field (RMF) framework [Avancini et al., 2008]. This disagreement can be
traced back to the tiny difference in ρ

gas
n due to the small Coulomb and sur-

face corrections to the chemical and mechanical equilibrium. Since in this
region the total density is dominated by the density of the gas, ρb ≈ ρ

gas
n ,

and the volume fraction u is approximately proportional to the difference
ρB −ρ

gas
n , the quantities u and consequently also Yp are very sensitive to

small deviations of ρgas
n .

The proton fractions obtained by energy minimization are similar to
those obtained by Pearson et al. [Pearson et al., 2014] within the Hartree-
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Fock-Bogoliubov (HFB) model with BSk interactions. However, in contrast
to the HFB model, the ETF approximation does not include shell effects.
Therefore, our proton number in the 3D phase varies smoothly from Z ≈ 34
at low baryon density to Z ≈ 26 at the transition to the 2D phase, while
the HFB model gives Z = 40 in the whole inner crust except in the case
of the BSk22 interaction where Z jumps from 40 to 20 at ρb = 0.035 fm−3

[Pearson et al., 2014].

6.3 Properties of the liquid-gas interface

Let us discuss in some more detail the properties of the liquid-gas interface
obtained by energy minimization. To that end, we have to compare our WS
cell with a reference system containing a cluster with constant densities ρ

liq
q

and a sharp surface, surrounded by a gas with constant densities ρ
gas
q . The

presence of a neutron skin sn = rn − rp > 0 complicates this comparison, and
we follow [Douchin et al., 2000] who discussed this problem in detail.

We define the radius reff
p of the reference cluster in such a way that it

contains the same number of protons as the actual WS cell, i.e.,

(ρliq
p −ρ

gas
p )Vd(reff

p )+ρ
gas
p VWS = Z (6.2)

(ρgas
p = 0 in most cases, except near the crust-core transition, cf. Fig. 6.5).

Note that reff
p coincides with rp in the case d = 1, but not in the cases d = 2

or 3. If we used an asymmetric surface (see discussion below Eq. (5.16)), reff
p

would differ from rp also in the case d = 1.
Since we define the reference cluster with a common surface at reff

p for
protons and neutrons, i.e., without neutron skin, the reference system con-
tains less neutrons than the actual WS cell. Therefore, rather than compar-
ing the energies of two systems having different numbers of particles, one
should compare their thermodynamic potentials. The surface contribution to
the thermodynamic potential, Ωs, is defined as the change in Ω (excluding
Coulomb) with respect to the “bulk” thermodynamic potential (i.e., excluding
gradient terms) of the reference cluster. We denote V liq =Vd(reff

p ) the volume
of the reference cluster and V gas =VWS−V liq the volume of the surrounding
gas. Then the surface potential can be written as

Ωs =ESk −µnN −µpZ

−V liq(ǫliq
Sk −µnρ

liq
n −µpρ

liq
p )

−V gas(ǫgas
Sk −µnρ

gas
n −µpρ

gas
p ) , (6.3)
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Figure 6.7: The surface tension σ=Ω/S as a function of the baryon density
ρb. For each ρb, the result corresponding to the most favored geometry is
displayed.

where ǫi
Sk is the energy density obtained with the Skyrme functional ESk in

the case of uniform matter with densities ρ i
n and ρ i

p.

Analogously to Eq. (6.2), we define an effective neutron radius reff
n , and

an effective volume of the neutron skin Vs = Vd(reff
n )−Vd(reff

p ). Then the
number of neutrons in the skin, Ns, is given by

Ns =Vs(ρ
liq
n −ρ

gas
n ) , (6.4)

and Eq. (6.3) can be rewritten as

Ωs = ESk −V liqǫ
liq
Sk −V gasǫ

gas
Sk −µnNs . (6.5)

Finally, the surface energy Es is given by Es = Ωs + µnNs

[Douchin et al., 2000].
The surface tension is approximately given by σ = Ωs/Sd(reff

p ), where
Sd(r) is defined in Eq. (5.19). Although Vd(r) and Sd(r) have the dimen-
sions of a volume and of an area only in the case d = 3, the ratio Ωs/Sd(reff

p )
is always an energy per area. Note that the above definition of the surface
tension is only exact in 1D or if the cluster radius is so large that curvature
effects can be neglected. In Fig. 6.7 we display the surface tension. We see
that it decreases with increasing ρb. This is not surprising because with in-
creasing ρb the densities in the gas and in the liquid get closer to each other.
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In the low-density limit, where we have essentially isolated nuclei, our sur-
face tension is consistent with the surface energy in the Bethe-Weizsäcker
semi-empirical mass formula from which one obtains σ = 1.03 MeV fm−2

[Ring and Schuck, 1980]. Our surface tension is similar to the RMF results
shown in Fig. 6(c) of [Avancini et al., 2008].

Another interesting quantity is the number of additional neutrons in the
skin. Again, we normalize it to the surface and display in Fig. 6.8 the num-
ber of skin neutrons per unit surface, Ns/Sd(reff

p ). We observe that, after a
maximum at ρb ∼ 0.014 fm−3, the number of neutrons in the skin decreases
with increasing baryon density, although the skin thickness remains about
sn ∼ 0.45 fm, because the density difference ρ

liq
n −ρ

gas
n decreases. Note that,

compared to the total number of neutrons in the WS cell, the number of neu-
trons in the skin is very small: for instance, for ρb = 0.02 fm−3 there are
about 800 neutrons in the cell, 200 in the cluster, and only 23 in the skin.

6.4 Conclusions

In this chapter we compared the results obtained for the inner crust within
a simple phase-coexistence picture with results of the minimization of the
energy with respect to the density profile. We used Skyrme interactions
and the ETF approximation to calculate the energy. Both approaches give
similar results for the neutron and proton densities in the clusters and in the
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gas, despite the Coulomb and surface effects included in the minimization
but not in the phase coexistence.

However the phase-coexistence picture is insufficient to predict the clus-
ter sizes and transitions between different geometries, since these result
from the competition of Coulomb and surface energies not included in the
phase coexistence. With increasing baryon density, we find crystals, rods
and plates, but no “inverted” geometries such as tubes and bubbles. Because
of the small proton fraction in β- equilibrium, the energy differences between
the different geometries are extremely small. Another effect of Coulomb and
surface energies is to shift the crust-core transition to lower baryon density.

Although the densities obtained by energy minimization do not present
strong deviations from those of the phase coexistence, the proton fraction
does, especially at low baryon densities. The small corrections to mechanical
and chemical equilibrium due to Coulomb and surface effects slightly mod-
ify the density of the neutron gas, resulting in a considerable reduction of
volume and proton fractions. The proton fractions obtained within the min-
imization are similar to HFB results in the literature [Pearson et al., 2014],
although shell effects, which are present in HFB, are missing in the ETF
approximation to the energy.

The minimization allowed us to calculate the surface tension and
the number of skin neutrons in the cluster surface. These results can
be used to improve the hydrodynamic description of collective modes
in the inner crust similar to the ones of Refs. [Di Gallo et al., 2011,
Magierski and Bulgac, 2004b] but including Coulomb and surface effects.
The hydrodynamic description will be extensively detailed in the following
Part IV.
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Part IV

Entrainment of superfluid

neutrons and application to
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Chapter 7

Superfluid hydrodynamics

7.1 Introduction

The inner crust of neutron stars is characterized by the presence of clus-
ters in a more dilute and superfluid gas of unbound neutrons, cf. Chapter 6.
The clusters, containing protons and neutrons, form probably a periodic lat-
tice in order to minimize the Coulomb energy. The superfluid component of
the crust can have potentially observable consequences for the hydrodynam-
ical and thermodynamical properties of the crust [Page and Reddy, 2012].
It is therefore important to know the density of effectively free neutrons.
This is a non-trivial problem because even the unbound neutrons might be
“entrained” by the clusters because of their interactions. This entrainment
effect has already been extensively discussed in the literature, e.g., in the
framework of a band-structure theory for neutrons developed by N. Chamel
and co-workers [Carter et al., 2005, Chamel, 2006, Chamel, 2012].

The entrainment has also a strong effect on the heat transport properties
of the crust, and consequently on the cooling of the star, through a modifi-
cation of the speed of lattice and superfluid phonons [Chamel et al., 2013b,
Kobyakov and Pethick, 2013]. These have been discussed in the frame-
work of an effective theory for low-energy, long-wavelength excitations
[Cirigliano et al., 2011]. A long wavelength means in this context a wave-
length that is large compared to the periodicity of the crystalline structures
in the crust. This effective theory has a couple of parameters that have to
be determined from more microscopic approaches. Among these parameters
are the effective masses of the clusters, or, equivalently, the superfluid den-
sity.

However, under the assumption that pairing is sufficiently strong,
superfluid hydrodynamics can also be applied on length scales that
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are smaller than the periodicity of the crystalline structures. This
idea was used in [Sedrakian, 1996, Magierski and Bulgac, 2004a,
Magierski and Bulgac, 2004b, Magierski, 2004] to estimate the effective
mass of an isolated cluster immersed in a neutron gas, and more recently
also to describe collective modes in the so-called “lasagne” phase in the deep-
est layers of the inner crust [Di Gallo et al., 2011, Urban and Oertel, 2015].
In the present work, we apply this superfluid hydrodynamics approach also
to the crystalline and “spaghetti” phases.

7.2 Superfluid gas properties

7.2.1 Pairing gap

The dilute neutron gas surrounding the nuclear cluster is assumed to be
superfluid. Therefore, low-energy excitations correspond to collective motion
of Cooper pairs, see Chapter 3. Let us define the superfluid order parameter
(gap)

∆(r)=−|g| 〈Ψ0|ψ↑(r)ψ↓(r) |Ψ0〉 , (7.1)

with |Ψ0〉 the BCS ground state (2.16) and ψσ(r) the field operators (C.3) for
both spin projections σ = (↑,↓) up and down respectively. We use a contact
interaction for the pairing interaction of strength |g| and neglect the UV
divergence.

However, the preceding equation is written for a static situation and can
be extended to a uniform flow of Cooper pairs with velocity vn, which is fully
detailed in Apx. C.2. We apply a boost of momentum q= mvn to the particles

ak → ak+q and a−k → a−k+q . (7.2)

In this case we denote the boosted quantities with a tilde, thus the BCS
ground state reads as:

∣∣Ψ̃0
〉
=

∏

k

1
vk

α̃kβ̃−k |0〉 , (7.3)

with α̃k and β̃−k the Bogoliubov operators boosted by a momentum q and
defined in Eq. (C.12). In consequence, the pairing gap rewrites:

∆(r)=−|g|
〈
Ψ̃0

∣∣ψ↑(r)ψ↓(r)
∣∣Ψ̃0

〉
. (7.4)

After computing the expectation value above, and thanks to definition of the
Bogoliubov operators, it reduces to

∆(r)= |g|e2iq·r ∑
p

upvp , (7.5)
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with up and vp the variational parameters of the BCS theory, cf. Chap.2.
Finally, the superfluid order parameter is written as

∆(r)= |∆|eiϕ(r) , (7.6)

the velocity field of the neutron pairs is related to the phase ϕ(r) by

vn(r)=
1

2m
∇ϕ(r) , (7.7)

where m denotes the neutron mass.1 In the limit of zero temperature, and if
one excludes pair breaking, this leads to the equations of superfluid hydro-
dynamics as discussed in Refs. [Urban and Schuck, 2006, Tonini et al., 2006]
in the context of ultracold atoms. Let us also mention that, again in the con-
text of ultracold atoms, a calculation in quasiparticle random-phase approx-
imation (QRPA) [Grasso et al., 2005] showed that the collective modes can
be described by hydrodynamics if |∆| becomes much larger than the spacing
of the discrete single-particle levels in the trap potential.

7.2.2 Limitations

In uniform neutron matter, the QRPA shows that the hydrodynamic be-
havior of the oscillations of the phase ϕ (Goldstone or Bogoliubov-Anderson
mode) is well fulfilled as long as the excitation energy stays well below the
two-quasiparticle (pair breaking) threshold as shown in Chap. 4. In the
non-uniform inner crust, one in addition has to assume that the coherence
length ξ of the Cooper pairs is small compared to the size of the inhomo-
geneities. Of all the assumptions, this is probably the most critical one, es-
pecially inside the dense clusters of the inner crust. However, as discussed in
Ref. [Di Gallo et al., 2011], as long as the excitation does not involve Fermi
surface deformation, the hydrodynamic approach remains reasonable even
in the absence of pairing inside the cluster. Furthermore, QRPA calcula-
tions of collective modes of a cluster in a spherical Wigner-Seitz (WS) cell
predicted the appearance of “supergiant” resonances that could be inter-
preted as hydrodynamic Bogoliubov-Anderson modes in the volume of the
cell [Khan et al., 2005].

In a non-uniform system, hydrodynamics is valid if the coherence length
ξ of the Cooper pairs is small compared to the size of the inhomogeneities.
As we show in Fig. 7.1, the Cooper pair size ξ in the neutron gas is indeed

1In contrast to Refs. [Di Gallo et al., 2011, Urban and Oertel, 2015] we neglect here the
“microscopic” entrainment of neutrons by protons in the liquid phase. It should be included
in future studies.
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Figure 7.1: Root mean square radius ξ of the Cooper pair in the neutron gas
(dashed lines) compared with the cell size L of the crystalline lattice (red
solid line) and the cluster radius R (blue solid line) as functions of the to-
tal baryon density nB in the inner crust. The neutron gas density nn,1 and
the shown results for L and R were obtained from calculations detailed in
Part III. The results for ξ as functions of nn,1 were obtained respectively
in Ref. [Matsuo, 2006] using the Gogny force (purple short dashes) and in
Ref. [Sun et al., 2010] using the Bonn potential (green long dashes) as pair-
ing interactions.
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much smaller than the size L of the unit cell of the crystalline lattice. At
higher densities, where one expects the pasta phases, the comparison would
be somewhat less favorable. However, the main problem is the small size of
the clusters, whose radii R are as small as ξ.

