Lm+H2 > "2 +iBQMb BM i?2 : KQr b?2HH KC
bQHMIBQMb Q7 i?2 T B'BM: > KBHIiQMB M
" iBQM H : m/BM KQ/2H
H2tBb J2 +2MM2

hQ +Bi2 i?Bb p2'bBQM,
H2tBb J2 ' +2MM2X Lm+H2 " "2 +iBQMbBMi?2: KQrb?2HH KQ/2H M/ bC
# b2/ QM i?2 iBQM H: m/BM KQ/2HX Lm+H2 " h?2Q°'v (Mm+H@i?)X IM
IM;HBb?X Ili2H@yYyR9eNRjN=

> G A/, i2H@YyR9eNRjN
2iiT,ff? HXBMKTjX7 fi2H@yR9eNRjN
am#KBii2/ QM Re 62# kyRd

> G Bb KmHiB@/Bb+BTHBM v GOT24WB p2 Dmbp2 "i2 THm B/BbBIBTHBN
"+?Bp2 7Q i?72 /2TQbBi M/ /Bbb2KIBEBMBR MNQ@T™+B2® " H /BzmbBQM /2 /
2MiB}+ "2b2 "+?2 /Q+mK2Mib- r?2i?@+B2MMiB}2mM2b#/@ MBp2 m "2+?22 +?22- T
HBb?2/ Q° MQiX h?2 /IQ+mK2Mib MK VW+RK2Z2EF IQKHBbb2K2Mib /62Mb2B;M
i2 +?BM; M/ "2b2 "+? BMbiBimiBQWER BM?8 7M#M2I @b Qm (i~ M;2 b- /2b H
#Q /-Q 7 QK Tm#HB+ Q T ' Bp i2T2HRAB+B @2MT2BIpXib X


http://hal.in2p3.fr/tel-01469139
https://hal.archives-ouvertes.fr

U

Normandie Université

#% %
01 0234
5
L $9%6%
& | & ($ " ) $ %%
[} + I( [
+ +
) ()
Sl - & (# " () & 0

& % () H- U

NAEN

UNIVERSITE
CAEN

NORMANDIE







Université de Caen-Normandie
U.F.R. de Sciences

ECOLE DOCTORALE SIMEM

These de doctorat

présentée et soutenue le : 28 Novembre 2016
par

M. Alexis Mercenne
pour obtenir le
DOCTORAT de I'UNIVERSITE de
CAEN-NORMANDIE

Spécialité : Constituants élémentaires et physique théorique

Réactions nucléaires dans le modeéele en couches de
Gamow et solutions de I'Hamiltonien d'appariement
basées sur le modele rationnel de Gaudin

MEMBRES du JURY :

M. Morten Hjorth-Jensen (Rapporteur )
Professeur, University of Oslo, Norway and Michigan State University, East Lansing, MIl, USA

M. Denis Lacroix (Rapporteur )
Directeur de recherche CNRS, IPNO, Orsay, France

Me. Francesca Gulminelli
Professeure, Université de Caen-Normandie, LPC Caen, France
M. Marek P3oszajczak  (Directeur de thése )
Directeur de recherche CEA, GANIL, Caen, France







Remerciements

Et voila, voici la derniére partie a écrire, et qui par ailleurs sera certainement la premiére a étre
lue par les futurs lecteurs. Donc je vais essayer de faire court. Mettre sur papier mes remerciements
ne devrait pas étre la partie la plus di cile de cette thése, je pense, méme s'il me semble que l'un
de mes prédécesseurs est toujours en train d'y travailler.

Mes premiers remerciements, formels mais sincéres, vont aux membres du jury, Francesca
Gulminelli, Denis Lacroix et Morten Hjorth-Jensen, pour leur travail de lecture et d'évaluation de
mon manuscrit, mais aussi pour leurs chaleureux encouragements.

Ensuite, je tiens a remercier mon directeur de thése Marek P2oszajczak, pour le sérieux de son

indéfectible encadrement, mais aussi pour sa gentillesse et sa bonne humeur constante au cours de
ces dernieres années passées a travailler avec lui. Travailler avec Marek sur le continuum signi e
aussi intégrer un groupe de personnes, principalement composé de ses anciens étudiants, avec qui
j'ai pu nouer des liens. Ainsi, merci a Kévin et Nicolas qui m'auront initié, chacun a leur maniére,
a ce domaine de recherche mais aussi apporté une aide indispensable lors des moments di ciles. Je
salue également Yannen et Jimmy pour les quelques instants qu'on a pu passer ensemble lorsqu'ils
étaient de retour en France. Une pensée aussi pour Guoxiang qui aura passé une année a travailler
avec nous.

Un grand merci aussi a mes deux lapins Bart et Fabien, qui auront grandement participé a
rendre cette derniére année de thése moins pénible qu'elle n‘aurait di I'étre. Je souhaite au premier,
bonne chance (oui, il en faut) et surtout bon courage pour sa derniére année, et au second tous
mes meilleurs souhaits de réussite pour ce qu'il entreprendra.

Au GANIL, je souhaite également remercier I'équipe des physiciens, dont notamment Frangois
De Oliveira Santos, Piet Van Isacker, Beyhan Bastin, David Boilley, Abdelhouahad Chbihi, et
le tout nouveau directeur du GANIL, Navin Alahari. Merci aussi au personnel technique et
administratif du GANIL qui m'aura beaucoup aidé sur certaines taches annexes durant ma thése
. merci a Guillaume Lalaire, Nicolas Ménard, Virginie Lefebvre, Sabrina Lecerf-Rossard, Michel
Lion, et ceux que j'ai pu oublier.

Un grand merci aussi aux autres doctorants et post-docs croisés au GANIL : Mark, Pierre,
Aldric, Benoit, Florent, José, Haifa, Hongliang, Quentin, Kim, Coralie, Catherina, Marine, Carme,
Giacomo, Guillaume, Diego et tous ceux que j'ai pu oublier.

En n je souhaite aussi remercier ceux qui m'auront beaucoup in uencé au cours de ma scolarité,
et qui sont en partie responsables de ce manuscrit. Merci & Georges Kaisa pour ses trés bons
conseils, Mme Rondeau et M Lebaillon qui m'auront guidé vers les sciences physique, et bien
entendu, Olivier Juillet, qui aura aussi eu une inuence sur moi non négligeable, notamment
lors de mon choix de poursuivre mes études vers un doctorat, et plus spécialement en physique
théorique.



A présent, je termine avec mes remerciements, certainement les plus importants, pour mes
proches. A mes amis, Pierre-Alexandre, Vincent et Jonathan, Benj, Soléne, Nilglin, Gerbold, et
Thomas, qui m'auront de prés ou de loin accompagné durant ces trois derniéres années. Un grand
merci aussi a Patrick et Robert, que je n'aurais sans doute jamais eu l'occasion de rencontrer si
mon anglais n'était pas aussi naze au début de ma these. Merci aussi a ma belle-famille, pour
beaucoup de choses, Manu, Martine, Anne, Francois et Aline. A mes parents, pour leur soutien
inconditionnel et, forcément, sans qui je ne serais pas arrivé jusqu'ici, @ mon frére qui aura sans
doute a vivre cette expérience d'ici quelques années, et au reste de ma famille.

Et pour terminer un grand merci tout a fait spécial et singulier a Camille, qui m'aura apporté
son soutien et son aide indispensable au vécu de cette thése.