The condition ξ≪ R for the validity of hydrodynamics was already men-
tioned in Migdal’s seminal work [Migdal, 1959] in which he explained the
nuclear moments of inertia in the framework of the theory of superfluidity.
Since the coherence length ξ and the nuclear radius R are of the same order
of magnitude, rotating nuclei exhibit a combination of irrotational and rota-
tional flow. Nevertheless, the nuclear moments of inertia are slightly closer
to the irrotational (hydrodynamic) than to the rigid-body limit (see Fig. 8.2
in Ref. [Rowe, 1970]).

In analogy to this observation, we expect that probably our superfluid
hydrodynamic model for the inner crust should give the right picture, al-
though it might probably overestimate the superfluid flow inside (and close
to) the clusters. We refer to Sec. 8.3 for a further discussion of this problem
and possible solutions.

7.3 Hydrodynamics in the inner crust

7.3.1 Context

Let us briefly recall the simple hydrodynamic model of
Refs. [Magierski and Bulgac, 2004a, Magierski and Bulgac, 2004b,
Magierski, 2004, Urban and Oertel, 2015]. We assume that the clus-
ters have constant neutron and proton densities nn,2 and np,2 and a sharp
surface separating them from the neutron gas, whose density nn,1 is
also constant, as displayed in Fig. 7.2. The densities have to satisfy the
conditions of phase equilibrium (equal chemical potentials and pressure
in both phases, i.e., the phase coexistence), which is actually a very good
approximation (see Chap. 6) In the limit of small velocities, the size and
shape of the clusters themselves as well as the densities in the clusters and
in the gas do not change. We define the cluster surface as the surface of
the sphere (3D) or rod (2D) of radius Rp containing the protons . Hence,
the velocity of the clusters is equal to the velocity of the protons, up. The
neutrons, however, can pass through the cluster surface, and their velocity
field vn(r) is not uniform, since the neutrons of the gas somehow have to
flow around or through the clusters.

Here, we focus on macroscopic (long wavelength) motion. In this case,
the relative velocity between the clusters and the gas varies only on length
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Figure 7.2: Schematic view of the cluster densities in the hydrodynamic
model. The boundary between the liquid and the gas is materialized by
the density step at Rp, which is the radius of the sphere or of the rod, in 3D
or 2D case respectively.

scales that are much larger than the periodicity of the lattice. So, the prop-
erties of the flow inside a cell are identical to those of the entire flow. Fur-
thermore, the long wavelength assumption excludes density waves (incom-
pressible gas) and deformations of the cluster surface.

7.3.2 Boundary conditions

Now, let us concentrate on the neutron flow induced by the uniform flow
of clusters. As mentioned in Sec. 7.2, the superfluidity of the neutron gas
allows us to introduce a velocity potential φ = ϕ/(2m). Since the densities
remain constant, we have ∇·vn = 0, i.e.,

△φ= 0 . (7.8)

This equation is true in both phases, but it has to be complemented with
suitable boundary conditions at the phase boundaries.

In Refs. [Sedrakian, 1996, Di Gallo et al., 2011], the phase boundary
was treated as impermeable. However, this is not realistic, since neu-
trons inside and outside the cluster are indistinguishable and nothing pre-
vents them from moving from the gas into the cluster or vice versa. The
permeability of the phase boundary was included in the boundary condi-
tions introduced by Magierski and Bulgac [Magierski and Bulgac, 2004a,
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Magierski and Bulgac, 2004b, Magierski, 2004]. Analogous boundary con-
ditions were given in Ref. [Lazarides and Van Schaeybroeck, 2008] for a
phase boundary in the context of ultracold atoms. They were also used
in Ref. [Urban and Oertel, 2015] to describe collective modes in the “pasta”
phases of the neutron-star crust.

First, the phase of the order parameter is continuous across the phase
boundary, i.e.,

φ1 =φ2 , (7.9)

where 1 and 2 refer to the limits of r approaching the interface from outside
or inside the cluster, respectively. This boundary condition implies that the
neutron velocity tangential to the interface is continuous, too.

Second, the neutron current crossing the interface conserves the particle
number. Since the interface itself moves with velocity up, this condition
reads

nn,1(∇φ1 −up) ·S= nn,2(∇φ2 −up) ·S , (7.10)

where S is the normal vector to the surface, pointing outwards.
So far, the boundary conditions are the same as in

Ref. [Magierski and Bulgac, 2004a, Magierski and Bulgac, 2004b,
Magierski, 2004], where the motion of a spherical nucleus in an infi-
nite neutron gas was studied. In this case, Eqs. (7.8)–(7.10) can be solved
analytically (see Sec. 7.5). However, except in the case of plates (1D), this is
no longer true if one considers a periodic lattice of clusters.

To treat the periodicity, we introduce a primitive cell C spanned by the
D primitive vectors ai (i = 1, . . . ,D) of the Bravais lattice, where D = 3 in the
case of a crystal, D = 2 in the case of rods (spaghetti phase), and D = 1 in
the case of plates (lasagne phase). Depending on the lattice structure, the
primitive cell contains one or two clusters (see Sec. 7.7). While the velocity
field vn(r) is periodic,

vn(r+ai)= vn(r) , (7.11)

the velocity potential itself can in general be the sum of a periodic and a
linear function. The linear function can be written as un · r, where un is
the spatially averaged neutron velocity, which coincides with the velocity of
the superfluid neutrons [Pethick et al., 2010, Kobyakov and Pethick, 2013]
or conduction neutrons [Chamel et al., 2013b]. Note that un is different from
the average neutron velocity v̄n, which is defined via the spatially averaged
neutron current (see below). Without loss of generality, let us choose the
frame of reference such that un = 0. In this frame, also the velocity potential
is periodic,

φ(r+ai)=φ(r) . (7.12)
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7.3.3 Physical quantities of the flow

From the function φ(r) in the primitive cell one can derive the macroscopic
(coarse grained) neutron current j̄n by averaging over the volume of the cell,
VC :

j̄n =
1

VC

∫

C

dV nn(r)∇φ(r) . (7.13)

Because of the uniform densities, the integral can be split into two parts:

j̄n =
1

VC

[
nn,1

∫

C1

dV ∇φ(r)+nn,2

∫

C2

dV ∇φ(r)
]

, (7.14)

with C i the volume of the phase i = (1,2) outside or inside the cluster, re-
spectively. Let us remind the divergence theorem

∫

V
dV ∇ f (r)=

∮

S
dS f (r) , (7.15)

with the volume V and the surface S of integration for an arbitrary function
f (r). By applying the previous theorem to Eq. (7.14) one has

j̄n =
1

VC

(nn,2 −nn,1)
∮

Ω

dSφ(r) , (7.16)

where Ω is the surface of the cluster(s) in the cell. The integral over the
cell boundary vanishes because of the periodicity of φ. The negative sign in
front of nn,1 comes from the direction of the normal vector with respect to
the surface.

Similarly, one can calculate the average kinetic energy density

Ekin,n =
m

2VC

∫

C

dV nn(r)[∇φ(r)]2 . (7.17)

Using the Gauss theorem and Eq. (7.10), this expression can be simplified to
[Magierski and Bulgac, 2004a]

Ekin,n =
m

2V
(n2 −n1)

∮

Ω

dS ·upφ(r)=
m

2
up · j̄n . (7.18)

7.4 Entrainment

In Eq. (7.12) we assumed that un = 0. The solution for φ in the general case
un 6= 0 is related to the periodic solution in the special case un = 0 by

Φ(r;up,un)= r ·un +φ(r;up −un,0) . (7.19)
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The average velocity of neutrons v̄n is defined via the average current j̄n as

v̄n =
j̄n

n̄n

, (7.20)

where

n̄n =
V1

VC

nn,1 +
V2

VC

nn,2 (7.21)

denotes the average neutron density with V1,2 the volume outside and inside
the cluster(s), respectively. The neutron current is now written as

j̄n =
1

VC

∫

C

dV nn(r)∇Φ(r;up,un)

= n̄nun +
1

VC

∫

C

dV nn(r)∇φ(r;up −un,0) . (7.22)

Since the last term in Eq. (7.22) is linear in up−un, we can write the current
in the form

j̄n = n̄nun +nb
n(up −un) , (7.23)

with a 3×3 matrix nb
n. Factorizing Eq. (7.23) with respect to un, one sees

that nb
n can be interpreted as the density of bound neutrons, which are

entrained by the clusters with velocity up, while the superfluid neutrons
moving with velocity un have an average density ns

n = n̄nI3 − nb
n. Con-

cerning bound and superfluid neutrons, we follow here the nomenclature
of Ref. [Pethick et al., 2010]. Hence, the final expression for the neutron cur-
rent reads:

j̄n =nb
nup +ns

nun . (7.24)

The fact that nb
n and ns

n are matrices shows that the proportion of bound
neutrons depends in general on the direction of the relative motion between
neutrons and protons. This is intuitively clear, e.g., in the case of the 2D rod
phase, where neutrons and protons can move independently of each other in
the direction parallel to the rods, while this is not the case in the directions
perpendicular to the rods. As will be shown in Sec. 7.7.1, nb

n and ns
n are

proportional to the unit matrix if the lattice has a cubic symmetry.
It is straight-forward to generalize also Eq. (7.18) for the neutron kinetic

energy to the general case un 6= 0. First, note that in the case un = 0, the
current simplifies to j̄n =nb

nup, and consequently Eq. (7.18) becomes Ekin,n =
(m/2)u⊺

pnb
nup. Starting from Eq. (7.19) and repeating the same steps for the

general case un 6= 0, one obtains:

Ekin,n =
m

2

(
u
⊺
nns

nun +u
⊺
pnb

nup

)
, (7.25)
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which agrees with the expression of Chamel and Carter
[Chamel and Carter, 2006] if one identifies nb

n with the neutron normal

density in their nomenclature.
In summary, the macroscopic entrainment coefficients of the crust are

determined by the matrices nb
n and ns

n which we can obtain by solving nu-
merically Eqs. (7.8)–(7.12) for the function Φ(r;up,0).

7.5 Solution for a cluster in infinite matter

In the case of a single cluster (spherical or cylindrical) moving with velocity
up through in an infinite and uniform neutron gas, and in the case of a 1D
lattice of parallel plates, analytical solutions for the velocity potential can be
found.

7.5.1 Spheres

The case of a spherical cluster of radius R was studied in
Refs. [Magierski and Bulgac, 2004a, Magierski and Bulgac, 2004b,
Magierski, 2004]. We begin with the general solution of the Laplace
equation (7.8) in spherical coordinates [Jackson, 1975]

φi(r)=
∞∑

l=0

l∑

m=−l

[
Alm rl +Blm r−(l+1)

]
Ylm(θ,ϕ) , (7.26)

in a phase i = (1,2) outside or inside the cluster, respectively. We denote
the spherical harmonics by Ylm(θ,ϕ). The terms Alm and Blm stand for real
coefficients, which will be constrained by the boundary conditions. If we
place the origin of the coordinate system in the center of the cluster and
suppose that the neutron gas is at rest at infinity (φ→ 0 for r →∞), one has
Alm = 0 in phase 1 and Blm = 0 in phase 2. Hence, the potential reads as

φ1(r)=
∑

l,m
Blm r−(l+1) Ylm(θ,ϕ) , (7.27a)

φ2(r)=
∑

l,m
Alm rl Ylm(θ,ϕ) . (7.27b)

Let us account for the radial flow conservation (7.10). We start by inte-
grating the boundary condition over the solid angle in order to exploit the
orthogonality properties of the spherical harmonics:

∫
dΩY ∗

l′m′(θ,ϕ)
[
nn,1∇φ1 −nn,2∇φ2

]
·S=
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Figure 7.3: Schematic view of the velocity potential φ inside and outside
the cluster along the axis ex for up = upex. It was obtained for a arbitrary
spherical cluster of radius R = 5 fm and density ratio γ= 0.1.

(nn,1 −nn,2)
∫

dΩY ∗
l′m′(θ,ϕ) ||up|| cosθ , (7.28)

with dΩ = dϕdθ sinθ and Y ∗
l′m′ the complex conjugate of Yl′m′ . Let

us recall the orthogonality relation satisfied by the spherical harmonics:∫
dΩY ∗

l′m′Ylm
= δl,l′δm,m′ . Hence, by injecting the potential derivatives (∇φ1

and ∇φ2) computed from Eqs. (7.27), the equation (7.28) reads as:

nn,1Blm (l+1)R−(l+2) +nn,2Alm lR l−1 =
√

4π
3

(nn,2 −nn,1)||up||δ1,lδm,0 , (7.29)

with cosθ =
p

4π/3Y10. Finally, the solution for the velocity potential is ob-
tained thanks to the continuity of the velocity potential at the cluster sur-
face (7.9)

φ(r)=





1−γ

1+2γ
r ·up for r < R ,

R3

r3

1−γ

1+2γ
r ·up for r ≥ R ,

(7.30)

where γ= nn,1/nn,2 is the ratio between the neutron densities in the gas and
in the cluster. From this solution, one can compute the total momentum
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carried by neutrons in the cluster and in the gas. Identifying this momen-
tum with Neffmup, one can define the number Neff of neutrons effectively
entrained by the protons of the cluster,

Neff = Nr-cluster
(1−γ)2

2γ+1
, (7.31)

with

Nr-cluster =
4π
3

R3 nn,2 (7.32)

the number of neutrons that are located inside the cluster (in coordinate
space, denoted r-cluster following Ref. [Papakonstantinou et al., 2013]). It
is interesting to note that Neff < Nr-cluster, i.e., the main effect is not that
the cluster entrains neutrons of the gas with it, but rather that the flow of
gas neutrons through the cluster surface reduces the speed of the neutrons
inside the cluster.

7.5.2 Cylinders

The case of a cylindrical rod moving through an infinite and uniform neutron
gas can be treated analogously. Here, the velocity potential is given by

φ(r)=





1−γ

1+γ
r⊥ ·up for r⊥ < R ,

R2

r2
⊥

1−γ

1+γ
r⊥ ·up for r⊥ ≥ R ,

(7.33)

where r⊥ is the projection of r on the plane perpendicular to the symmetry
axis of the rod. Since the rod is assumed to be infinite, one can only define
Neff and Nr-cluster as numbers per unit length, e.g., Nr-cluster =πR2nn,2. If the
proton velocity up is parallel to the rod, the surface of the rod does not move
and there is obviously no entrainment. However, for up perpendicular to the
rod, the expression of effectively bound (entrained) neutrons reads as

Neff = Nr-cluster
(1−γ)2

1+γ
. (7.34)

One sees that the number of entrained neutrons is again lower than the
number of neutrons geometrically located inside the rod.

7.5.3 Plates

Another case in which an analytic solution can be found is the phase of plates
(1D). Let us consider alternating layers of phases 1 and 2 with widths L1 and
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L2, respectively. We take the layers parallel to the xy plane and choose the
unit cell 0 < z < L = L1 +L2 such that the region 0 < z < L1 corresponds to
phase 1 and L1 < z < L to phase 2. Obviously the protons can entrain the
neutrons only in z direction. In the rest frame of the superfluid neutrons,
the solution for the velocity potential reads

φ(r)=





−
1−γ

L1/L2 +γ
zup,z for 0≤ z ≤ L1 ,

1−γ

1+γL2/L1
(z−L)up,z for L1 ≤ z ≤ L .

(7.35)

From this solution, one can readily obtain the density of bound neutrons
(more precisely, the zz component of the matrix nb

n; all other components
vanish):

nb
n,zz = n̄n

(1−γ)2L1L2

(L1 +γL2)(L2 +γL1)
. (7.36)

In practice, nb
n,zz is much smaller than n̄n (nb

n,zz/n̄n . 0.03) because the
plates are only found in the deepest layers of the neutron-star crust (as
shown in Chap. 6), where the density of the gas is quite large (γ& 0.7).

7.6 Numerical methods

In contrast the case of a single cluster in an infinite gas discussed in Sec. 7.5,
we consider from now on finite cells with a periodic lattice arrangement of
clusters, in 2D and 3D cases. Because of the complicated geometries of the
clusters and of the lattice, the solution of the Laplace equation together with
the boundary condition can only be obtained numerically in this case.

7.6.1 Space discretization and periodicity

We start by discretizing the cell space with a regular mesh of N points per
row. Note that if the unit cell is not cubic (as in the hexagonal 2D case,
see Sec. 7.7), the rows are not orthogonal one to another, as displayed in
Fig. 7.4(b). The cluster surface is approximated by a set of NS points given
by the intersections of the mesh lines with the cluster surface. As an exam-
ple, Fig. 7.4 illustrates two cases: (i) a spherical cluster in a simple cubic cell
and (ii) a rod in a hexagonal unit cell. Points belonging to the cell mesh are
shown as black circles and blue squares, those belonging to the cluster sur-
face as red diamonds. Because of periodicity, points lying on opposite edges
of the cell, shown as blue squares, are equivalent to each other. In total, the
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Figure 7.4: Schematic illustration of the discretization of different cells with
a cluster in their center.
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Figure 7.5: One dimensional grid made of K points with charges located at
points K /4 and 3K /4.

number of independent points is N = ND +NS, with D the dimension of the
lattice.

The numerical method for treating the periodicity is well described in
Ref. [Evans and Okolie, 1982]. In order to illustrate the periodicity condi-
tion, let us consider a simple 1D periodic mesh, as shown in Figure 7.5.
The mesh is made of K points, with charges located in points K /4 and 3K /4
which are 1 and −1, respectively, a periodic solution exists only if the sum
of the charges is zero. Here, the charges are given without units in order to
be schematic. In this case, we propose to solve the Poisson equation in the
mesh

∆ fk = qk , (7.37)

with qK /4 = 1 and q3K /4 = −1 and all others q = 0. The discretization of
the mesh allows us to approximate the Laplacian in an arbitrary point k

[Evans and Okolie, 1982]:

∆ fk =
1

d2 ( fk+1 −2 fk + fk−1) , (7.38)

with d = xk+1 − xk the distance between two neighbor points assumed to
be constant. Now the system is made of K equations corresponding to the
number of mesh points, however let us recall the periodicity condition which
reads as f1 = fK . Hence, the system of equations to solve reduces to K −1
equations. In addition, the Poisson equation is defined up to an additive
constant, so that we have to fix the value of f in one of the mesh point, by
simplicity we choose the point fK /2 = 0.

Finally, the Poisson Eq. (7.37) can be rewritten in a matrix form:

Cf=q , (7.39)

with C the matrix containing the coefficients of the discretized Laplace op-
erator in 1D (7.38). In addition, the values of fk are contained in the vector
f = { fk}, while the right-hand side is contained in q = {qk}. In this way, solv-
ing Poisson equation accounts to inverting the matrix C, i.e., f=C−1q. Now,
if one accounts for the periodicity of the mesh, the coefficients of the matrix



100 CHAPTER 7. SUPERFLUID HYDRODYNAMICS

simply read

C=
1

d2




−2 1 1
1 −2 1

. . . . . . . . .
0 1 0

. . . . . . . . .
1 −2 1

1 1 −2




(K−1)×(K−1)

. (7.40)

As we mentioned in the preceding paragraph, one of the mesh point has to
be fixed. Hence, this explains why the line K /2 of the matrix reads: CK /2 =
(0 · · · 1 · · · 0) then the value of fK /2 is set by qK /2 = 0. Surprisingly, the point
K /2 will verify the equation Eq. (7.37) because the total charge is zero.

7.6.2 System of linear equations

Due to the space discretization, as displayed in the preceding section, the
differential equation (7.8) and the boundary conditions (7.9)–(7.12) can be
written as a linear system of equations. The solution is represented as a
vector φ of dimension N that contains the values of φ(xi), i.e., the solution of
the differential equation in the points xi. In matrix form, the linear system
of equations is written analogously to Eq. (7.39) as

Cφ= y . (7.41)

The elements of the N ×N matrix C are the coefficients of the φ(xi) in the
discretized versions of the Laplace equation (7.8) for all but one mesh points
and of the boundary condition (7.10) for the NS surface points. To obtain a
closed system, the Laplace equation in one of the mesh points, say, xi0 (we
choose it to be the center of the cell), is replaced by φ(xi0) = 0, since other-
wise φ would only be determined up to an additive constant, as discussed
in the 1D example of the preceding subsection. The vector y of dimension
N on the right-hand side of Eq. (7.41) contains the inhomogeneities arising
from the boundary condition (7.10) due to the non-vanishing value of up.
The discretized first and second partial derivatives that are needed for the
calculation of the matrix C are obtained by inverting the Taylor expansion

φ(x j)=φ(xi)+
D∑

µ=1

∂φ(x)
∂xµ

∣∣∣∣
xi

(x j,µ− xi,µ)
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+
1
2

D∑

µ,ν=1

∂2φ(x)
∂xµ∂xν

∣∣∣∣
xi

(x j,µ− xi,µ)(x j,ν− xi,ν) , (7.42)

for {x j} the nine (in 3D) or five (in 2D) closest and linearly independent points
around xi, lying on the same side of the cluster as the point xi. The indices
µ and ν correspond to the spatial directions. In other words, for each mesh
point xi the corresponding elements of C will be derived from the inversion
of the matrix system




φ(x1)−φ(xi)
φ(x2)−φ(xi)

...
φ(x9)−φ(xi)


=




d(1)
1,i d(2)

1,i · · · d(2)
1,i d(3)

1,i

d(1)
2,i d(2)

2,i · · · d(2)
2,i d(3)

2,i
...

...
. . .

...
d(1)

9,i d(2)
9,i · · · d(2)

9,i d(3)
9,i







∂φ(x)
∂x1
∂φ(x)
∂x2
...

∂2φ(x)
∂x2∂x3




, (7.43)

with d
(µ)
j,i = x j,µ− xi,µ.

We note that in the special case of a 2D mesh with orthogonal axes
(as in Fig. 7.4), one recovers in this way exactly the expressions given in
Ref. [Greenspan, 1964] for the derivatives.

7.6.3 Algorithms

In order to reduce the size of the matrix C in memory, we use a sparse
matrix storage (i.e., only non-zero matrix elements are stored). Unfortu-
nately, the solution of Eq. (7.41) cannot be found with iterative methods (e.g.,
Gauss-Seidel) because the matrix is not positive definite. Therefore, a direct
LU decomposition is needed, during which the size of the matrix blows up,
which limits the maximum size of N. The solution was the distribution of
the memory to several computers with the help of OpenMPI and Intel MKL
PARDISO libraries on the IN2P3 Calculation Center in Lyon.

7.7 Geometries

7.7.1 Body-Centered Cubic lattice (3D)

In the less dense parts of the inner crust, one expects a Coulomb lattice
of spherical clusters. The most favorable arrangement in space is proba-
bly a BCC lattice [Oyamatsu et al., 1984]. The primitive cell of this lattice,
Fig. 7.6, has one cluster at its center and one eighth at each corner, i.e., it
contains in total two clusters.
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ex

ey

ez

Figure 7.6: Primitive cell of a BCC lattice of spherical clusters.

The BCC primitive cell presents symmetries simplifying the expressions
for the average current and the kinetic energy. Assuming a velocity up in
direction x and un = 0, the average neutron current reads

j̄n =nb
nup =




nb
n,11

nb
n,21

nb
n,31


up , (7.44)

with nb
n,i j

the elements of the matrix nb
n in the basis {ex,ey,ez}. Because of

the symmetry y ↔ −y and z ↔ −z, the current j̄n cannot have any compo-
nent in y or z directions, i.e., the off-diagonal elements nb

n,21 and nb
n,31 must

vanish. Repeating the same arguments for velocities up in y or z directions,
one finds that all off-diagonal elements are zero.

Furthermore, the directions x, y and z are equivalent in BCC symmetry.
Thus all diagonal terms are equal, and the matrix simply reduces to a scalar
matrix nb

n = nb
nI3. So finally, in the BCC lattice, for un = 0, j̄n and Ekin,n are

simply given by

j̄n = nb
nup and Ekin,n =

m

2
nb

nu2
p , (7.45)

and there is no effect of anisotropy.
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ea

eb

ex

ey

Figure 7.7: Cut through a hexagonal lattice of cylindrical rods. The primitive
cell is the parallelogram delimited by the white lines.

7.7.2 Hexagonal lattice (2D)

Deeper in the crust, clusters are supposed to be rods of bound nucleons, cf.
Chapter 1. In this case the most favored arrangement with respect to the
Coulomb energy is a hexagonal lattice [Oyamatsu et al., 1984]. The primi-
tive cell is a rhombus of side length L, height

p
3L/2 and an angle of π/3, as

shown in Fig. 7.7. From the symmetry of the cell it is clear that the eigen-
vectors of nb

n are ea, eb and ez with:

(
ea

eb

)
=

(p
3/2 1/2

−1/2
p

3/2

)(
ex

ey

)
. (7.46)

The vectors ea and eb are shown in Fig. 7.7. The three directions (a,b, z) are,
however, not equivalent, thus in the basis {ea,eb,ez} the diagonal elements
(eigenvalues) of nb

n are all different: nb
n,11 6= nb

n,22 6= nb
n,33. Let us note that

the rods are invariant with respect to the z axis, i.e., all neutrons can move
freely in that direction, consequently nb

n,33 = 0.
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Chapter 8

Results for the entrainment

The inner crust consists of nuclear clusters in a dilute and superfluid neu-
tron gas. However, the clusters are made of “bound” neutrons and protons,
while the surrounding gas is also made of neutrons. This will affect the
hydrodynamics of the inner crust, and we expect entrainment effects as in-
troduced in Chapter 7. We will detail in this chapter most of the results
presented in Ref. [Martin and Urban, 2016] which accounts for the periodic
lattice arrangement of the crust.

8.1 Microscopic flow

We solve Eqs. (7.8)–(7.10) for a fixed velocity up of the clusters. As input
for the radius of the clusters, the densities inside and outside the clus-
ters, and the cell size, we use results obtained in Chap. 6 within the Ex-
tended Thomas-Fermi (ETF) method with a Skyrme energy-density func-
tional (SLy4).

Figures 8.1 and 8.2 show streamlines and velocity potential in a BCC
cell, in the case of up in x direction. The neutron-fluid streamlines are dis-
played as white arrows, they characterize the flow direction and are tangen-
tial to the velocity field vectors. The background color scheme indicates the
speed, from dark purple in the slowest zones to red in the fastest ones. We
chose two cuts through the cell parallel to the xy plane. Figure 8.1 corre-
sponds to the plane through the center of the cell (z = 0), while Figure 8.2
corresponds to a plane between the clusters (z = L/4). In Fig. 8.1 the neu-
tron velocity inside the cluster vn,2 is practically constant but lower than
the velocity up of the surface. Here, the ratio between the fluid and the
surface velocity is |vn,2|/|up| = 0.284, which can be compared with the ana-
lytic result (7.30) for the neutron velocity inside a cluster moving through

105
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(a) Velocity field

(b) Velocity potential

Figure 8.1: Streamlines and neutron speed (upper panel) and velocity poten-
tial (lower panel) in a BCC cell of size L = 32.8 fm, with a cluster of radius
R = 7.54 fm moving with velocity up = ex. The neutron density inside the
cluster is nn,2 = 0.0973 fm−3 and outside nn,1 = 0.0412 fm−3 (the cluster and
cell properties were obtained from calculations described in Chap. 6 and cor-
respond to a baryon density of nB = 0.0485 fm−3). In the upper panel, the
streamlines are shown as the white arrows, and the speed of the flow is in-
dicated by the background color from dark purple (slowest) to red (fastest).
The cross-section of the cell is done on its center at z = 0.
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(a) Velocity field

(b) Velocity potential

Figure 8.2: The results are presented similarly to Figure 8.1, but here we
display a cross-section between the clusters at z = L/4.