Contents

1 Introduction 7
2 Structure description of bound, weakly bound and unbound systems in nuclear
physics 10
2.1 Nuclear shellmodel . ... ... ... . . ... .. e 12
2.2 Gamow shell model . ... .. ... . . 13
2.2.1 Rigged Hilbertspace . . ... ... ... . . ... ... e 13
2.22 Gamow StatesS . . . . ... e e 14
2.2.3 Normalization of Gamow states and the Berggren basis . ... ... ... .. 16
2.2.4 COSM coordinates and GSM Hamiltonian . . . ... ... ........... 19
2.2.5 Construction of the s.p. Berggrenbasis . . ... .. ... ............ 21
2.2.6 Determination of the many-body states . . . .. ... .. ............ 23
2.2.7 GSMapplications . . . . . . . . . e e e 24
2.3 On the solution of pairing problem in the continuum . .. ... ... ......... 24
2.3.1 Generalized Gaudinalgebra . . ... ... ... . .. ... .. . . . ... .. 25
2.3.2 Representation of the rational XXX model : The pairing Hamiltonian ... 29
2.3.3 Generalization of the rational Gaudin model to include the continuum ... 30
2.3.4 Approximate solution for the rational Gaudin model with the continuum . 32
2.3.5 Numerical solution of the rational Gaudin model with the continuum . ... 34
2.3.5.1 Numerical solution of pairing Hamiltonian in the GSM . . . . . .. 36
2.3.5.2 Calculation of the pairinggap . . . .. .. .. ... .......... 36
2.3.6 Comparison between solutions of GSM and generalized Richardson equations 37
2.3.6.1 Bound single particle states . . . ... ... ... . ... ... ... 37
2.3.6.2 Weakly bound and resonances states . . . ... ... ......... 38
2.3.7 Application of generalized Richardson equations to physical systems . ... 48
2.3.7.1 Chain of carbon and oxygenisotopes . . . . ... ... ........ 49
2.3.7.2 Ultra-small superconducting grains . . . . . ... .. ......... 60
3 Towards a uni ed model of nuclear structure and reaction 62
3.1 From Feshbach projection formalismtothe CSM. . . ... ... ... ... ...... 64
3.2 Coupled channel formulation of the GSM . . ... ... ... ... ... . ....... 67
3.2.1 Coupled channel problem in Berggren basis . ... ............... 68
3.2.2 Hamiltonian of the projectile . . ... ... .. ... ... .. ... ....... 69
3.2.3 About the harmonic oscillator basis in the expansion of projectile states . . 71
3.2.4 Expansion of nuclear states in a basis of Slater determinants . . . ... ... 73



CONTENTS

3.2.5 Orthogonalization condition model in GSM-CC approach . ... ... .. .. 74
3.2.6 Matrix elements and approximations. . . . ... ... ... ... ... ..., 74
3.2.6.1 The antisymmetry of a target-projectile system at large c.m. energies 75
3.2.7 Matrix elements of Hamiltonian Heee ;1 ® and norm Neews 151 % L L L L L. 75
3.2.8 Calculation of the reaction cross sections . . . . . ... . ... ... ...... 78
3.3 Numerical resolution of the coupled-channel equations . . . ... ........... 80
3.3.1 Orthogonalization of the channel states . . . . .. ... ............. 80
3.3.2 Boundary conditions and basis functions . .. ... ............... 81
3.3.3 Components of the basis functions . . . ... ... ... ... ........... 83
3.3.4 Method of the modi ed equivalent potential . . ... .............. 83
3.3.5 Green's function representation of the CC equation . . . .. .......... 84
3.4 Applications of the GSM-CC to nuclear reactions . . . ................. 85
3.4.1 Practical issues involved in GSM-CC calculations . . . .. ... ........ 85
3.4.2 Tests of the GSM-CC approach with deuteron and non-resonant reaction
channels . . . . . . . 87
3.4.2.1 Parameters of one-body potentials and two-body interaction ... 87
3.4.2.2 GSM-CC calculation of the pole states in di erent approximations
for 21Ca, #1Sc, and®2Sc . . . . ... 89
3.4.2.3 Deuteron and non-resonant channels in the GSM-CC description
OF #28C . o 92
3.4.2.4 Neutron transfer reaction®Ca(d,p)*Cags. - « - - v v o oo vt .. 94
3.4.3 Proton scattering onO . ... ... 95
4 Conclusions 104
A Annexes 107
A.1 Matrix elements and approximations . . . . . . . .. ... 107
A.1.1 Neutron-neutron Case . . . . . . . . v i e e e 107
A.1.2 Proton-proton and proton-neutron case . . . . . . . . ... 111
A.2 Derivation of the generalized Richardson equations . . . .. ... ........... 112
A.3 Initial conditions for solving the generalized Richardson equations . ... ... ... 117
A.4 Normalization of scattering states including the Coulomb potential . . . .. ... .. 118
A.4.1 Partial overlap integral . . . . . . . .. .. . . 118
A.4.2 Asymptotic expression of partial overlap integral . . .. ... ......... 119
A.4.3 Generalized Riemann-Lebesgue lemma . . ... ................. 121
A.4.4 Weak convergence of the overlap to a Dirac delta . . . ... .......... 121
A.5 Solution of Faddeev equation using Berggrenbasis . . . ... ... ... ........ 123



Chapter 1

Introduction

110 years after the discovery of atomic nucleus by Ernest Rutheford [1], the theory of atomic
nucleus, simple in its fundamental ideas and explaining large amount of experimental facts, is still
missing. The eld is governed by often disconnected approaches, and the best what one may expect
at present is building the comprehensive links between them. This realistic look should not prevent
us from stressing the importance of the 'silent revolution', which started at the turn of the century
and led to the rapid change of objectives of the nuclear theory and the evolution of its paradigms.
Several new ideas and approaches were born at around the same time, which strongly in uenced the
evolution of nuclear theory for almost two decades. These are: (i) the new many-body approaches,
such as the no-core shell model [2 4], the Gamow shell model (GSM) [5 7], the no-core shell
model combined with the resonating group method [8, 9], the no-core Gamow shell model [10], the
no-core shell model with continuum [11,12], the lattice e ective eld theory [13 15], etc., (ii) the
old many-body approaches revisited, such as the density functional theory [16], the shell model
embedded in the continuum (SMEC) [17 20], the coupled-cluster theory in Berggren basis [21 25],
the density-matrix renormalization group method [26 28], etc., (iii) the new approaches to e ective
interactions, such as the chiral e ective eld theory [29], the in-medium similarity renormalization
group approach [30 33], etc. This impressive list of achievements, given here in the historic ‘order
of appearance’, is by far not exhaustive and con rms the vitality of the nuclear theory.

The present situation reminds the glorious period from the end of forties to the end of sixties,
which gave birth to the nuclear shell model (SM), the microscopic optical potential, the uni ed
(Copenhagen) model of nucleus, the continuum shell model (CSM), the pairing interaction, the
G-matrix, the coupled-cluster theory, the Skyrme force, and many others. Is the present-day
renaissance of nuclear theory going to last longer than the previous renaissance of fties? Is it
going to lead to the lasting change of the paradigms in nuclear theory? or it will dry up, evolving
into the period of innumerable precision calculations, as experienced before?

The evolution of paradigms in nuclear theory is seen mainly: (i) in the approach to in-medium
nucleon-nucleon interaction, with developments in connecting QCD with nuclear structure, and
a rmation of the signi cance of three (and higher) -body interactions, (i) in the development
of new ab initio many-body theories for structure and reactions, and (iii) in the extension of
nuclear shell model for open quantum systems, with attempts to reconcile description of structure
and reactions in low-energy continuum.

The rsttwo items are closely related, i.e. both aim at solving the same fundamental questions:
how the strong interaction described by QCD is responsible for binding protons and neutrons into



nuclei?, how the shell structure arises from fundamental interactions and how it evolves across the
nuclear landscape?, what is the origin of simple patterns and collective excitations in nuclei?, how
the phenomenologically successful nuclear SM derives from the modeab initio theories?, etc.

The third item rea rms the role of continuum in structure aspects of nuclei by means of the
con guration interaction approach which is valid for bound and unbound nuclei, hence completing
and validating the standard nuclear SM. In this formulation, comprehensive and validated theory
of nuclei is on the horizon, allowing for the shell model treatment of both weakly bound/unbound
states and reaction channels, or an investigation of the collectivization of nuclear wave functions
as a result of interplay between internal mixing by interactions and external mixing via the decay
channels. Moreover, the uni cation of structure and reaction aspects of nuclei became possible,
and several crucial questions can be now addressed meaningfully, such as: how are the near-
threshold cluster con gurations born in nuclei?, what is the interplay between continuum and
isospin-breaking e ects?, what is the role of coalescence of eigenfunctions in the continuum?,
what is the common origin of resonance trapping and super-radiance phenomenon?, is the random
matrix theory justi ed?, what is the essential input for developing the "universal” optical model
potential?, how to take consistently into account breakup and transfer channels?, and how far can
surrogate reactions take us?j.e. is (d,p) going to inform us about (n, )?, etc.

The work presented in this manuscript is a part of the latter e orts to describe the atomic
nucleus as an open quantum system. The immense richness of the nuclear many-body problem
stems from its genuine multi-scale character and underlying e ective many-body interactions that
are strongly mediated by the nuclear medium. Further complexity is added by the open quantum
system nature of the atomic nucleus, which requires a treatment of bound states, resonances, and
the continuum of scattering states within a uni ed framework. To formulate the shell model for
open quantum systems, two frameworks have been proposed. The rst one, the real-energy CSM
in the Hilbert space [34 41], is based on the Feshbach's projection formalism [42,43]. The second
one, which will be discussed in this manuscript, is the GSM [5 7], which is the complex-energy
CSM based on the Berggren ensemble [44 46]. The GSM, which is conveniently formulated in the
rigged Hilbert space [47 49], o ers a fully symmetric treatment of bound, resonance, and scattering
states.