108 CHAPTER 8. RESULTS FOR THE ENTRAINMENT

an infinite neutron gas: (1−γ)/(2γ+1)= 0.315
Furthermore one sees that neutrons between the clusters move in the

opposite direction. The velocity discontinuity at the cluster surface satis-
fies the boundary condition (7.10) of the conservation of the neutron current
crossing the surface. When going away from the cluster surface, we observe
that the speed decreases because the flux is spread over a larger surface.
Figure 8.2 shows the plane between the clusters at z = L/4. One can ob-
serve on the edges of the cell the periodicity of the field. The five red areas
correspond to the regions that are closest to the clusters.

Let us now discuss the case of the hexagonal lattice shown Figs. 8.3-
8.4. Qualitatively, the behavior is similar to the one observed in the BCC
lattice. However, in contrast to the BCC case, the hexagonal primitive cell
is not isotropic. Thus we performed calculations with velocities up in the
directions of the eigenvectors ea and eb (cf. Sec. 7.7.2). One can clearly see
a strong difference of the periodic behavior between Fig. 8.3 and Fig. 8.4,
especially at the corners of the primitive cell. In Fig. 8.4, the streamlines
continue straight to the next cell, while in Fig. 8.3 they deviate from their
initial trend ea. Instead of exiting or entering through the corners of the cell,
the flow passes through its sides and then through the neighboring clusters
situated in the directions of the translation vectors a1 and a2 of the Bravais
lattice (parallel to the white lines in Fig. 7.7). Hence, the currents and the
energies depend on the direction of up. Nevertheless, the anisotropy effect
on the ratio |vn,2|/|up| is very weak, numerically one finds 0.244 and 0.248
in the cases of up in direction ea and eb, respectively. Similarly to the BCC
case, this ratio is somewhat lower than the analytical result Eq. (7.33) for a
single rod in an infinite gas, |vn,2|/|up| = 0.281.

8.2 Cluster effective mass and superfluid den-

sity

With the help of Eq. (7.16), which is equivalent to averaging the microscopic
current over the cell, one obtains the macroscopic quantities ns

n and nb
n. In

Sec. 7.4, they were interpreted as if ns
n were the neutrons that move inde-

pendently of the clusters while nb
n are the neutrons moving with the clusters.

However, the preceding discussion of the microscopic flow shows that this is
a simplified picture. In the BCC case, staying within this picture, we can
define a cluster effective mass number

Aeff = Neff +Z =
1
2

VC nb
n +Z , (8.1)
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(a) Velocity field

(b) Velocity potential

Figure 8.3: Same as Figs. 8.1-8.2, but for a hexagonal cell of size L = 24.7 fm,
containing a cylindrical rod of radius 5.53 fm moving with velocity up = ea.
The neutron density inside the rod is 0.0942 fm−3 and outside 0.0528 fm−3

(corresponding to a baryon density of nB = 0.0624 fm−3).
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(a) Velocity field

(b) Velocity potential

Figure 8.4: Same as Fig. 8.3, but for a velocity vector oriented in direction
up = eb.
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Figure 8.5: Schematic illustration of the definition of free and confined neu-
trons in energy space.

where the factor 1/2 accounts for the fact that there are two clusters per cell
and Z is the number of protons in each cluster.

The cluster effective mass plays an important role for the calcula-
tion of the lattice phonons, as discussed, e.g., in Refs. [Sedrakian, 1996,
Magierski, 2004, Chamel et al., 2013b]. It can be compared with the triv-
ial result one obtains by counting all nucleons that are geometrically located
inside the cluster, Ar-cluster = Nr-cluster +Z.

However, it might be more appropriate to define the cluster in en-
ergy space (e-cluster [Papakonstantinou et al., 2013]). In this picture, neu-
trons are considered free or confined [Chamel and Carter, 2006] (the word
bound is also employed [Papakonstantinou et al., 2013, Carter et al., 2005]
but should not be confused with the effectively bound neutrons defined in
Sec. 7.4) depending on their energy and independently of their position, i.e.,
free neutrons may also be located inside the cluster. In our approximation of
constant densities in the two phases, the neutron Hartree-Fock mean field
Un(r) is also constant in each phase and takes the values Un,1 in the gas
and Un,2 in the cluster. Confined neutrons are characterized by a single-
particle energy ǫn(k) = k2/(2m∗

n)+Un that lies below the mean field in the
gas, ǫn(k)<Un,1, while the single-particle energy of free neutrons lies above,
ǫn(k) >Un,1, see Fig. 8.5. Hence, the density of confined neutrons inside the
cluster is in this picture given by

nc
n,2 =

1

3π2 [2m∗
n,2(Un,1 −Un,2)]3/2 , (8.2)

with m∗
n,i the neutron effective mass calculated in phase i, and the remain-
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Figure 8.6: Effective neutron number of the clusters moving through
the neutron gas as a function of the baryon density nB. The results of
our numerical calculations (blue crosses) are compared with the result of
Eq. (7.31) by [Magierski and Bulgac, 2004a, Magierski and Bulgac, 2004b,
Magierski, 2004] for an isolated cluster in a uniform neutron gas (green
dashed line), and with the neutron numbers (7.32) and (8.4) of the cluster
defined in coordinate (red solid line) and energy (black double-dashed line)
space, respectively.

ing neutrons inside the cluster are free1,

n
f

n,2 = nn,2 −nc
n,2 . (8.3)

The effective neutron and mass numbers of the cluster (in energy space) are
therefore

Ne-cluster =
4π
3

R3nc
n,2 (8.4)

and Ae-cluster = Ne-cluster +Z. The mean fields Un,i and effective masses m∗
n,i

in Eq. (8.2) are calculated with the same Skyrme functional (SLy4) that was
used in the ETF calculation of the cell properties of Chapter 6.

In Fig. 8.6, we compare the effective neutron numbers of the clusters ob-
tained within the different approaches as functions of the baryon density
nB = n̄n + n̄p. At low density, i.e., close to the outer crust, the density of

1Here we do not distinguish between localized and unlocalized unbound neutrons
[Papakonstantinou et al., 2013].
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the neutron gas is very low and all approaches converge towards the same
result. However, at higher density, when the density of the neutron gas
increases, the approaches start to differ considerably. More and more neu-
trons that are located inside the clusters (in coordinate space) are not bound
in energy space. Therefore, the number of neutrons in the e-cluster (black
double-dashed line) is considerably smaller than the number of neutrons in
the r-cluster (red solid line).

However, the effective neutron number obtained within the present
superfluid hydrodynamics approach (blue crosses) is even smaller: at
the highest densities where one still expects the BCC lattice, one
finds Ne-cluster/Nr-cluster ≈ 0.3, while superfluid hydrodynamics predicts
Neff/Nr-cluster ≈ 0.1. Quite surprisingly, even at the highest densities, where
the unit cell is not very large compared to the cluster size, our numerical
results stay quite close to the analytical ones, Eq. (7.31) one would obtain
for an isolated cluster (green dashed line).

Concerning the (small) difference between the numerical results and
those of Eq. (7.31), one might think that it comes from the restriction of
the integration to a finite volume. Actually, one can easily derive a modified
version of Eq. (7.31) where one integrates the neutron current nn∇φ only
up to the WS radius instead of infinity, but it turns out that the difference is
negligible. The main reason for the difference between the numerical results
and those of Eq. (7.31) is the change of the velocity potential φ itself due to
the periodic boundary conditions.

Another quantity of interest is the superfluid density ns
n. In Fig. 8.7 we

show the superfluid fraction ns
n/n̄n as a function of the baryon density nB.

Unfortunately, we cannot perform numerical calculations at very low total
densities (as they prevail near the outer crust), because the unit cells become
too large. But it seems that at these low densities, the superfluid density
obtained within our hydrodynamic approach (solid red line) agrees approxi-
mately with the density of free neutrons (green dashed line). At higher total
neutron densities, the superfluid fraction is larger than the density of free
neutrons and it increases rapidly above 90 %, exceeding 97 % at the transi-
tion towards the 2D phase.

We compare these results with those obtained by [Chamel, 2012] in the
framework of the band theory for neutrons (black circles). This theory is
analogous to the band theory in solid-state physics to describe electrons
in the periodic Coulomb potential of a crystal [Ashcroft and Mermin, 1976].
In the inner crust of a neutron star, one has instead neutrons in the
periodic mean field generated by the clusters. The superfluid density
is in this approach obtained from an average of the Fermi velocity over
the (highly nontrivial) Fermi surface [Carter et al., 2005, Chamel, 2006,
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Figure 8.7: Fraction of superfluid neutrons, ns
n/n̄n as a function of the baryon

density nB. Results of the present superfluid hydrodynamics approach (red
solid line) are compared with the result of band-structure calculations by
[Chamel, 2012] (black circles). We display also our results for the fraction of
(energetically) free neutrons n

f
n/n̄n (green dashes) and those obtained within

the band-structure approach [Chamel, 2012] (purple squares).
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Figure 8.8: Fractions of effectively bound neutrons in the 2D (spaghetti)
phase for velocities in the directions of the two eigenvectors ea and eb as
functions of total baryon density.

Chamel et al., 2013b]. While in our hydrodynamic approach the superfluid
density is higher than the density of free neutrons, the band-structure cal-
culation predicts a much lower superfluid density. Possible reasons for this
discrepancy will be discussed in Sec. 8.4.

As a consistency check, we also compare our results for the fraction of
free neutrons with those of the band-structure approach (purple squares),
and for this quantity the agreement is excellent in spite of the crude approx-
imations (sharp interface between the cluster and the gas, Thomas-Fermi
approximation for the density of states) underlying Eq. (8.2).

So far we discussed the BCC lattice, where the densities of bound and
superfluid neutrons are scalar quantities. The situation is different in the
2D hexagonal lattice of rods. In this case, if the velocity is parallel to the
rods (z direction), the neutrons can move independently of the protons and
the superfluid fraction is 100 %. In the transverse plane, however, there is
some entrainment. In Fig. 8.8, we show the fractions of bound neutrons,
nb

n/n̄n, for velocities in the directions of the eigenvectors ea (red solid line)
and eb (green dashed line), as functions of the baryon density in the density
range where we expect to find the 2D phase, i.e., between ∼ 0.06 and 0.07
fm−3, see Chap. 6. It can be seen that the anisotropy in the transverse plane,
i.e., the difference between the directions a and b, is very small.
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8.3 Superfluidity within clusters

In the previous sections of this chapter, we discussed the results for clusters
in which all neutrons were assumed to participate in the superfluid flow.
However, in Sec. 7.2.2, we mentioned the analogy with rotating nuclei which
exhibit a mixture of rotational and irrotational flow. This was motivated by
the fact that, as in ordinary nuclei, the coherence length ξ of the Cooper
pairs is similar to the cluster size. Hence, one might think about describing
the neutrons in the clusters as a mixture of superfluid neutrons, whose mo-
tion is governed by the phase ϕ of the gap, and normal-fluid neutrons, which
move together with the protons. Recently it was suggested in the supplemen-
tal material of Ref. [Wlazłowski et al., 2016] to modify the hydrodynamic
model of Refs. [Magierski and Bulgac, 2004a, Magierski and Bulgac, 2004b,
Magierski, 2004] in this sense by reinterpreting the densities nn,1 and nn,2

as effective superfluid densities. For instance, if we assume that all neutrons
in the gas but only a fraction δ of the neutrons in the cluster participate in
the superfluid motion, Eq. (7.31) for the effective mass of a single spherical
cluster becomes

Neff = Nr-cluster

(
1−δ+

(δ−γ)2

δ+2γ

)
. (8.5)

In the extreme case δ = 0 (no superfluidity inside the clusters, i.e., all neu-
trons in the cluster move together with the protons), one retrieves the pic-
ture of the gas flowing around the cluster as in Ref. [Sedrakian, 1996], re-
sulting in Neff = Nr-cluster(1+γ/2). However, this extreme case does not seem
to be realistic, since, e.g., in rotating nuclei at least one half of the nucle-
ons follow the superfluid motion as one can conclude from the moments of
inertia. Furthermore, we note that the present situation of a uniform flow
of neutrons through the cluster is more favorable for hydrodynamics than
the rotation of nuclei: while in a deformed nucleus rotating around the z

axis the phase ϕ is proportional to xy [Migdal, 1959], our phase is (inside
the clusters) only linear in the coordinates. Therefore, δ should probably be
larger than one half. In analogy to the result of Sec. 8.2 that Neff in the peri-
odic lattice follows closely the analytic formula (7.31), we can also compute
the superfluid density

ns
n = n̄n −2

Neff

VC

, (8.6)

with Neff from Eq. (8.5). The resulting superfluid fractions for three values
of δ are shown in Fig. 8.9. The case δ = 1 corresponds to the one shown
already in Fig. 8.7, but also for δ = 0.5 and even in the extreme case δ =
0 we obtain a superfluid density that is considerably larger than the one
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Figure 8.9: Superfluid fraction ns
n/n̄n as a function of the baryon density nB,

obtained under the assumption that a fraction δ = 0 (green short dashes),
0.5 (blue long dashes), or 1 (red solid line) of the neutrons in the clusters
are superfluid. For comparison, the black circles are the result of the band-
structure calculations [Chamel, 2012].

of Ref. [Chamel, 2012].

8.4 Discussion

In this chapter, we used a superfluid hydrodynamics approach to determine
how the gas neutrons flow on a microscopic scale around and through the
clusters when the crystal lattice of the clusters is uniformly and slowly
moved through the gas. This allowed us to compute the densities of super-
fluid and bound (entrained) neutrons, ns

n and nb
n, and the effective mass of

the clusters. Surprisingly, it turned out that ns
n is larger than the density of

free neutrons, n
f
n. As a consequence, the cluster effective mass number Aeff

is not only smaller than the number of nucleons that are spatially located
inside the cluster, but even smaller than the number of energetically bound
nucleons.