At low excitation energies, well-bound nuclei can be considered as closed quantum systems,
well described by the standard SM or its modern versions such as the no-core shell model. Moving
towards drip lines, or higher in excitation energy, the continuum coupling becomes gradually more
important, changing the nature of weakly bound states. In this regime, the chemical potential has a
similar magnitude as the pairing gap; hence, the system is dominated by many-nucleon correlations
which no longer cannot be considered as small perturbations atop the average potential. Many-
body states in neighboring nuclear systems with di erent proton and neutron numbers become
interconnected via continuum, forming correlated domains of quantum states.

Exact numerical simulation of a complex many-body system is not equivalent to understanding
its properties. The understanding of speci ¢ nuclear properties is often improved by considering
exactly solvable models, motivated by a symmetry of the many-body system. Many such simple
models have been discussed for bound atomic nuclei. However, no such models exist for nuclei
considered as open quantum systems. In the rst part of the thesis, we will generalize the rational
Gaudin pairing model [50] to include the continuous part of the single-particle (s.p.) spectrum,
and then derive a reliable algebraic solution which generalizes exact Richardson solution for bound
states [51,52]. In future, numerous applications of these generalized Richardson equations are
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possible (i) to study spectra and transition probabilities in di erent conditions of binding, (ii)
to study the spectroscopy in a long chain of isotopes, or (iii) to calculate pairing properties of
unstable ultra-small superconducting grains.

The formulation of reaction theory rooted in GSM will be discussed in the second part of the
manuscript. For that the GSM will be expressed in the basis of reaction channels and generalized
for multi-nucleon projectiles. Our aim is to develop the microscopic approach which will be capable
to describe the transfer reactions. This reaction theory respects the antisymmetrization of target
and projectile wave functions, as well as the wave function of the combined system. The application
will be presented for the reaction'*O(p,p") #O, where the combined systemF is a proton emitter.

The manuscript is organized as follows. In Secs. 2.1 and 2.2, we discuss the basic features
of the GSM, the construction of the s.p. basis, the choice of the optimal coordinate system, and
the regularization of diverging integrals involving continuum states. Sec. 2.3 is devoted to the
formulation of the pairing model in the space of discrete and continuum states and solving it by
generalizing the Richardson equations for fermions and bosons.

Chapter 3 is devoted to the discussion of the application of GSM approach to nuclear reactions.
In Sec. 3.1, the real-energy CSM/SMEC approach for structure and reactions is shortly discussed.
In the next section (Sec. 3.2), the coupled-channel (CC) formulation of GSM is discussed in
details. This GSM-CC formulation enables to formulate the uni ed theory of nuclear structure and
reactions. Sec. 3.3 collects the presentation of di erent numerical methods to solve CC equations
of the GSM-CC approach for both local and non-local potentials calculated microscopically for
a given Hamiltonian. More technical parts of this thesis and some derivations concerning the
material of chapters 2 and 3 are contained in the appendices.

Finally, main conclusions of this work and a list of future perspectives are given in chapter 4.



Chapter 2

Structure description of bound,
weakly bound and unbound systems
In nuclear physics

One of the early observation of the atomic nuclei concerns uctuations in the relative abun-
dances and masses/separation energies in the periodic table. It has been shown that these uc-
tuations are associated with particular values of the neutronN and proton numbers Z, called
the magic numbers [53 55]. This relation is at the origin of the rst version of the shell model
(SM) [56] wherein independent protons and neutrons |l orbitals associated with the speci ¢ quan-
tum numbers. Magic numbers of nucleons in this model always correspond to the gain in binding
energy. This 'atomic' version of the SM failed to reproduce magic numbers of hucleons and binding
energies of nuclei [57]. Later, following the suggestion of Enrico Fermi, the SM was modi ed by
Goppert-Mayer [58,59] and independently by Haxel, Jensen and Suess [60] to include the spin-orbit
coupling term. In this version, the SM succeeded to reproduce the magic numbers of nucleons and
the order of shells.

The interaction between nucleons in this independent particle nuclear SM is approximated by
the average potential and the spin-orbit coupling term. The description of nuclear spectra was
achieved in the SM by introducing the con guration interaction between various arrangements
of nucleons in di erent shells, respecting the Pauli exclusion principle [61 63]. The model was
completed by Brueckner [64] who reconciled the picture of independent nucleons moving in the
shells of an average potential with the picture of strongly interacting nucleons obeying Pauli prin-
ciple. (More about the history of nuclear SM can be found in Ref. [65]. A recent review of SM
applications for complex spectra is given in Refs. [66,67].) In spite of the formidable develop-
ment of ab initio approaches, such as the no-core (Gamow) shell model [2, 3, 10, 68], the coupled
cluster theory [69, 70], the self-consistent Green's functions approach [71 77], or the in-medium
similarity renormalization group method [30 33], the nuclear SM still remains the cornerstone of
our understanding of atomic spectra.

The tremendous success of SM in the description of well-bound nuclei lead to the separation of
nuclear structure and nuclear reactions. The drawbacks of this separation have been pointed out
early [78] as it became clear that the microscopic description of nuclear reactions depends on inter-
nal structure of colliding nuclei, and the SM fails to describe resonances and near-threshold states.
We know now that the coupling to the continuum can deeply a ect the many-body dynamics
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and gives rise to new phenomena, such as the two-proton [79 82] and two-neutron [83, 84] de-
cays, the formation of halo structures and Borromean systems [85 87], the appearance of doorway

states [88,89] and trapped resonances [90], or the clusterization in the vicinity of the correspond-

ing cluster emission threshold [91 93]. In the past two decades, these exotic phenomena became
important topics of the experimental investigations.

The recent developments of new radioactive ion beam facilities provide the strong impulse
for the development of new theoretical approaches dealing with the continuum. Early attempts
based on the Feshbach projection formalism [94], led to the continuum shell model (CSM) [34 41]
and the shell model embedded in the continuum (SMEC) [17 20, 95] which have been successful
to describe exotic phenomena involving at most the two-nucleon decay channels. An alternative
approach, which will be discussed in this chapter, is the SM in the complex-energy plane, the
so-called Gamow shell model (GSM) [5 7]. This model combines all advantages of the standard
nuclear SM with the possibility to deal with any number of particles in the scattering continuum.
The GSM is using Berggren ensemble [44 46] to build Slater determinants and henceforth, the
many-body wave functions. Wave functions in this approach are the quasi-stationary solutions of
the time-dependent Schrodinger equation with the outgoing boundary conditions.

The GSM provides a comprehensive description of the many-body wave functions in all regimes
of the binding energy. Eigenfunctions of the resonant states are the poles of the scattering matrix,
and in that sense, GSM contains the necessary ingredients to unify the theory of nuclear structure
and reactions. One should mention also other approaches which attempt to describe nucleus as
an open quantum system. These are the coupled cluster theory [21 25] in Berggren basis, and the
no-core shell model with continuum [11,12] which resembles the SMEC approach and relies on the
resonating group method [8, 9] to calculate channel wave functions.

The rst part of this chapter is devoted to the discussion of the GSM, the con guration in-
teraction approach for weakly bound and unbound nuclei. In Sec. 2.1, we remind shortly the SM
formalism. The following section (Sec. 2.2) is devoted to the open quantum system generalization
of the SM; we present the GSM and discuss limitations of the Hilbert space description of open
guantum systems. In Sec. 2.2.1, an extension of Hilbert space, the so-called rigged Hilbert space
or Gel'fand triple, is brie y presented. Then in Sec. 2.2.2, we introduce Gamow states. Di erent
methods to regularize Gamow states and their application in Berggren single particle (s.p.) basis
are discussed in Sec. 2.2.3.

The application of cluster orbital shell model (COSM) coordinates in GSM is discussed in Sec.
2.2.4. We will show that the center-of-mass (c.m.) excitations can be approximately removed if
the GSM Hamiltonian is expressed in COSM coordinates. The construction of the complete one-
and many-body bases is then discussed in Secs. 2.2.5 and 2.2.6, respectively. Finally, in Sec. 2.2.6,
we will list previous applications of the GSM.