Our results are in line with those obtained in
Refs. [Magierski and Bulgac, 2004a, Magierski and Bulgac, 2004b,
Magierski, 2004] using the same hydrodynamic approach but for the
case of an isolated cluster in an infinite neutron gas. However, in other
studies, the opposite effect was found, namely that the effective mass of the
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clusters is increased by the presence of the gas.

For instance, in Ref. [Sedrakian, 1996], a hydrodynamic approach was
used, too, but with different boundary conditions at the interface between
the cluster and the gas. In that work, the gas was assumed to flow around
the cluster, increasing the total kinetic energy, while in our approach and
that of Refs. [Magierski and Bulgac, 2004a, Magierski and Bulgac, 2004b,
Magierski, 2004] the permeability of the phase boundary allows the neu-
trons to flow through the cluster, reducing the neutron velocity inside the
cluster and the total kinetic energy.

Studies of entrainment in the framework of band-structure theory
[Carter et al., 2005, Chamel, 2012] also predict a strong reduction of ns

n as
compared to n

f
n, and therefore a strong increase of Aeff. This approach was

developed in analogy to band structure theory for electrons in condensed-
matter physics. However, the situation of neutrons in the inner crust differs
in some respects from the one of electrons in superconducting metals. In
superconductors, the distance between the energy bands, of the order of a
few eV, is much larger than the pairing gap ∆ which is typically of the order
of a few Kelvin (10−4 eV). This is why the pairing affects only electrons of
the conduction band. The spatial extension of a Cooper pair of electrons is
much larger than the unit cell of the crystal. In contrast, the neutron energy
bands in the neutron-star crust lie very close to one another (cf. Figs. 2–4
in Ref. [Chamel, 2012]): for a given quasimomentum k, there can be many
bands α whose energies ǫαk are separated by less than 1 MeV, which is the
typical scale for the pairing gap ∆. This goes along with a coherence length
ξ that is smaller than the unit cell.

For hydrodynamics to be quantitatively accurate, one would need a co-
herence length ξ that is much smaller than the clusters. Since this con-
dition is not satisfied either, the true answer lies probably somewhere be-
tween the two extreme results, i.e., the entrainment is maybe stronger
than the one predicted by hydrodynamics, but weaker than the one pre-
dicted by band structure theory. To find a clear answer to this ques-
tion, one should ideally perform a QRPA calculation on top of a Hartree-
Fock-Bogoliubov (HFB) ground state imposing the Bloch boundary con-
ditions [Ashcroft and Mermin, 1976] on the single-particle wave functions
as in band structure theory. However, at present this objective seems
to be out of reach. Using a much simpler QRPA calculation in a spher-
ical Wigner-Seitz (WS) cell, as in Ref. [Khan et al., 2005], could help to
resolve at least the issue of the most realistic boundary conditions to
be used in hydrodynamic calculations. Furthermore, as pointed out in
Ref. [Kobyakov and Pethick, 2013], one should probably also consider zero-



8.4. DISCUSSION 119

point oscillations of the clusters that would reduce the band-structure ef-
fects.
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Chapter 9

Pulsar glitches

9.1 Introduction

Glitches correspond to a sudden transfer of angular momentum from
the superfluid to the normal parts of the star [Anderson and Itoh, 1975,
Pines and Alpar, 1985, Shapiro and Teukolsky, 2004]. In the preceding
Chapters 7 and 8, we discussed the densities of bound and superfluid
neutrons in the inner crust. These quantities play a crucial role in the
understanding of glitches in the neutron star [Chamel and Carter, 2006,
Chamel, 2013]. In particular, as pointed out in Ref. [Chamel, 2013], the ob-
served glitches of the Vela pulsar can hardly be understood with the low
superfluid fraction obtained in band structure theory. Since our results for
the superfluid fraction are very different from those of band structure theory,
let us discuss how this changes the conclusions from the analysis of glitch
data. In this subsection, we follow to a large extent the arguments given in
Refs. [Chamel and Carter, 2006, Chamel, 2013].

9.2 Superfluid part as a reservoir of angular

momentum

Let us assume that the superfluid and the normal parts of the star rotate
at slightly different but spatially constant frequencies Ωs and Ωb, i.e., the
velocity fields are given by un =Ωs ×r and up =Ωb ×r.

Note that un has to be understood as the average velocity field on length
scales that are large compared to the distance between the quantized vor-
tices [Lifshitz and Pitaevskii, 1980]. If we consider, e.g., a frequency of
Ωs = 100 s−1, the number of vortices per area is [Pines and Alpar, 1985]
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2mΩs/(π~) ≈ 109 m−2, i.e., the vortices are separated by ∼ 30 µm. Since
this distance is many orders of magnitude larger than the crystalline struc-
tures in the inner crust, one may use the results for ns

n and nb
n calculated for

a uniform velocity field.
The total angular momentum of the star reads as:

J =
∫

m
[
ns

nun +nb
nup

]
r⊥ d3r , (9.1)

with r⊥ = rsinθ the radial distance from the rotation axis. According to
Eq. (9.1), the angular momentum can be decomposed into two contributions,

J = Js + Jb = IsΩs + IbΩb . (9.2)

where Is and Ib are the moments of inertia of the superfluid and normal-
fluid components, respectively 1:

Is =
∫

mns
nr2

⊥d3r , Ib =
∫

m(nb
n +np)r2

⊥d3r . (9.3)

As argued in Refs. [Link et al., 1999, Chamel and Carter, 2006], the en-
tire core is probably rotating together with the non-superfluid part. There-
fore, the superfluid contribution comes only from the superfluid neutrons in
the inner crust, and the neutrons in the core are counted in nb

n, although
they are of course not bound to clusters.

Between two glitches, the observable frequency Ωb is slowly decreasing
because the emission of radiation leads to some loss of angular momentum
of the normal component. Let us denote by ∆Ωb < 0 the frequency change
during the interglitch time. The superfluid component, however, is supposed
to slow down much less than the normal component, e.g., because the vor-
tices are pinned. In consequence, during the interglitch time we suppose in
the most favorable case that

∆Ωs = 0 . (9.4)

Hence, the superfluid component can serve as a reservoir of angular mo-
mentum for the next glitch [Link et al., 1999]. A glitch is interpreted as a
sudden transfer of angular momentum from the superfluid to the normal
fluid component. However, during the short duration of the glitch, the total
angular momentum is conserved, δJ = 0. Therefore, the differences of the
frequencies before and after the glitch, denoted by δΩs and δΩb, satisfy

IsδΩs + IbδΩb = 0 . (9.5)

1Note that, unlike in Ref. [Chamel and Carter, 2006], there are no non-diagonal contri-
butions to the angular momentum (contributions of Ωs to Jb and vice versa) because we are
working in the chemical basis of superfluid and bound neutrons, cf. Eq. (7.25).
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This conservation of angular momentum leads to a relation between the loss
of angular velocity of the superfluid and the increase of angular velocity of
the normal part of the star

δΩs =−
Is

Ib

δΩb . (9.6)

Since Ωs −Ωb cannot become too large, Ωs must in average (after many
glitches) decrease by the same amount as Ωb, i.e.,

〈δΩs〉 ≥ 〈∆Ωb〉+〈δΩb〉 , (9.7)

where the equality corresponds to the limiting case that the superfluid does
not slow down at all between two glitches (∆Ωs = 0). Combining Eq. (9.6)
and (9.7), one arrives at the simple relation:

Is

I
≥−

〈δΩb〉
〈∆Ωb〉

≡G , (9.8)

with I = Is + Ib the total moment of inertia of the neutron star, and G the
coupling parameter, which is closely related to the pulsar activity parameter

[Link et al., 1999].

9.3 Limit of a thin crust

Following Ref. [Chamel, 2013], one can make some additional approxima-
tions in order to obtain a quick estimate for the ratio Is/I. First, we write

Is

I
=

Icrust

I

Is

Icrust
, (9.9)

where Icrust is the moment of inertia of the crust. For the crustal
fraction of the moment of inertia, Icrust/I, Lattimer and Prakash
[Lattimer and Prakash, 2000] gave an approximate expression that depends
only on the pressure Pcore and density ncore at the crust-core transition and
on the total radius R and mass M of the star, but does not require detailed
knowledge of the high-density equation of state (EOS) in the core.

Let us start with the Tolman-Oppenheimer-Volkoff (TOV) [Tolman, 1939,
Oppenheimer and Volkoff, 1939] equation which defines the mass-radius re-
lation for a non-rotating neutron star

dP(r)
dr

=−
GnB(r)m(r)

r2

[
1+

P(r)
nB(r)

][
1+

4πr3P(r)
m(r)

][
1−

2Gm(r)

rc2

]−1

, (9.10)
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with the gravitational constant G and the integrated mass

m(r)=
∫r

0
mnB(r)d3r , (9.11)

with m the nucleon mass. The right hand side of the TOV equation (9.10)
is a function of the baryon density nB(r) and of the pressure P(r) in the
star. Moreover, making use of the thin crust approximation ∆R ≪ R with
∆R the crust width and R the neutron star radius, one can simplify the TOV
equation to [Lorenz et al., 1993]

dP(r)
dr

≃
nB(r)GMΛ

R2 , (9.12)

with the redshift factor

Λ=
(
1−

2GM

Rc2

)−1

. (9.13)

Let us express Eq. (9.9) in terms of the inner crust densities and pres-
sures. We start by writing the momenta of inertia of the crust

Icrust =
∫R

R−∆R
mnB(r)r2

⊥ d3r , (9.14)

which under the assumption of ∆R ≪ R simplifies to

Icrust =
8π
3

mR4
∫R

R−∆R
nB(r)dr . (9.15)

By injecting the simplified TOV equation (9.12) in the preceding expression
and using P(R)= 0 one finds:

Icrust =
8π
3

R6

GMΛ
Pcore , (9.16)

with Pcore the pressure at the crust-core transition. This value is obtained
from our calculations of the inner crust properties detailed in Chapter 6.
Similarly, one has for the moment of inertia of the superfluid component in
the inner crust:

Is =
∫R

R−∆R
mns

n(r)r2
⊥ d3r , (9.17)

which in the limit of a thin crust simplifies to

Is =
8π
3

R6

GMΛ

∫Pcore

0

ns
n(P)

nBP
dP . (9.18)
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Figure 9.1: Constraints on mass and radius of the Vela pulsar from its ob-
served glitch activity.

Finally, by combining Eqs. (9.16)–(9.18) we have for the ratio Is/Icrust:

Is

Icrust
=

1
Pcore

∫Pcore

Pdrip

ns
n

nB

dP , (9.19)

where Pdrip is the pressure at the transition between the outer and the inner
crust (in the outer crust, ns

n = 0). Here, we use the EOS of the ETF model
of the inner crust presented in Chap. 6. With our results for the superfluid
density, we obtain Is/Icrust ≈ 0.92. For the pasta phases with anisotropy
(rods, plates), we assume that the orientation is random so that one can
average the superfluid density over the three directions.

For the Vela pulsar, one has G ≈ 1.6% [Chamel, 2013]. With the approx-
imations mentioned above, this allows one to identify an excluded zone in
the mass-radius diagram. This is shown in Fig. 9.1. No assumption has
been made so far concerning the EOS in the core. To be more specific, we
show in Fig. 9.1 also the mass-radius relation obtained by solving the TOV
equations with the EOS given by the SLy4 interaction in the whole star (for
the outer crust, we use the results of Ref. [Douchin and Haensel, 2000]). One
sees that, with this EOS, Vela could have a mass of up to . 1.7 Msun.

As shown in Ref. [Chamel, 2013], the strong entrainment predicted by
band-structure theory can only be conciliated with the observed glitch ac-
tivity if either Vela is a very unusual neutron star with M < 0.7 Msun, or
also the core has a superfluid component that can serve as a reservoir of
angular momentum. However, in Fig. 9.1 we see that, with the much larger
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superfluid density predicted by our approach, the observed glitch activity is
compatible with the assumption that Vela is a perfectly normal neutron star.

9.4 Discussion

In this chapter we applied the results of Chapter 8 concerning the su-
perfluid properties of the inner crust to glitch activity of pulsars. Actu-
ally, extensive studies of the glitch mechanism [Anderson and Itoh, 1975,
Pines and Alpar, 1985, Link et al., 1999] showed a direct relation between
the superfluidity and the glitch activity. We based our description
on a hydrodynamic treatment as was done in Refs. [Sedrakian, 1996,
Magierski and Bulgac, 2004b], with a cluster surface that is permeable for
neutrons, as in [Magierski and Bulgac, 2004b]. This approach is assumed
to be consistent under the inner crust conditions especially because of the
strong pairing gap [Grasso et al., 2005].

We started with the description of a slowly-rotating pulsar in the chem-
ical basis of bound and superfluid parts, avoiding the complications of
non-diagonal terms due to entrainment as in [Chamel and Carter, 2006].
We treated the inertial properties of the neutron star by determin-
ing I, Icrust and Is in the thin-crust approximation [Lorenz et al., 1993,
Carter et al., 2005]. The inertial properties of the star depend on the su-
perfluidity, and previous calculations presented a small superfluid fraction
(ns

n/n̄n . 0.6) [Chamel, 2013]. However, in Chapter 8 we observed an oppo-
site behavior (ns

n/n̄n & 0.8) which let us suppose a strongly different conclu-
sion for glitches. Indeed, concerning the Vela pulsar we found a mass up
to ∼ 1.7M⊙ would be compatible with its observed glitch activity, while in
[Chamel, 2013] it would have to be lower than ∼ 0.7M⊙.