In the second part of this chapter (Sec. 2.3), we will present the generalized Richardson
equations for fermions and bosons which are interacting with a pairing interaction in bound and
unbound s.p. levels. The mathematical framework of these equations, including a short introduc-
tion to the Richardson-Gaudin model and the connection between the XXX model of Gaudin and
the pairing model, are discussed in Secs. 2.3.1 and 2.3.2. In Sec. 2.3.3, we generalize the pairing
Hamiltonian in Berggren basis and derive the generalized Richardson equations which provide the
approximate solution for this model (Sec. 2.3.4). The numerical method to solve the generalized
Richardson equations are then discussed in Sec. 2.3.5.

In Sec. 2.3.6, results obtained using the generalized Richardson equations are compared with
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the exact GSM solutions of the pairing problem. Our aim is to estimate the reliability of the
generalized Richardson equations in di erent regimes of the pairing interaction for di erent s.p.
bases and number of particles. In the following section (Sec. 2.3.7.1), we apply these equations
to calculate binding energies and spectra of carbon isotopes. In these studies, we compare results
obtained with and without continuum couplings to see e ects of the continuum in the spectra of
the pairing Hamiltonian. Finally, a possible application of the generalized Richardson equations
for the studies of unstable ultra-small superconducting grains will be shortly discussed in Sec.
2.3.7.2.

2.1 Nuclear shell model

The one-body part of the SM Hamiltonian consists of an isotropic harmonic oscillator potential

plus a spin-orbit coupling term: L
Ure Sm 2r2 VNSl (2.1)

where herem is the mass of physical object which generates the mean potential, an®#l the
orbital angular momentum and intrinsic spin, respectively. Even if this potential (2.1) is su cient

to reproduce observed magic numbers of nucleons, it fails to explain nuclear spectra. For that,
one should consider the con guration interaction, i.e. introduce the two-body interaction. In
laboratory coordinates, the Hamiltonian reads :

A Qe 3\% (2.2)
i1 i@

wheref} is the kinetic energy operator, and\’?i,- is the residual two-body interaction. In most cases,
we can limit ourselves to the two-body interaction in (2.2), but many recent studies stress the
importance of the three-body interaction [96 103].

In standard SM calculations, completely lled shells form an inert core, so that the con guration
mixing involves only nucleons in the valence shells. In such a description, the Hamiltonian can be
written as:

B A g% 0°°2 o ¥ (2.3)
4 11111]I.]?.llajl.1111111111111111111iﬁiﬁfill&l&a&i&&a&l&a&:&a&lﬂ_&;&a&l&a&a&ilﬁ1 1111111111111111111121212111
'q basis ‘0 ?

where Bpasis is the one-body Hamiltonian which generates the s.p. basis, and the two-body
interaction which generates the con guration mixing. In Eq. (2.3), H. is the Hamiltonian of the
core, and 0" the one-body potential generated by the core and felt by the valence nucleons.
They are de ned as :

RHe o f Q YV and o Y Of°e (2.4)

i>core "i@e>core j>core

The one-body potential Oicore U"f e is the same as in Eq. (2.1).

Well bound many-body states of a nucleus can be conveniently described in the harmonic
oscillator basis. For weakly bound or unbound states, an explicit consideration of continuum states
in the many-body framework is mandatory. For example, an understanding of the near-threshold
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correlations [91, 92] is missing in SM due to the absence of branch points singularities associated
with the particle emission thresholds [104]. The standard procedure to break this deadlock is to
include e ects of the continuum e ectively by adjusting the matrix elements of the Hamiltonian.

We will discuss this point in Sec. 2.3.7.1. The application of this recipe became an obstacle in
learning about the role of the continuum coupling and the three- (many-) body interaction, or
the salient features of the near-threshold collectivity. In the following sections of this chapter,
we present the open quantum system formulation of the SM, the GSM, and in the next chapter
we will show how to formulate the comprehensive reaction theory which is rooted in this general
nuclear structure approach.

2.2 Gamow shell model

In this previous section, we have reminded main features of the SM. We have stressed that this
model is adapted for the description of well bound many-body states. The open quantum system
extension of SM in the rigged Hilbert space, the GSM, and mathematical details of its formulation
will be contained in this section.

2.2.1 Rigged Hilbert space

The mathematical apparatus of the Hilbert spaceH is su cient to describe discrete states
of a bounded quantum system. Problems arise if the spectrum of the quantum system contains
both discrete and continuous parts. Resonances, which appear in this case, neither belong to the
Hilbert space nor they are solutions of the hermitian eigenvalue problem.

Resonances are genuine intrinsic properties of quantum systems, associated with their natural
frequencies, and describing preferential decays of unbound states. The standard formulation of
guantum mechanics in Hilbert space does not allow the description of state vectors with exponential
growth and exponential decay, such as resonance states. Since the spectrum of an observable in
the Hilbert space is real, the usual procedure for treating resonance states is either to extract the
trace of resonances from the real-energy continuum level density or to describe the resonances by
joining the bound state solution in the interior region with an asymptotic solution, e.g. within
the R-matrix approach [105 107].

The de ciency of the Hilbert space formulation of quantum mechanics is obvious if one con-
siders the operators, like the position® and momentum P operators, which have the continuous
spectrum:

Pge pge wih ° cIs®?

AOge R$e with @ @S2 (2.5)
Their wave functions: "K§é > 5113_2e#5“:‘ and “(¥8e “f¥ N, are not square integrable and

hence, do not belong to the Hilbert space.

In the twenties of the last century, Dirac introduced a new mathematical formalism for quantum
mechanics, with objects such as bras and kets. As noticed by Dirac and von Neumman [108, 109],
this formalism is not compatible with the standard formulation of quantum mechanics.

All these di erent di culties of the standard quantum mechanics could be overcome using an
extension of the Hilbert space, the so-called rigged Hilbert space. Mathematical apparatus of the
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rigged Hilbert space has been formulated in sixties by Gelfand, Maurin and Bohm [47 49]. The
rigged Hilbert space, also called the Gel'fand triplet or equipped Hilbert space, is a triad of spaces:

“HO (2.6)

The subspace is the set of physical wave functions on which any expectation value, any uncer-
tainty and any commutator can be computed. The dual space contains eigenvectors associated
with the continuous spectrum of the observables. These eigenvectors are de ned as functionals
over the subspace , and they can be used to expand any elements of. Mathematically, is the
subspace of test functions, and is the space of distributions.

The Hilbert space H does not play any particular role in the rigged Hilbert space formalism,
i.e. in all considered cases one needs only the dual pair of spaces’ which characterize
the quantum system. The rigged Hilbert space provides a better framework thanH to capture
features of quantum systems. It provides a convenient setting for Dirac brackets as well as for
vectors and wave functions associated with the continuous spectra. Moreover, the rigged Hilbert
space provides a natural framework for a quantum-mechanical description of Gamow states because

may contain the generalized eigenvectors for observables having complex eigenvalues. Hence
the open quantum system generalization of the SM, the GSM, nds a natural place in the rigged
Hilbert space.

2.2.2 Gamow states

Experimentally, resonances often appear as peaks in the cross section. For isolated resonances,
their shape resembles the well-known Breit-Wigner distribution which has two parameters: the
centroid, which de nes the resonance energ\e,,, and the width , at half-maximum. In 1928,
George Gamow proposed the guasi-stationary formalism based on quantum tunneling to describe
the spontaneous particle emission [110]. In this model, decaying states (Gamow states) are char-
acterized by the complex-energy eigenvalues:

E, En i7” (2.7)
Let us now show the connection between the width of a decaying state and its half life. Let the
number of nuclei att 0 before the decay takes place idlg. Then, the number of remaining nuclei
at a time t AO is given by:

N7te NpS'te (2.8)

where S"te is the survival probability, i.e. the probability to nd the nucleus at a time t AO, which
is de ned as:

T 2 o . -
S'te gSKB PElS e SN e PlgS RSN e ¥t (2.9)

where S ,eis the eigenstate andE}, the associated eigenvalue. This shows that the Gamow states
decay exponentially, and one can identify the parameter with the decay width which de nes the

half-life of the state: N
fIn"2e

Tio (2.10)

One should stress that the counterpart of this exponential temporal decrease is the exponential
growth of the radial wave function at large distances to ensure the ux conservation [110]. Although
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resonances have a nite lifetime and their radial wave function diverges, it is possible to assign
the standard labels of stationary eigenstates, like angular momentum, charge, spin, parityetc. to
them.

Resonances represented by Gamow states are also poles of the scattering matr&-natrix).
The S-matrix was introduced in the scattering theory to connect the asymptotic behavior of the
scattered wave function between the past and the future. Various poles of th&-matrix in the
complex energy plane can be identi ed with bound states, antibound (virtual) states, capturing
and decaying resonances.

The (complex) eigenenergyE,, of the system, corresponds to the wave number:

EZ7
Kn 2—m§? Kn I n (2.11)

where m is the particle mass. For a decaying resonancek,; , AO. At long distances, the radial
part of the wave function is proportional to:

ei Rnr

gknfen' (2.12)
and increases exponentially. The pole of thes-matrix corresponding to the decaying resonance is
situated in the forth quadrant of the k-plane.

The states with Ky kn i n andk,; , AO are called the capturing resonances. They are
situated in the third quadrant of the k-plane, and their radial wave function has the following
asymptotic behavior:

iRnr

e g knlg nf 2.13
(2.13)

Capturing resonances are obtained by a time reversal operatiom t applied to decaying reso-
nances [49].

States with K, i , and ,, AO are called antibound or virtual states [111 114]. Asymptoti-
cally, the radial wave function of an antibound state grows exponentially:

Up“re ekl

en' (2.14)

The physical interpretation of the antibound state is not so straightforward. In the standard
guantum mechanics, antibound state can be considered as a feature of the system rather than a
state. In the rigged Hilbert space, the antibound state can be interpreted both as a vector in the
rigged Hilbert space and as a pole of the&s-matrix. Consequently, the antibound state near the
decay threshold increases the cross section of the low-energy scattering process [111,113,115,116],
and has an appreciable in uence on the scattering length. Classic examples is the low-energy

0 nucleon-nucleon scattering characterized by a large and negative scattering length [113,115].
Related to this is an increased localization of real-energy scattering states just above the decay
threshold [117].

A study of the energies of antibound states as a function of potential parameters was done
by Nussenzveig [118] (see also [119] for a discussion of the one-dimensional case). In these stud-
ies, radius and surface di useness of the potential were xed and the trajectories of bound and
antibound states were calculated as a function of the potential depthVy. For s-wave neutrons,
no narrow resonance appears because there is no potential barrier. Thus, by increasivg from
the minimal value at which the antibound state appears, the pole crosse& 0 and becomes the
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bound state. For protons or for neutrons with | AQ, the potential barrier assures the existence of
resonant poles. In this case, decaying and capturing poles move toward the imaginalk+axis with
increasingVp. At certain values of Vp, the twin capturing and decaying poles meet atk 0 forming

a double-pole singularity. For still larger values of Vg, one of these poles becomes the bound state
while the other one moves down along the negative imaginary axis as the antibound state.

2.2.3 Normalization of Gamow states and the Berggren basis

To describe physical systems conveniently, the Hamiltonian and its eigenstates have to be
expressed in a suitable basis. For unbound and weakly bound systems, Gamow states and non-
resonant continuum states become relevant, and have to be included in the basis. However, due to
the complex energy of Gamow states, the probability density of resonances increases exponentially
in space, making their normalization and the proof of their orthogonality problematic.

A rst method to normalize these states has been proposed by Zel'dovitch [120] who introduced
a convergence factor AOQ to regularize matrix elements:

i DSie s, © 2 “reQ’re “re (2.15)

where ; and ; are s.p. Gamow states, andd is a bounded operator.

Later, Tore Berggren used the method of Zel'dovitch to prove that Gamow states for neutral
particles are mutually orthogonal [44]. In the same paper, the rst s.p. basis has been proposed,
now called the Berggren basis, which includes bound states, resonances, and scattering states. The
completeness of the Berggren basis for charged particles has been proved by Michel, Nazarewicz
and P2oszajczak [121,122].

The Berggren basis is an extension of the Newton basis [111], wherein the real-energy continuum
is deformed through an analytic continuation into the complex plane. This complex energy contour
L in the k-plane encompasses selected resonances and joins the feaxis to continue toward
k 2 . Hence, using the residue theorem we can write down the completeness relation:

Q Sne nS s, Se’ Sk % (2.16)

n>"b;re

where the sum runs over bound and resonance states.

The contour L lies in the fourth quadrant, as shown in Fig. 2.1, and surrounds selected
decaying resonancesk, k., i n andky A , AQ). Due to the Cauchy integral theorem, the pre-
cise form of the contourL is not important. Usually, only decaying resonances which satisfy:
arg'kne A ~4, are included. Vertse [123] proposed the generalization of the Berggren complete-
ness relation (2.16) to include the antibound states, whereby extending the applicability of the
Berggren ensemble [124 126]. However, this generalized completeness relation is less e cient in
practical applications [125] since it requires a signi cantly denser discretization of the contour in
the complex k-plane.

In standard quantum mechanics, the mean value of the hermitian operator® associated with
an observable in an eigenstateS e is always real:

“se 0e, >R (2.17)
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| "ke

N contour L (continuum)

Figure 2.1 (Color online) Schematic illustration of the complete Berggren basis ink-plane. Blue
and red dots represent bound states and decaying resonances which are included in Berggren basis.
Decaying resonances which are omitted from the basis are shown with black dots. The antibound
or virtual state is represented by a green dot. Orange dots show capturing resonances. Non-
resonant continuum states which enter the Berggren completeness relation (2.16) belong to the
contour L (in red) which surrounds selected decaying resonances (red dots).

This is not the case in the rigged Hilbert space formulation of quantum mechanics. For the
resonance, the mean value of an operatd® is:

‘Oe-,.. ROe-.. il'Oe-,. (2.18)

The interpretation of real and imaginary parts of the mean value for a given observable has
been discussed by Berggren [44 46]. The real part can be interpreted as the measured value of an
observable, and the imaginary part which is due to the interferences between the resonance and the
scattering continuum, corresponds to the uncertainty of the measured value. This interpretation
holds for the root mean square radius as well [127].

The regularization method proposed by Zel'dovich was essential to prove the completeness
of Berggren ensemble of s.p. states [44]. However, this method turned out to be impractical in
numerical applications and had been abandoned in favor of the methods proposed by Hokkyo [128]
and Romo [129]. The approach of Romo is based on using the Green's function and its analytic
continuation in the complex energy plane. Hokkyo on the contrary, employed the uniform complex-
scaling approach to regularize diverging integrals.

In the uniform complex-scaling method, one applies the unitary transformationU, represented
by an operator O~ «, which is de ned by the uniform rotation N € RNof the coordinates, applied
on the s.p. wave functions [130,131]:

0« "R &7 %R 7 (2.19)
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The factor €2 in this expression comes from the dimension of the space [132]. The above transfor-
mation guarantees that the selected wave functions associated with the resonances become square
integrable [133 135].

Applying the uniform complex-scaling method to the s.p. Hamiltonian, one obtains:

e AR O ARO . (2.20)

The transformed potential i “f& is no longer hermitian. For a wide class of dilatation-analytic
potentials, the spectrum of bound states ofi"f¢ and fi "% are the same [136]. Properties of the
transformed Hamiltonian fi "% and its spectrum for the dilation-analytic potentials have been
studied by the Aguilar, Balslev and Combes [133,134]. The equivalence between the Zel'dovich's
regularization method and the uniform complex-scaling has been proved by Gyarmati and Vertse
[137].

As most of the s.p. potentials used in nuclear physics are not dilatation-analytic, the applica-
bility of the uniform complex-scaling for nuclear physics problems is limited. To circumvent this
problem, Gyarmati and Vertse introduced the exterior complex-scaling method [137]. The method
consists of applying the complex rotation of coordinates only from a certain radiug , [138]:

0y ¢ “re “re if rBra
“ra B ra® e if rAry (2.21)

The exterior complex-scaling method can be applied to any potential and the results do not depend
on the parametersa and . The existence of a norm for charged particle resonances was proved by
Gyarmati and Vertse [137]. In 2002, Michel et al. [5] applied the exterior complex-scaling method
in GSM.

In practical applications the truncations are required so that we de ne the maximum value
kmax Of k on the contour L . To ensure the completeness of the s.p. Berggren basis, one has to
discretize the contourL . The N-point quadrature of the integral along the contour reads:

N
SL Ske” Sk Q W Skie‘ kjS (2.22)
j 1

where the kj and w; are values and wegights given by the Gauss-Legendre quadrature method.
Normalizing the kets Sy ewith a factor Wy

N N
QWjSkje‘ kjS Q Skje‘ kJ-S; (2.23)
i1 i1

one obtains the discretized Berggren basis:

N
Q Sne\ nS S dk Ske‘ kS Q Sne\ nS Q Skje\ kJ-S
n>"b;re L n>"b;re j1
Q Sne nS (2.24)
n>"b;rkj

which is similar to any other discrete s.p. basis.
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The many-body basis for fermions consists of the Slater determinant3S ,ee constructed from
the s.p. states”S e of the complete Berggren basis, like in the case of the HO basis. The
completeness of the Berggren ensemble guarantees the following closure relation for the many-
body basis [7]:

QSne S 1% (2.25)
n

which is used to formulate the GSM.