However, before drawing firm conclusions our calculations should be im-
proved first of all by treating Vela pulsar with the exact TOV equation, in
order to avoid errors from the thin-crust approximation. In fact, as we pre-
sented in Fig. 1.2 of Chap. 1, the crust represents a few kilometers of the star.
Moreover, the glitch mechanism was treated in a simple model of transfer of
angular momentum and in the limit of a uniformly rotating star, but as ar-
gued by [Pines and Alpar, 1985, Andersson et al., 2012] this model has to be
refined.



Conclusions and outlook

In this thesis we described the characteristics of the inner crust from the nu-
clear physics point of view. The work was split into the study of three parts:
the neutron gas, the nuclear clusters, and the interaction of both of them.
We concentrated on the hydrodynamic approach for the dynamics of the in-
ner crust and we compared it to other formalisms. Finally, we discussed the
astrophysical impact of the inner crust description we had developed.

In Part II we began by treating a uniform neutron gas. As mentioned in
Chapter 1, the inner crust consists of clusters immersed in a dilute and su-
perfluid neutron gas. According to the work of [Anderson, 1958], we expect
that this superfluid presents low-energy excitations, i.e., a Goldstone mode.
We described the collective mode in Chapter 4 in the framework of the quasi-
particle random phase approximation (QRPA), see Chap. 3. We included the
complete particle-hole (ph) residual interaction from a Skyrme functional in
QRPA calculation, as detailed in Appendix B. We focused on the response
functions (RFs) computed from QRPA, which eventually present poles re-
lated to the presence of the collective mode. It was interesting to compare
the RFs obtained with the complete interaction with the one obtained within
Landau approximation. We pointed out that this approximation does not af-
fect the energy of the collective mode at low energy (undamped mode) involv-
ing only excitations close to the Fermi surface. However, the shape of the
RFs are different for high momentum, when the (damped) collective mode
enters in the continuum and involves ph excitations far from the Fermi sur-
face. This difference can affect neutrino scattering calculations which are
often performed by using RFs of neutron matter.

In a first approximation, the dispersion relation of the collective mode
can be described in the limit of low momentum and low energy excitation
by hydrodynamics, so that one finds a sound mode (linear dispersion rela-
tion), see Chap. 3. In addition, the slope of the dispersion relation derived
from QPRA fits exactly the sound mode, until its energy gets too close to the
pair-breaking threshold. Then, the collective mode deviates from the linear
dispersion relation and follows the behavior of the pair-breaking threshold
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until reaching the continuum. However, the heat capacity is only weakly
sensitive to the deviation form the linear shape. The heat capacities com-
puted with QRPA and with the sound mode are approximately the same.
Hence, hydrodynamics can be used in a first approximation to evaluate the
heat capacity of the collective mode in neutron stars, it has also the bene-
fit of being computationally much easier. To conclude, let us notice that we
clearly observed that the contribution of the collective mode to the heat ca-
pacity may be important, because it is as large as the electron contribution,
which is usually dominant at low temperature. However, in the calculation
of the collective mode, we restricted ourselves to the limit of zero tempera-
ture, while it might be important to perform the QRPA at finite temperature
if one goes close to the critical temperature of the superfluid. This would
result in a damping of the collective mode [Leggett, 1966] and we do not
know how this would modify the contribution of the collective mode to heat
capacity.

After this study of the uniform matter, we focused on nuclear clusters,
i.e., the inhomogeneities of the inner crust, see Part III. In Chapter 5 we de-
scribed the clusters with the help of the extended Thomas-Fermi (ETF) ap-
proximation. This approximation provides a density functional of the kinetic
energy and of the spin current. The standard procedure is to solve the Euler-
Lagrange equation, however recent work [Aymard et al., 2014] showed that
a surface parametrization gives similar results. From the ETF calculations
we obtained information on the composition (densities inside and outside
the cluster) and on the geometries of the inhomogeneities in the crust (clus-
ter size, cell size). We also obtained a description of the pasta phases by
including the possibility of rods and plates of bound nuclear matter to ap-
pear. However, it is important to mention that we did not include the clus-
ter deformation. In this approximation, we observed these three phases
(spheres, rods and plates) appearing in three different zones of the inner
crust, however if the energy differences between the different phases are
very small. We formed from the top of the crust to the bottom: spheres,
rods and plates, until reaching the core. Let us note that if we had in-
cluded the cluster deformation, the transition between phases would had
been smooth. Hence, in future works it would be interesting to extended
this description to deformed clusters. Furthermore, shell effects which are
neglected in the ETF framework should be included, by using for instance
the Hartee-Fock-Bogoliubov framework. In contrast to certain studies, such
as Refs. [Ravenhall et al., 1983, Oyamatsu, 1993, Avancini et al., 2008] we
did not observe inverse phases, such as tubes or bubbles. This is due to the
proton fraction which is very low Yp ∼ 0.02−0.05 in our case because of the β-
equilibrium constraint, in contrast to the work of [Avancini et al., 2008] the
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minimum proton fraction was fixed at Yp = 0.3. We also made the compar-
ison between the ETF approach and the phase coexistence approximation.
This latter approximated the inner crust as two nuclear fluids in chemical
and mechanical equilibrium. In contrast to ETF, the phase coexistence ap-
proach does not include the surface and the Coulomb energies, so that the
geometry and the size of the clusters are not accessible anymore. However,
we noticed in Chapter 6 that the composition obtained from both approaches
seems to coincide, except at the crust-core transition, which appears earlier
in the ETF approximation. This phenomena is simply due to the competi-
tion between the surface and Coulomb energies which favor the transition
to the core. In conclusion, the inner crust description we made with ETF
can be used as a starting point for the equation of state and hydrodynam-
ics of the collective modes of the inner crust. In fact, we extracted from
ETF the physical quantities required for hydrodynamics: cluster and gas
densities, cluster and cell sizes, surface tension. Let us just mention that
so far we neglected the zero-point motion of the clusters, i.e., we assumed
a static position of the clusters in coordinate space. However, in the work
of [Pethick and Potekhin, 1998] it was shown that the displacement of the
clusters in certain directions might not lead to a restoring force, so that clus-
ters would be delocalized. In this case, the crust would rather resemble to a
liquid crystal. This latter conclusion can completely change the inner crust
description.

Finally, we concluded the thesis by treating the entrainment between
the clusters and the surrounding gas. In fact, we could not expect to treat
both constituents independently, as it was already discussed in the literature
[Magierski and Bulgac, 2004b, Chamel, 2013]. We proposed to treat the in-
ner crust by extending the framework of [Magierski and Bulgac, 2004b] to
a periodic lattice arrangement of clusters, again assuming that the clus-
ters are localized at well defined periodic positions. Magierski and Bulgac
considered an isolated cluster moving with a uniform velocity in an infinite
neutron gas, they used the superfluid hydrodynamics to determine the char-
acteristics of the flow. Hydrodynamics is assumed to be consistent under the
neutron star conditions, actually the range of densities implies a strong gap
which excludes pair-breaking. In addition, the strong gap ensures that the
coherence length of the Cooper pairs is strictly smaller than the periodicity
scale of the lattice. The lattice arrangement was detailed and determined
thanks to Ewald summations in Ref. [Oyamatsu et al., 1984]. The compli-
cated geometries of cells and of clusters required a numerical procedure to
solve the hydrodynamic equations. We deduced from these calculations a
discrepancy of the number of bound neutrons because of the neutron en-
trainment is compared to the results for a single cluster in an infinite gas.
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These results must be also compared to the work of [Chamel, 2013] who
finds more bound neutrons than the geometrical number. This contradiction
might originate from the fact that he uses a completely different approach
for the entrainment. Actually, he describes the inner crust in the framework
of the band structure theory, initially developed for the electrons in solid
state physics. However, in neutron star conditions, the pairing gap is as
large as the energy gaps between bands, while for Cooper pairs of electrons
in solids the gap between bands is much larger than the electron pairing
gap.

These results were applied to pulsar glitches, which are supposed to come
from a sudden transfer of angular momentum from the superfluid part of
the star to the normal one [Anderson and Itoh, 1975, Pines and Alpar, 1985].
If one knows the ratio of superfluidity in the star, one can deduce a limit
for the maximal mass of the pulsar. Hence, our results give for the
Vela pulsar a maximal mass of ∼ 1.7M⊙, while Chamel finds ∼ 0.7M⊙
[Chamel, 2013, Andersson et al., 2012], unless one admits a contribution of
the core to superfluid fraction. However, it is important to mention that
our hydrodynamics calculations must be improved by including surface ten-
sion and neutron skin of the clusters. In addition, we restricted ourselves
to a stationary case where there is no density waves and a static cluster
arrangement. In further studies it would be interesting to improve the hy-
drodynamic calculations we performed, in order to extract the phonons of
the lattice contribution to the heat capacity. Most importantly, the quan-
titative accuracy of hydrodynamics is questionable as it relies on a small
coherence length, while pairing inside the cluster is probably too weak. The
best approach for the collective mode would be a complete QRPA calculation
which includes the lattice arrangement, however such calculation seems out
of reach.



Appendix A

Skyrme parameters in PNM

In spin-unpolarized pure neutron matter, the general Skyrme functional
[Vautherin and Brink, 1972, Engel et al., 1975, Chabanat et al., 1998] takes
the particularly simple form given in Eq. (2.9). The parameters si are related
to the more common parameters ti and xi of Ref. [Chabanat et al., 1998] by

s0 = t0(1− x0) , (A.1a)

s1 = t1(1− x1) , (A.1b)

s2 = t2(1+ x2) , (A.1c)

s3 = t3(1− x3) . (A.1d)

For the numerical values of the parameters ti, xi, and α, we use the SLy4
parametrization of Ref. [Chabanat et al., 1998]. For completeness, the pa-
rameters si and α are listed in Table A.1. Decomposing the ph interaction
matrix element Eq. (2.14) according to Eq. (2.15), one obtains:

W1(q)= s0 +
(α+2)(α+1)

12
s3ρ

α+
s1 −3s2

4
q2 , (A.2a)

W2 =
s1 +3s2

4
. (A.2b)

Table A.1: Parameters of the Sly4 interaction for the case of pure neutron
matter.

Parameter Value
s0 (MeV fm3) -413.16
s1 (MeV fm5) 654.29
s2 (MeV fm5) 0
s3 (MeV fm3+3α) -4877.06
α 1/6
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Appendix B

Matrix of response function in

QRPA

Below we give the explicit expressions for the 16 free quasiparticle response
functions that form the matrix Π

(0)
q in Eq. (3.27).

The ρ+ response:

Π
ρ+,h+

k+,k−
=

Ek+Ek− −ξk+ξk− +∆k+∆k−

4Ek+Ek−
G−

k,q(ω) , (B.1a)

Π
ρ+,h−

k+,k−
=−

Ek+ξk− −ξk+Ek−

4Ek+Ek−
G+

k,q(ω) , (B.1b)

Π
ρ+,∆+

k+,k−
=−

ξk+∆k− +∆k+ξk−

4Ek+Ek−
G−

k,q(ω) , (B.1c)

Π
ρ+,∆−

k+,k−
=−

Ek+∆k− +∆k+Ek−
4Ek+Ek−

G+
k,q(ω) . (B.1d)

The ρ− response:

Π
ρ−,h+

k+,k−
=−

Ek+ξk− −ξk+Ek−

4Ek+Ek−
G+

k,q(ω) , (B.1e)

Π
ρ−,h−

k+,k−
=

Ek+Ek− −ξk+ξk− −∆k+∆k−

4Ek+Ek−
G−

k,q(ω) , (B.1f)

Π
ρ−,∆+

k+,k−
=−

Ek+∆k− −∆k+Ek−

4Ek+Ek−
G+

k,q(ω) , (B.1g)

Π
ρ−,∆−

k+,k−
=−

ξk+∆k− −∆k+ξk−

4Ek+Ek−
G−

k,q(ω) . (B.1h)

The κ+ response:

Π
κ+,h+

k+,k−
=

ξk+∆k− +∆k+ξk−

4Ek+Ek−
G−

k,q(ω) , (B.1i)
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Π
κ+,h−

k+,k−
=

Ek+∆k− −∆k+Ek−

4Ek+Ek−
G+

k,q(ω) , (B.1j)

Π
κ+,∆+

k+,k−
=−

Ek+Ek− +ξk+ξk− −∆k+∆k−

4Ek+Ek−
G−

k,q(ω) , (B.1k)

Π
κ+,∆−

k+,k−
=−

Ek+ξk− +ξk+Ek−

4Ek+Ek−
G+

k,q(ω) . (B.1l)

The κ− response:

Π
κ−,h+

k+,k−
=

Ek+∆k− +∆k+Ek−

4Ek+Ek−
G+

k,q(ω) , (B.1m)

Π
κ−,h−

k+,k−
=

ξk+∆k− −∆k+ξk−

4Ek+Ek−
G−

k,q(ω) , (B.1n)

Π
κ−,∆+

k+,k−
=−

Ek+ξk− +ξk+Ek−

4Ek+Ek−
G+

k,q(ω) , (B.1o)

Π
κ−,∆−

k+,k−
=−

Ek+Ek− +ξk+ξk− +∆k+∆k−

4Ek+Ek−
G−

k,q(ω) . (B.1p)

In the above expressions we have used the abbreviation

G±
k,q(ω)=

1
ω−Ωk,q+ iη

±
1

ω+Ωk,q+ iη
, (B.2)

where Ωk,q = Ek+ +Ek− .