2.2.4 COSM coordinates and GSM Hamiltonian

In the standard SM, the center-of-mass (c.m.) excitations are removed using the Lawson
method [139]. In GSM, this method can no longer be used because Berggren states are not
eigenstates of the HO potential. Thus in order to eliminate the c.m. excitations, and also to avoid
numerical di culties in describing nuclei with many valence nucleons in the Jacobi coordinates,
the GSM Hamiltonian is expressed in the core plus valence particle approximation using relative
nucleon-core coordinates of the COSM [140].

Let us introduce the COSM coordinates:

N Niab I:Nc.m.,core if i>val (2.26)
N R if i>core (2.27)

where N\ ap is the coordinate of a nucleon in the laboratory system and

Q mi Nab (2.28)

FNc.m.,core
M core j>core

is the coordinate of the c.m. of the core, wherem; is the mass if the i particleand M¢ore Q mj
i>core
is the mass of the core. The COSM momentum reads:

5 iR (2.29)

where@? is the gradient associated tofN. The expression of the momentumﬂ lab and the total
momentum B, in the laboratory system is:

" For i >core N N mo
B B Q — (2.30)
j>va|Mcore
For i >val:
Dhiao B (2.31)
and
Fgllab Q Pliav QP Q M Q Mmi B QM
i>core i>val i>core |J>§\c/>§ core i>val
Q N _Qlﬁjl .Qlﬁl Q M (2.32)
1>core ] >va I >val 1>core
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One may notice that If]lab is only a function of the core linear momenta in COSM coordinates.
Thus, the kinetic part of the Hamiltonian in the COSM frame with the c.m. kinetic part taken
into account properly is written as:

~

A B PR bF 1 Y
inZ_mi M iS/alz_i MCOfei@QwaIN &

1 - 1 - .
%VQMMM B Q B (2:33)
i>core < j i@>core core j>core j>val
where M is the total mass, and ;; ¥ are reduced masses given by:
1 1 1
— — (2.34)
i M Mecore
and 1 1 1
= = = 2.35
© m M (2.35)

Note that the residual coupling between core and valence spaces vanishes as the core is coupled to

0 and Q p is of rank one.
i>core
Interaction matrix elements involving many-body states built either from core s.p. states or

valence s.p. states pose no problem, as Egs. (2.26,2.27,2.30,2.31) imply that:

N Nao N N (2.36)
Do B B B (2.37)

so that the standard methods can be used to calculate the associated two-body matrix elements.
Problems would arise if one considered interaction matrix elements in which one valence statge
and one core state$e occur in both bra and ket states of the nuclear interaction. Indeed, in this
case, Egs. (2.26,2.27,2.30,2.31) imply that:

N iab ﬂ' b N ﬂ] I:Nc.m.,core (2.38)
Ba B B B Q Mm Be=: (2.39)
josval M core

It is then clear that a two-body interaction in laboratory coordinates becomes a N-body interaction

in COSM coordinates, where core and valence degrees of freedom are coupled. One can avoid
these problems by de ning an e ective interaction with core and valence parts calculated in the
laboratory frame, so that couplings between core and valence spaces vanish.

Let us now write the GSM Hamiltonian. We will consider an e ective Hamiltonian: B T 0 ¥,
where T is the kinetic operator, 0 is a s.p. potential, andV is a two-body interaction, calculated
from a realistic interaction in the laboratory frame. The core part of the Hamiltonian is not
considered as the core is inert. We will express it with COSM coordinates:

4t o9 o Uh o 5"' B g, (2.40)
i>val I i @eval core °
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where M ¢qre is the mass of the core, and :

1 1 1

i Mcore mj

(2.41)

is the reduced mass of the-th nucleon. The s.p. potential U"f¢ describes the eld of the core
and V°f§ ﬁ is the two-body interaction. Due to Egs. (2.36,2.37), the sum invoIving\’)i;j in Eq.
(2.40) does not change from the laboratory frame to the COSM frame.

To see that the substitution of U™} ape by U"Ne in Eq. (2.40) leads to a very small error, let
us separateU in central and spin-orbit parts:

U'Riabe U Riape U Riape Niap 8o (2.42)

For the central part, one has:

UACMN,Iab‘ UACMN‘ I:Nc.m.,core ©UACMN’ I:Nc.m.,core UACMN‘ I:Nc.m.,core rest; (2.43)

where U ® is the Hessian matrix associated toU ©. The rst-order term of Eq. (2.43) vanishes
because the core is coupled t® and FNc.m.,core is of rank 1.
One obtains a similar equation for the spin-orbit part of U:

UAISMN,Iab’A{\il;labo §i|° UAISMN,Iab' %&l I:Nc.m.,corez ﬂ gll
U e e

~il st rKeen N & “ls*~ Ky O 55 &

c.m.,core ©u Nee™ B §je U Ne %l c.m.,core INZ 8

B c.m.,core UA'SMN' c.m.,core'A 1\ll gi|°
AFNc.m.,core ©u ISMN“ %wc.m.,core ﬂz §j
rest (2.44)

where the rst-order terms of Eq. (2.44) also vanish.

The error made is small even for the -particle core, as it is of the,order of U~M qre. INndeed,
the core matrix elements involving R¢.m.core are of the order of 1~ Mcore, the Laplacian of a
Woods-Saxon potential is about 5 times smaller than the potential itself, and the derivative of the
spin-orbit part of the Woods-Saxon potential is even smaller, so that the relative error made is
of the order of 5% or less for an arbitrary core. The Hamiltonian B can then be recast with a
one-body potential Opasis :

B Opasis T Vres (2.45)

where Opasis is the potential which generates the basis, anddes ¥ 0 Opasis is the residual
interaction. The introduction of Opasis is @ convenient way to remove approximately the long-
range component in¥es.

2.2.5 Construction of the s.p. Berggren basis

Let us start by de ning the s.p. Hamiltonian: i Opasis T. The s.p. potential generating the
basis: Opasis Upasis ¢, can be chosen either as a self-consistent potential like the Hartree-Fock
potential, or a phenomenological potential like the Wood-Saxon potential plus a Coulomb and
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spin-orbit terms. Hence, Berggren basis states are discrete solutions of the one-body Schrédinger
equation: >
@uk;re G%‘I 1+ 2m 2 . k2
. Upasis r* Kk u/"k;re with E —— 2.46
@?_ r2 ‘ﬁf basis I ’m ( )
where m is the mass of the nucleon, and its orbital angular momentum. The reduced radial

solutions u;"k; re are regular at the origin:

ukire OCO‘k-r' L (2.47)

At large distances, i.e. in the region where the nuclear part of the potential is negligible, the
Berggren basis stateda);"k;re are the solutions of the equation:

@u;"k;re 1o 2k ‘
é? @ 5 k2 (2.48)
where is the Sommerfeld parameter:
mZ
B (2.49)

Solutions of Eq. (2.48) are linearly independent, and they can be identied as regularf. “kre
and irregular G;. "kre Coulomb functions.

In order to introduce the concepts of incoming and outgoing solutions, it is more convenient
to write Coulomb functions as:

Hy. "kre G, “kre iF; “kre (2.50)
The Berggren basis stateay;"k;re have thus the following asymptotic form:
ufk;r-r ., CHp. "kre C "keH|. "kre (2.51)

For bound and resonance statesC “"ke 0and C “ke x 0, and for scattering statesC “ke x 0 and
C x 0. Hence, due to the boundary conditions (2.47) and (2.51), the solutionsl,"k; re are unique
and can be written as:

u’k;re C “keu, "k;re C “keu, "K;re (2.52)

Here, u, "k;re and u, “k;re are the two linearly independent solutions of Eq. (2.46).