The matrix 〈〈Π(0)
q V 〉〉 used in Eq. (3.34) is defined as

〈〈Π(0)
q V 〉〉 =W1(q)




〈〈Πρ+,h+

k+,k−
〉〉 0 0 0 0

〈〈k2
Π

ρ+,h+

k+,k−
〉〉 0 0 0 0

〈〈kzΠ
ρ−h+

k+k−
〉〉 0 0 0 0

〈〈F(k)Πκ+,h+

k+,k−
〉〉 0 0 0 0

〈〈F(k)Πκ−,h+

k+,k−
〉〉 0 0 0 0




+W2




〈〈k2
Π

ρ+,h+

k+,k−
〉〉 〈〈Πρ+,h+

k+,k−
〉〉 −2〈〈kzΠ

ρ+,h−

k+,k−
〉〉 0 0

〈〈k4
Π

ρ+,h+

k+,k−
〉〉 〈〈k2

Π
ρ+,h+

k+,k−
〉〉 −2〈〈k3zΠ

ρ+,h−

k+,k−
〉〉 0 0

〈〈k3zΠ
ρ−,h+

k+,k−
〉〉 〈〈kzΠ

ρ−,h+

k+,k−
〉〉 −2〈〈k2z2

Π
ρ−,h−

k+,k−
〉〉 0 0

〈〈F(k)k2
Π

κ+,h+
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(B.3)



135

+ g




0 0 0 〈〈F(k)Πρ+,∆+

k+,k−
〉〉 〈〈F(k)Πρ+,∆−

k+,k−
〉〉

0 0 0 〈〈F(k)k2
Π

ρ+,∆+

k+,k−
〉〉 〈〈F(k)k2

Π
ρ+,∆−

k+,k−
〉〉

0 0 0 〈〈F2(k)Πκ+,∆+

k+,k−
〉〉 〈〈F2(k)Πκ+,∆−

k+,k−
〉〉

0 0 0 〈〈F2(k)Πκ+,∆+

k+,k−
〉〉 〈〈F2(k)Πκ+,∆−

k+,k−
〉〉

0 0 0 〈〈F2(k)Πκ−,∆+

k+,k−
〉〉 〈〈F2(k)Πκ−,∆−

k+,k−
〉〉




,

with z = cos∢(k,q).
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Appendix C

Relation between velocity and

phase of the gap in BCS gases

C.1 Gas at rest

Typically, the BCS state is defined for a gas at rest, i.e., the total momentum
is equal to zero. Also, let us recall the definition of the BCS ground state
(2.23)

|Ψ0〉 =
∏

k

1
vk

αkβ−k |0〉 , (C.1)

with αk and β−k the Bogoliubov operators defined in Eq. (2.24).
Here it is important to treat the expression of the gap equation, which is

directly related to the dynamics of the gas. We have for the definition of ∆ in
coordinate space:

∆(r)=−|g| 〈Ψ0|ψ↑(r)ψ↓(r) |Ψ0〉 , (C.2)

for the sake of simplicity we use for pairing a contact interaction of strength
|g| and neglect UV divergence. In the preceding equation we introduced field
operators ψσ(r), which read as:

ψ↑(r)=
∑

k

ak,↑eik·r , (C.3a)

ψ↓(r)=
∑

k

a−k,↓e−ik·r , (C.3b)

where ak,σ stand for annihilation operators. As in Sec. 2.4, we keep the
notation that the spins up are associated with k and spins down with −k.
By injecting the definitions of ψσ in Eq. (C.2) one has

∆(r)=−|g|
∑

pp′
ei(p−p′)·r 〈Ψ0|ap,↑a−p′,↓ |Ψ0〉 . (C.4)
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It is more convenient to express the annihilation operators ak,σ in terms of
Bogoliubov operators [Fetter and Walecka, 1971]

ak↑ = ukαk+vkβ
†
−k

, (C.5)

a−k↓ = ukβ−k−vkα
†
k

. (C.6)

Hence, the gap equation rewrites as:

∆(r)=−|g|
∑

pp′
ei(p−p′)·r 〈Ψ0| (upαp+vpβ

†
−p)(up′β−p′ −vp′α

†
p′) |Ψ0〉 . (C.7)

Now we proceed step by step. First, consider the term α
†
p′ |Ψ0〉 which anni-

hilates a particle already created by αp′ within |Ψ0〉. The product in |Ψ0〉
runs over all momenta k with p′ included. Hence, this term is non-zero and
remains in further simplifications. Second, we note that β−p′ |Ψ0〉 vanishes,
since we apply twice the same operator β−p′ on the vacuum. It is important
to mention that this conclusion is a direct consequence of the anticommuta-
tion rules of the Bogoliubov operators (2.26). If one considers the previous
results, the pairing gap reduces into

∆(r)= |g|
∑

pp′
vp′ ei(p−p′)·r 〈Ψ0| (upαp+vpβ

†
−p)α†

p′ |Ψ0〉 . (C.8)

Similarly to the effect of β−k on the BCS state, the term 〈Ψ0|β†
−p vanishes

which leads to

∆(r)= |g|
∑

pp′
upvp′ ei(p−p′)·r 〈Ψ0|αpα

†
p′ |Ψ0〉 . (C.9)

Finally, let us remind the anticommutator of the Bogolibov operator
{αp,α†

p′}= δp,p′ , so the gap equation is simply:

∆(r)= |g|
∑
p

upvp . (C.10)

C.2 Uniform flow

Previously we treated the typical case of a BCS gas at rest, as in
Refs. [Fetter and Walecka, 1971, Lifshitz and Pitaevskii, 1980]. However in
hydrodynamics one has to consider the BCS gas moving with a velocity v.
In consequence we assume Cooper pairs made of particles with momenta
k+q and −k+q, with q = mv and m the mass. In such case, the operators
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are modified by the applied boost. First, we introduce boosted annihilation
operators:

ãk = ak+q and ã−k = a−k+q , (C.11)

with ak the usual annihilation operators. Analogously, the Bogoliubov oper-
ators are modified and rewrite as follows:

α̃k = ukã
k↑−vkã

†
−k↓ and β̃−k = ukã−k↓+vkã

†
k↑ . (C.12)

Finally, the BCS state for a gas moving uniformly reads as

∣∣Ψ̃0
〉
=

∏

k

1
vk

α̃kβ̃−k |0〉 (C.13)

As mentioned in the previous section, the dynamics of the BCS gas is
function of its pairing gap. The computation of ∆(r) requires the expression
of the field operators, which in terms of the boosted annihilation operators
read as:

ψ↑(r)=
∑

k

ãk,↑ei(k+q)·r , (C.14)

ψ↓(r)=
∑

k

ã−k,↓ei(−k+q)·r . (C.15)

Now, let us write the gap equation for
∣∣Ψ̃0

〉
:

∆(r)=−|g|
∑

pp′
ei(p−p′+2q)·r 〈

Ψ̃0
∣∣ (upα̃p+vpβ̃

†
−p)(up′β̃−p′ −vp′α̃

†
p′)

∣∣Ψ̃0
〉

. (C.16)

The properties of the boosted operators α̃ and β̃ are identical to those at rest.
Thus, we proceed analogously to the former case (cf. Sec. C.1) and the gap
equation is simply:

∆(r)= |g|
∑

pp′
upvp′ ei(p−p′+2q)·r 〈

Ψ̃0
∣∣ α̃pα̃

†
p′

∣∣Ψ̃0
〉

. (C.17)

Let us recall the anticommutator {α̃p, α̃†
p′}= δp,p′ , hence

∆(r)= |g|e2iq·r ∑
p

upvp , (C.18)

with the phase of the gap ϕ= 2q ·r.
Here it is important to mention that we obtain the famous results for the

velocity of a superfluid [Lifshitz and Pitaevskii, 1980]

v=
1

2m
∇ϕ . (C.19)
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Annexe D

Résumé en français

Les étoiles à neutrons ont été largement étudiées depuis que
[Baade and Zwicky, 1934] ont postulé leur existence. Ces études
sont réalisées à l’interface de différents domaines la physique tels
que : l’astrophysique en rayons X [Giacconi et al., 1962], l’observa-
tion des pulsars [Hewish et al., 1968, ATNF, 2016], la relativité géné-
rale [Tolman, 1939, Oppenheimer and Volkoff, 1939], et plus dernière-
ment les ondes gravitationnelles [Riles, 2013], la physique du solide
[Oyamatsu et al., 1984, Chamel, 2013], ainsi que la physique nucléaire
[Glendenning, 1982, Ravenhall et al., 1983, Douchin and Haensel, 2000,
Avancini et al., 2008].

Dans cette thèse nous nous concentrerons sur la description des étoiles
à neutrons et en particulier de la croûte interne de l’étoile dans le cadre
de la physique nucléaire. En effet, la croûte interne présente une struc-
ture complexe faite d’agrégats nucléaires immergés dans un gaz de neu-
trons, tous deux en équilibre mécanique et chimique. C’est ainsi que
nous construirons notre étude en trois parties. Tout d’abord nous com-
mencerons par traiter le gaz de neutrons entourant les agrégats. Puis
nous en viendrons à la description des agrégats et de leur déformation
[Ravenhall et al., 1983] à mesure que l’on descend dans la croûte. Enfin
nous traiterons l’interaction entre le gaz et les agrégats, dont la dyna-
mique ne peut pas être traitée indépendamment pour les deux constituants
[Sedrakian, 1996, Magierski and Bulgac, 2004b, Chamel, 2013].

Tout d’abord commençons ce travail par une brève introduction sur les
étoiles à neutrons.
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D.1 Historique et caractéristiques

Historiquement, les étoiles à neutrons ont été postulées bien avant leur pre-
mière observation et ce dès les années trente [Baade and Zwicky, 1934]. Ils
proposèrent alors un modèle d’étoiles massives et compactes. De plus, ils
postulèrent qu’elles pourraient être issues des supernovæ.

Commencèrent ainsi les premières études théoriques de la structure
de ces étoiles. On notera en particulier les travaux de [Tolman, 1939,
Oppenheimer and Volkoff, 1939], qui établirent les premiers développe-
ments de l’équilibre hydrostatique des étoiles à neutrons (équation de
Tolman-Oppenheimer-Volkoff, aussi abrégée TOV) en tenant compte des ef-
fets relativistes. Encore aujourd’hui l’équation TOV est utilisée pour les cal-
culs de relations masse-rayon des étoiles à neutrons non déformées (dont
la vitesse de rotation n’excède pas ∼ 200 Hz). Cependant, depuis les pre-
miers développements en 1939, où ils considérèrent un gaz de neutron idéal,
les équations d’état de la matière stellaire ont été grandement améliorées
[Glendenning, 1982, Douchin and Haensel, 2000, Avancini et al., 2008].

Ce fut une vingtaine d’années plus tard que les premières observations
supposées d’étoiles à neutrons furent faites. On retiendra en 1962, la pre-
mière observation de sources de rayons X extérieures au système solaire
par [Giacconi et al., 1962]. Il s’avéra que certaines de ces sources sont des
étoiles à neutrons et que leur rayonnement X est le marqueur de leur re-
froidissement. Il vint ensuite l’observation radio de J. Bell et A. Hewish, qui
interceptèrent le premier signal pulsar [Hewish et al., 1968]. Initialement,
l’origine de ce signal pulsé et régulier était indéterminée, ironiquement le
premier nom que porta l’objet fut Little Green Men 1 (LGM-1)1.

Les observations successives confirmèrent que les étoiles à neutrons
sont formées lors de l’effondrement gravitationnel du cœur des supernovæ
[Shapiro and Teukolsky, 2004, Foglizzo et al., 2015], ce qui n’était jusque là
qu’une hypothèse [Baade and Zwicky, 1934]. Cet effondrement a lieu lors de
la fin de vie d’étoiles massives de 10− 20M⊙, avec M⊙ la masse du soleil
[Chamel and Haensel, 2008]. Les étoiles à neutrons ainsi formées ont une
masse comprise entre 1 et 2M⊙ [Demorest et al., 2010] pour un rayon de
∼ 10 km [Yakovlev et al., 2001]. On parlera ainsi d’étoiles compactes où la
densité est élevée ∼ 1015 g cm−3, et nécessite la prise en compte des effets
relativistes.

La densité élevée de l’étoile donne lieu à une structure in-
terne exotique, que l’on peut diviser en trois différentes strates
[Chamel and Haensel, 2008] : la croûte externe, la croûte interne et le cœur.

1Petits Hommes Verts 1.
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La croûte externe est constituée de noyaux atomiques arrangés en un
réseau cristallin et d’un gaz d’électrons relativistes. L’arrangement cris-
tallin des noyaux est favorisé par l’interaction Coulombienne entre eux
[Oyamatsu et al., 1984]. À mesure que l’on descend dans la croûte de l’étoile
on constate une forte augmentation de la fraction de neutrons dans les
noyaux, et ce pour satisfaire l’équilibre β. Ainsi, à partir d’une certaine pro-
fondeur l’excès de neutrons dans les noyaux est si important qu’ils sont re-
lâchés dans le milieu et un gaz de neutron apparaît. Désormais nous ne par-
lons plus de noyaux mais d’agrégats nucléaires puisque tous les nucléons qui
les composent ne sont plus systématiquement liés [Ravenhall et al., 1983].
Dès lors nous faisons notre entrée dans la croûte interne formée d’un gaz
et d’agrégats nucléaires en équilibre mécanique et chimique. De plus en rai-
son de la faible température de l’étoile ∼ 10 keV [Yakovlev et al., 2001] on
s’attend à une superfluidité du gaz de neutrons [Pines and Alpar, 1985].

D.2 Gaz de neutrons superfluide

Comme introduit précédemment les agrégats nucléaires sont immergés dans
un gaz de neutrons qui est supposé superfluide [Pines and Alpar, 1985].
Dans ces conditions, on s’attend à voir apparaître dans le gaz un mode col-
lectif de basse énergie, i.e., un mode de Goldstone [Anderson, 1958]. Ce mode
collectif va être à l’origine d’une contribution supplémentaire à la capacité
calorifique de l’étoile.