The Cy ke, C "ke and C “ke constants in Eqgs. (2.52,2.47) are determined by the normalization
of the Berggren basis states. The normalization to the Dirac delta is straightforward since it is
equivalent to the following condition [121,122] (see Appendix A.4):

CkeC ke o= ik (2.53)

In practice, constants C "ke and C "ke are determined by the matching condition between the
radial wave function u;"k;re and its asymptotic form at a given point R AAQ:

9o “keH,. "kRe C “keH, "kR+Z dur kiR
dr : : dr
C "keH,. "kRe C "keH, "kRe U k;Re (2.54)
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Co ke is then obtained by normalizing the Berggren basis state such that:

a

S, uZk;re 1 (2.55)

For bound states and resonancesC “ke 0, while for scattering statesC “ke satis es Eq. (2.53).
Consequently, conditions (2.54) and (2.55) guarantee the continuity of radial wave functions for
bound states and resonances. Their di erentiability is achieved using the Jost functions [111]:

du, “k;re

oA . R du"k;re
J w k, L k, o k, P
u re;u’k;r u r . ar

u’k;re (2.56)
Here, W"f; g is the Wronskian. Jost functions do not depend onr, becauseu,”k;re and u, “k;re
are linearly independent. Thus, the di erentiability condition for u;"k;re:

J ke O (2.57)

can be satis ed by varying k.

2.2.6 Determination of the many-body states

Once the s.p. basis is determined, we can diagonalize the full GSM Hamiltonian (2.40). This
Hamiltonian is complex-symmetric in the N -body basis (2.25):

'} A with H; >C (2.58)

where B is the Hamiltonian matrix and Hj an element of . In standard SM calculations, the
Hamiltonian is usually diagonalized using the Lanczos method [141]. However, as this method
determines the eigenstates by selecting the lowest energies, it fails to identify resonances as eigen-
values associated to scattering states can be lower than those associated to resonances.

The problem of the identi cation of resonances can be solved with the so-called overlap method
[5,142]. This method consists of determining the resonances among all eigensta®s by selecting
the one having the biggest overlap with a pivot state S pe In practice, the pivot state S ge
is determined by diagonalizing the Hamiltonian (2.40) in a smaller space consisting of Slater
determinants composed by s.p. bound states and resonances only. In this space, the diagonalization
can be achieved using the Lanczos algorithm or some variant of this method. This is called the
pole approximation, and this space is called the pole space. The resulting spectrum is a zero-order
approximation of the full spectrum which includes the scattering continuum. Then each eigenstate
found in the pole approximation is used as a pivot for the Davidson method [143] which is more
precise for excited states. Eigenstate$ e with an overlap greater than 70% with pivots are then
selected.

Very large matrices, encountered for example in the no-core GSM [10], require the application
of the density matrix renormalization group method in GSM [26 28] to deal with the huge dimen-
sionality of the many-body basis. The main idea of the density matrix renormalization group in
GSM, is to gradually consider di erent s.p states of the discretized non-resonant continuum, and
retain only optimal states governed by the eigenvalues of the density matrix with the largest modu-
lus. Indeed, the method is based on the fact that Slater determinants involving many non-resonant
continuum s.p states do not play a signi cant role.
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2.2.7 GSM applications

The GSM has been applied in the description of various bound and unbound systems like
18 220 [5,142], &Ni [6, 144], ° OHe [142,145], or® Li [121, 145]. In several applications, in
addition to the energy spectra, other relevant quantities have been studied like the radial overlap
integrals [146], spectroscopic factors [147], the asymptotic normalization coe cients [148], the
charge radii and the neutron-neutron correlations [149].

In Refs. [125, 126, 150] the role of antibound states has been studied. A detailed comparison
between the GSM and the Gaussian expansion method has been done fiie and ®Be [151].

The use of Lee-Suzuki regularization method [152] in GSM has been discussed in Ref. [153] for
schematic interactions, and in Refs. [154, 155] for realistic chiral RLO interactions [156].

The ab initio formulation of GSM, the no-core Gamow shell model, has been proposed to study
well bound and unbound states of Helium isotopes with a realistic NLO chiral interaction [10]. In
these studies, the density matrix renormalization group method [26 28] has been employed. The
no-core Gamow shell model has also been applied to study the existence of a tetraneutron [157]
and the unbound isotopes of heavy hydrogen nuclei [158].

2.3 On the solution of pairing problem in the continuum

All even-even nuclei in the ground state are coupled taJ 0 angular momentum and are more
tightly bound than the neighboring even-odd nuclei. Moreover, in the even-even nuclei there is
an energy gap of 1-2 MeV between the ground state and the lowest two quasi-particle excitations.
These experimental observations suggest an important role of the residual interactions beyond
mean- eld in atomic nuclei.

One of the important residual interaction is the pairing interaction. The seniority pairing
model has been proposed in 1942 by Racah to provide the classi cation of electron excitations
in atoms [159]. This model has been also applied to understand various inconsistencies of the
independent particle model in the description of binding energies and spectra of atomic nuclei.

The Hamiltonian of the seniority pairing model is too simple to o er a satisfactory framework
for nuclear studies. In 1957, an extension of this model was proposed by Bardeen, Cooper and
Schrie er (BCS) [160] to explain the superconductivity. Soon afterwards, it was realized that
pairing is an important component of the e ective interaction, responsible for nuclear super uidity
from nite nuclei to neutron stars [161]. In the BCS model, the Hamiltonian consists of a one-body
part determined by either a phenomenological or self-consistent potential, and a two-body part
similar to the interaction introduced by Racah. A reliable solution of the BCS theory has been
given in terms of the independent quasiparticles. This was a beginning of the long 'success story'
of BCS in nuclear physics.

In 1960 Richardson derived an exact solution of the BCS Hamiltonian for a constant pairing
strength and a discrete set of s.p. levels [51,52]. Recently, exact solutions of the pairing model
were discussed anew to quantify the error of number projected BCS approach, and to study the
super uid ultra-small grains [162 168]. In 2001, Dukelsky et al. showed that by combining the
Richardson solution with the integrable model proposed by Gaudin for quantum spin systems [169],
one can derive three classes of exactly solvable pairing Hamiltonian for fermions and bosons [170].
In these models, the pairing Hamiltonian appears as a particular combination of the integrals of
motion within the rational class of integrable models. This nding allowed to nd many exactly
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solvable pairing models by taking arbitrary combinations of the integrals of motion within each
class. In particular, the hyperbolic family of Gaudin models, has been proposed in [171] to describe
pairing in heavy nuclei. More recently, Gaudin models have been extended to larger Lie algebras
including the SO(5) for T 1 isovector pairing [172] and the SO(8) forT  0;1 spin-isospin
pairing [173] allowing for the exact treatment of proton-neutron pairing correlations.

Exactly solvable models have always played an important role in understanding properties of
strongly correlated quantum systems, both in condensed matter and nuclear physics. In nuclear
physics, the exactly solvable pairing models gave a deeper insight into the super uid correlations
in well bound nuclei. In weakly bound or unbound nuclei, we are missing an insight that could
be provided by simple models. An understanding of the pairing correlations in these nuclei is still
the "chasse gardée" of advanced numerical simulations, such as the GSM or the coupled-cluster
theory. Recently, there have been several attempts to nd an exact solution of the pairing model
in the continuum. Hasegawa and Kaneko studied e ects of s.p. resonances (Gamow states) on
pairing correlations [168]. Id Betan attempted to solve Richardson equations with the real-energy
continuum [174] but no proof was given that this approach is reliable. An exact solution of pairing
Hamiltonian in the continuum can be obtained in GSM though only systems with a small number
of active particles can be studied in practice.

In this section, we start with a short presentation of the generalized Gaudin algebra which
leads to the Gaudin family of models. Then, we present the formulation of the rational Gaudin
pairing model in the Berggren ensemble. In the following subsection, we derive the generalized
Richardson solution for the rational Gaudin model with the continuum which is exact in three
distinct limits: (i) in the pole approximation [7], (ii) for the discrete spectrum of real energy s.p.
levels, and (iii) in the non-resonant s.p. continuum.

By comparing the generalized Richardson solution of the rational Gaudin pairing model with
the exact GSM solutions, we will assess the reliability of the generalized Richardson solution in the
most general cases of s.p. spectrum, including s.p. bound states, resonances, and the non-resonant
continuum.

Finally, we discuss the rst application of the generalized Richardson equations for the de-
scription of binding energies and spectra of carbon isotopes. We will also point out a possible
application of these equations for the studies of unstable ultra-small superconducting grains.