Dans la Partie II, nous proposons une description basée sur l’approxima-
tion des phases aléatoires des quasiparticules (aussi nommée dans la litté-
rature anglophone quasiparticle random phase approximation, soit QRPA).
Cette approche microscopique est construite sur la théorie Hartree-Fock-
Bogoliubov dépendante du temps (TDHFB) et développée dans le cadre de
la réponse linéaire. Ainsi, nous nous limitons à des modes collectifs de faible
amplitude. De plus, nous introduisons dans le formalisme de la QRPA l’in-
teraction particule-trou (particle-hole, ou ph) complète, qui est dérivée de
la fonctionnelle de Skyrme [Chabanat et al., 1997] pour la matière de neu-
trons. L’expression complète de cette interaction est détaillée dans l’An-
nexe B. Les résultats sont présentés Chapitre 4 où nous commençons avec
les fonctions de réponse obtenues en QRPA. Sur certaines d’entre elles, on
constate un pôle qui traduit la présence d’un mode collectif. Ces fonctions de
réponse sont aussi comparées à celles obtenues dans l’approximation de Lan-
dau, c’est-à-dire dans l’approximation que les excitations ont lieu à proximité
de la surface de Fermi. On remarque qu’à grande longueur d’onde, l’énergie
du mode collectif est insensible à cette approximation. Mais lorsque le mo-
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ment du mode collectif est proche du moment de Fermi, on constate une
forme très différente des fonctions de réponse. Cela pourrait impacter les
calculs de libre parcours moyen des neutrinos dans les étoiles à neutrons,
calculs en général dérivés des fonctions de réponse de la matière de neu-
trons.

Nous nous sommes aussi penchés sur l’approximation du mode collec-
tif à petit moment et énergie à l’aide de l’approche hydrodynamique. Dans
cette limite, la relation de dispersion du mode collectif est linéaire, soit un
comportement très différent de la QRPA. En effet, la QRPA présente une
relation de dispersion tout d’abord linéaire, suivant précisément la pente du
mode hydrodynamique. Puis le mode dévie, et il est contraint par l’énergie
limite de brisure d’une paire de Cooper. Quant à la chaleur spécifique issue
du mode collectif, qu’elle soit calculée par la QPRA ou par l’hydrodynamique,
les résultats se trouvent être du même ordre de grandeur. L’hydrodynamique
peut donc servir en première approximation pour évaluer la contribution de
ce mode collectif. Finalement, nous constatons que le mode collectif peut
contribuer tout autant que les électrons, qui jusque là étaient considérés
comme dominants. Cependant, nous avons effectué nos calculs dans la li-
mite de température nulle, ce qui peut être imprécis si la température du
milieu s’approche de la température critique du superfluide. Dans ce cas un
calcul QRPA à température finie serait nécessaire, ce qui aurait pour effet
d’amortir le mode collectif [Leggett, 1966] et de modifier sa contribution à la
chaleur spécifique.

D.3 Modélisation de la croûte interne

Alors que nous nous sommes concentrés sur le gaz de neutrons uniforme,
nous proposons désormais de traiter les inhomogénéités qui composent la
croûte, c’est-à-dire les agrégats nucléaires.

Nous réalisons cette étude à l’aide de l’approximation de Thomas-Fermi
étendue (ETF), comme décrite dans la Partie III et plus précisément dans
le Chapitre 5. La procédure standard aurait été de résoudre les équa-
tion d’Euler-Lagrange, cependant une paramétrisation de la surface des
agrégats est tout aussi précise [Aymard et al., 2014]. Nous incluons dans
ces calculs les phases exotiques que peuvent prendre les agrégats qu’ont
prédit [Ravenhall et al., 1983], soit des : cylindres, plaques et des phases
inverses (trous et tubes). Cependant, nous nous limitons à des géomé-
tries non déformées, alors que l’on devrait s’attendre à une déformation
continue des agrégats avec l’augmentation de la densité. L’approche la
plus complète serait de traiter les agrégats dans le cadre de la théorie
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Hartree-Fock-Bogoliubov (HFB), qui inclurait les déformations et les ef-
fets de couches. Tout de même, nos résultats montrent l’apparition dans
la croûte de : sphères, cylindres et plaques à mesure que l’on descend, cf.
Chap. 6. À la différence d’un certain nombre d’études [Ravenhall et al., 1983,
Oyamatsu, 1993, Avancini et al., 2008] nous n’observons pas de phases in-
verses. Cela s’explique par la très faible fraction de protons dans la croûte
Yp ∼ 0.02−0.05, due à l’équilibre β, alors que par exemple dans les travaux
de [Avancini et al., 2008] la fraction de protons est fixée à un minimum de
Yp = 0.3. Nous avons obtenu de ces travaux une description des propriétés
des agrégats : densités interne et externe, tailles de la cellule et des agré-
gats, ainsi que leur tension de surface. Ces calculs nous donnent donc une
description complète de la croûte interne qui servira de base pour les calculs
d’équation d’état, ainsi que pour l’hydrodynamique de la croûte.

D.4 Hydrodynamique de la croûte interne

Comme introduit précédemment la croûte est formée d’agrégats immergés
dans un gaz de neutrons superfluides. Ainsi les deux étant composés des
mêmes nucléons, leur comportement dynamique n’est pas indépendant l’un
de l’autre.

On propose d’effectuer la description dynamique de la croûte dans le
cadre de l’hydrodynamique superfluide, voir Partie IV. Pour ce faire nous
généralisons l’approche de [Magierski and Bulgac, 2004a] pour un agrégat
isolé dans un gaz infini, à une cellule de taille finie et périodique. Effecti-
vement, les calculs de [Oyamatsu et al., 1984] ont montré que les agrégats
nucléaires chargés positivement tendent à s’organiser en un réseau cristal-
lin de telle sorte à minimiser l’énergie Coulombienne. Ainsi les sphères et
les cylindres s’organisent respectivement en maille cubique centrée et hexa-
gonale. La géométrie des agrégats ajouté à leur arrangement cristallin re-
quiert une résolution numérique de l’hydrodynamique superfluide. La des-
cription dynamique obtenue pour les agrégats dans le gaz est détaillée dans
le Chapitre 8. Les résultats montrent que le nombre de neutrons effective-
ment liés aux agrégats est très inférieur par rapport au nombre de neutrons
localisés spatialement dans leur rayon. Cet effet est appelé l’entraînement

des neutrons et est ici accentué par la périodicité. Cependant, ces résultats
doivent être comparés à ceux effectués par [Chamel, 2013] dans le cadre de
la théorie des bandes, initialement développée pour les électrons dans les
solides. Il trouve un comportement très différent, en présentant des neu-
trons fortement liés aux agrégats. Cette différence peut s’expliquer par l’ap-
plicabilité de chacune des approches effectuées. En effet, l’appariement des
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neutrons présent dans la croûte [Pines and Alpar, 1985] est négligé dans les
calculs de [Chamel, 2013]. De plus dans le cadre de la physique des solides,
le gap d’appariement des électrons est beaucoup plus petit que la différence
d’énergie entre les bandes, alors qu’ici nous sommes dans une situation in-
versée. D’autre part, la théorie hydrodynamique est valide si l’appariement
est fort, ce qu’on vérifie dans le gaz. Alors que dans les agrégats la densité
est importante et peut engendrer un appariement faible, d’où une longueur
de cohérence des paires de Cooper comparable à la taille des agrégats. De
plus nous avons tous les deux négligés les effets de mouvements de point
zéro [Pethick and Potekhin, 1998, Kobyakov and Pethick, 2013] qui peuvent
réduire les effets de structure de bande, et affecter l’hydrodynamique car
[Pethick and Potekhin, 1998] ont montré que la croûte aurait des propriétés
élastiques proches des cristaux liquides.

La superfluidité dans la croûte interne impacte directement le méca-
nisme de glitch des pulsars2. Effectivement, les glitches sont compris comme
un transfert soudain de moment cinétique du superfluide non ralenti (fluide
non visqueux) vers la partie normale qui est ralentie par l’émission pul-
sar [Anderson and Itoh, 1975, Pines and Alpar, 1985]. Ainsi, la partie super-
fluide de l’étoile fait office de réservoir de moment cinétique pour le glitch.
La taille du réservoir donne la proportion de neutrons superfluides qui com-
posent la croûte, et contraint la masse maximal de l’étoile qui permet de
comprendre les glitches fréquents de certains pulsars, comme présenté dans
le Chapitre 9. Ici, nous trouvons des résultats très différents entre l’ap-
proche hydrodynamique et la théorie des bandes, ce qui implique des conclu-
sions très éloignées quant à la masse des étoiles. Par exemple pour le pulsar
Vela, nous trouvons une masse maximale de ∼ 1.7M⊙, alors que la théorie
des bandes prédit une masse maximale de ∼ 0.7M⊙ [Chamel, 2013]. Comme
discuté dans le paragraphe précédent, ces conclusions peuvent être impac-
tées par la validité de l’hydrodynamique et de la théorie des bandes dans la
croûte interne, mais aussi par la compréhension que nous avons des glitches,
car comme le soulignent [Pines and Alpar, 1985, Andersson et al., 2012] ce
modèle pour les glitches doit être amélioré.

D.5 Conclusion

Dans cette thèse, nous avons traité la croûte interne de façon assez large,
en établissant les propriétés de chacun des éléments qui la composent. Puis

2Un glitch correspond à un saut dans la période des étoiles à neutrons en rotation et
émettant un rayonnement par leurs pôles magnétiques (aussi appelées pulsars).
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nous nous sommes penchés sur les impacts que cette description a au niveau
astrophysique.

Cependant le travail n’est pas terminé, et il reste de nombreuses ques-
tions en suspens. Comme discuté, il serait intéressant d’effectuer la QRPA
à température finie. Concernant la description des agrégats, un traitement
HFB incluant la déformation et les effets de couches serait beaucoup plus
précis. Quant à l’hydrodynamique et aux glitches, leur descriptions doivent
être améliorées et consolidées pour pouvoir apporter des réponses plus pré-
cises à l’astrophysique. Pour terminer, notons que l’hydrodynamique sera un
point de départ pour la caractérisation des phonons du réseau cristallin, qui
contribuent eux aussi à la chaleur spécifique de l’étoile.
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Title Collective modes and hydrodynamics the in-
ner crust of neutron stars.
Keywords neutron star, crust, collective modes,
hydrodynamics, nuclear physics.

Abstract Neutron stars have been extensively
studied since Baade and Zwicky have proposed their
existence in 1934. Their description is at the inter-
face of numerous domains of physics, e.g., X-ray as-
trophysics, pulsar signal observation, general rela-
tivity and nowadays gravitational waves, solid state
physics, and also nuclear physics.

In this thesis we will concentrate on the nuclear
physics description, especially of the inner crust.
These stars are charaterized by their large mass
from one to two solar masses, in a radius of ∼ 10 km.
Their inner structure can be divded in three major
layers: the outer crust, the inner crust and the core.
The outer crust consists of nuclei coexisting with an
electron gas to ensure charge neutrality. If one goes
deeper into the crust, the ratio of neutrons with re-
spect to the total nucleon number increases. Even-
tually, the excess of neutrons in the nuclei gets so
high that they drip out from the nuclei and create a
dilute neutron gas. From now on, we will speak of
nuclear clusters instead of nuclei. This phenomenon
defines the limit between the outer crust and the in-
ner crust. This complicated structure and composi-
tion is at the origin of many characteristic properties
of neutron stars.

Hence, we will construct our work in three major
parts. First, we start to account for the neutron gas
surrounding the clusters, which we treat as uniform.
Here, the neutron gas is assumed to be superfluid,
and one can expect a Goldstone mode. This descrip-
tion will be done in the framework of QRPA. Second,
we will focus on the study of properties of the clus-
ters contained in the inner crust. Under these con-
ditions we expect to see cystal of spheres, rods and
plates of bound nucleons, that we will describe with
the help of the ETF approximation. Third, we will
finish by treating the interaction between the clus-
ters and the gas with hydrodynamics. The results
will be applied to astrophysics and in particular to
glitches.

Titre Modes collectifs et hydrodynamique dans la
croûte interne des étoiles à neutrons.
Mots clés étoile à neutrons, croûte, modes collec-
tifs, hydrodynamique, physique nucléaire.

Résumé Les étoiles à neutrons ont été largement
étudiées depuis que Baade and Zwicky ont postulé
leur existence en 1934. Ces études ont été et sont
réalisées à l’interface de différents domaines la phy-
sique tels que : l’astrophysique en rayons X, l’obser-
vation des pulsars, la relativité générale et plus der-
nièrement les ondes gravitationnelles, la physique
du solide, ainsi que la physique nucléaire.

Dans cette thèse nous nous concentrerons sur la
description des étoiles à neutrons dans le cadre de
la physique nucléaire et précisément de la croûte
interne de l’étoile. Ces étoiles sont caractérisées
par une masse importante de l’ordre d’une à deux
masses solaires dans un rayon de ∼ 10 km. Quant
à leur structure interne elle peut être décrite en
trois strates : la croûte externe, la croûte interne

et le cœur. La croûte externe correspond à un ré-
seau cristallin de noyaux atomiques et un gaz d’élec-
trons relativistes. Vient ensuite la croûte interne, dé-
finie lorsque les noyaux de la croûte externe sont
si riches en neutrons qu’ils les libèrent dans le mi-
lieu pour former un gaz. Ici, nous ne parlons plus
de noyaux mais d’agrégats car tous les nucléons qui
les composent ne sont plus systématiquement liés.
Cette structure complexe et sa composition est à
l’origine de nombreuses propriétés caractéristiques
des étoiles à neutrons.

C’est ainsi que nous construirons notre étude en
trois parties. Tout d’abord nous commencerons par
traiter le gaz de neutrons entourant les agrégats. Le
gaz de neutrons que nous considérons uniforme ici
est superfluide et devrait donc présenter un mode de
Goldstone. Cette description sera effectuée à l’aide
de la QRPA. Puis nous en viendrons à la descrip-
tion des agrégats. Dans ces conditions on s’attend
à observer des cristaux de sphères, des cylindres et
des plaques de matière nucléaire, que nous décrirons
grâce à l’approximation ETF. Puis nous terminerons
par la description de l’interaction entre les agrégats
et le gaz au niveau dynamique, et ce dans le cadre
de la théorie hydrodynamique. Ces résultats seront
appliqués à l’astrophysique et en particuliers aux
glitches.
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