2.3.1 Generalized Gaudin algebra

Exactly solvable quantum integrable models are de ned by the Yang-Baxter equation [175
177] which allows to replace an eigenvalue problem by a much simpler algebraic problem. This
interesting feature is associated with the existence of hidden symmetries. In condensed matter,
the most important exactly solvable models are those developed in the context of one-dimensional
systems, such as the Heisenberg model [178, 179], the Tomonaga-Luttinger models [180, 181], and
the models with the long-range interactions [182, 183]. The Hamiltonian of an exactly solvable
problem is written as a linear combination of the Casimir operators of the group decomposition
chain representing relevant symmetries. Some examples of such exactly solvable models are: the
Racah's seniority model [159], the Elliott's SU(3) rotational model [184], or the three dynamical
limits of the U(6) interacting boson model [185].

The constant pairing Hamiltonian has exact solutions which were derived by Richardson [51,52].
Independently, these solutions were discussed by Gaudin [186] and applied much later to ultra-
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small superconducting grains [163]. The connection found between the Richardson's solution and
the Gaudin model [169] was followed by the proof of integrability of the pairing model [187]. By
establishing the relation between the integrals of motion of the pairing model and those of the
Gaudin model, it became possible to derive three classes of integrable pairing models for fermions
and bosons [50,170]. Recent studies of the relation between level crossings and exceptional points
in the integrable and non-integrable limits of the pairing model allowed to establish the criterion

to distinguish between chaotic and regular dynamics in the quantum regime, for nite systems in
low-dimensional Hilbert spaces [188] .

Gaudin algebra Representation | Model

BCS Richardson

> 1(SU(2)-F-P) N  Nuclear pairing
BCS (k ;k )
XXX > 1 (SU(2)-F-S) N Particle-hole-like
> (SU(1,1)-B) N Bosonic BCS
> 1(SU(2)" SU(2)) N Central spin
>(SU(1,1) SU(1,1)) N Bosonic central spin
> 1 (SU(2)-F-S) 2  Suhl-Matthias-Walker
Lipkin-Meshkov-Glick
> (SU(1,1)-B) 2 Interacting Boson Model 1
XXZ Two-Josephon-coupled BECs
> 1(SU(2)" hy) N Generalized Dicke, fermionic atom molecule
> 1(SU(1,1)" hy) N Bosonic atom molecule
> (SU(2)-F-S " SU(2)) N Kondo-like impurity
> "hy SU(2)-F-S) N Special spin-boson
XYZ > su(2) N Generalized XYZ Gaudin

Table 2.1 Exactly solvable models which can be derived from di erent representations of the
generators of the generalized Gaudin algebra. Heré,refers to the number of copies of the algebra
used to write down the model. The notation F, B, S, P, andhy4 stands for Fermionic, Bosonic, Spin,
Pseudospin, and Heisenberg-Weyl algebra respectively. This gure comes from Ref. [50] where
more informations about these model can be found. Note that the BCS Hamiltonian belongs to
the XXX Gaudin algebra.

The generalized Gaudin algebra can be introduced as a set of operato”ré,'; SK"Epmee, where
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k x;y;z, satisfying the commutation relations:
8.8 0o
8.8 i W & X &7
& & g & Y, &7
8.8 i W8, Zm8Z (2.59)

N«

wheremx ™, X;» X"Em;E*, Y Y Enm;E-s, and Z,» Z"En;E-* are antisymmetric com-
plex functions of two arbitrary complex variables: E; E-, labelled by the positive integersm and
*, respectively. Equivalently, in terms of the k ; ;Z basis and forE., x E-, one obtains:
8.8  ov.ur &
Sm:S AV S
&S %Sy ZmS V., 8,2 (2.60)

N«

where$, 8¢ iSh,andV_. “Xp Y e~2. Notice that $,, “and S ° are non-commuting
operators, unlessX s Y.
The complex functions X ' ; Y @and Z in (2.59) have the following boundary condition:

Iing) X x;x o f7xe

Iin?) Z°X;X o h'xe

IirrgJ Y X;Xx o gXe (2.61)
where f "xe;g"xe, and h"xe are the nonsingular functions. Indeed,X;Y , and Z are complex
meromorphic functions having poles of order one. In particular, wherf "xe g'xe h"xe the above

commutations relations (2.59) can be analytically continued to the casem °,i.e. E,, E-. For
example:

SISt lim i”Y "Em; Em «S”Epme X EmEm 8% Em e

e @
f"Eme—m 2.62
i O (2.62)

Then, the commutation relations:

8.8k 0

SN ifAEm-@l:::q

8.8 ifAEm-@%‘]

&§2:8% if AEm-@é‘] (2.63)
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together with Egs. (2.59) form an in nite-dimensional Lie algebra. From the Jacobi identities for
the generators of the Lie algebra:

8. 8x. &Y &Y: 8%, 8% & &8 0 (2.64)
and considering the antisymmetry of the functions X;Y;Z, we obtain the Gaudin equation [169]:
Zm‘ X‘n an Y‘n Xnm Ym‘ 0 (265)

This equation de nes the XYZ model of Gaudin.
Let us now consider the XXZ model de ned by: X,,v Y. The Gaudin equation (2.65) in
this case reduces to:
Zo Xn ZomX'n XomXm O (2.66)

The condition (2.66) was discussed by Gaudin [169] who found three solutions which can be written
in the compact form as:

Xij —
sin R
(2.67)
Zij cot”™ ~ i j*
Di erent classes of integrable models correspond to speci ¢ values of:
The rational class for (0 L
Xij 2y —— (2.68)
i
The trigonometric class for 1
i 1 . Zij cot” (2.69)
Y sin” i i , ! I . .
" The hyperbolic class for i:
1 ] -
Xij W ; Zij coth™ ;e (2.70)

ij in the above expressions are arbitrary, non-equal real numbers. It is interesting to notice that
the rational class corresponds to the XXX model, while the trigonometric and hyperbolic classes
correspond to the XXZ model.

Now, let us present the standard method to derive an integrable Hamiltonian for the XXZ model
with a realization in terms of the > SU(2) algebra. This realization leads to a pairing model. It
was demonstrated [187] that any Hamiltonian of a system of fermions interacting through a pairing
force can be written as a linear combination of the integrals of motionR;:

H 20 iR C (2.71)
i
where the ; are the s.p. energies, andC is an arbitrary constant.
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Let us consider a possible realization of the generalized Gaudin algebra operatogs, and 7, in
terms of generators,&i and A\iz of the > |SU(2) algebra. These generators satisfy the commutation

relations:
A A 237 . ALA i A (2.72)

with "A; »" A, . De ning the operators $, and $Z in terms of the > ;SU(2) operators:
1
Sm QXmAy Sy St QZmAf (2.73)
j j

one obtains a possible realization of the generators of the generalized Gaudin algebra (2.59). The
R; operators can be written in terms of both the X , Z functions and the A operators as:

AT 2Q TIUAA AR zy AAL (2.74)

jXi

Any combination of the R; operators (2.74) yields an integrable Hamiltonian. The pairing Hamil-
tonian belongs to the rational class 0.

2.3.2 Representation of the rational XXX model : The pairing Hamiltonian
The pairing Hamiltonian is given in the second quantization formulation by:

D D
H Q e¢¢ GQoeeee (2.75)

where are the the energies of bound s.p. levels, an@ is the pairing strength. Operators ¢ "¢
stand for the particle creation (annihilation) operators, and _

“a;m e Tnataljam e, “aym . ¢ isdenedas¢ " & ™ ¢ . The degeneracy
ofas.p. levelais 5 2j54 1.

Let us de ne the operators:

Aa ég ee ;B QAOC”G’ e’ (2.76)

m Ja

which obey the commutator algebra:

Na; ﬁéc& 2 aa"ﬁé

N

N
Ba; ﬁéoe 2 qacE 2

— 2.77
5 (2.77)
where "2 a%. From now on, whenever there are dierent signs in the equation, the upper
(lower) sign stands for bosons (fermions).
The complete set of states ofN particles in N s.p. states, spanned by the operators,, B, By
is given by: L
B1;nz; nNn; e ﬁﬁf‘lﬁ;‘z N Se (2.78)

29



2.3. ON THE SOLUTION OF PAIRING PROBLEM IN THE CONTINUUM

whereSe Si; 2 neis a state of the unpaired particles which satisfy:
f.Se 0 ; n.Se ,Se (2.79)

N in Eq. (2.78) is the normalization constant, is the total number of the unpaired particles:
N 2Npair, Where Npgir is the number of pairs, and 5 the number of unpaired particles in the
level a.
The pairing Hamiltonian (2.75) expressed in the operatorsfis, fi,, B reads:

N N
B Q afa GQ B (2.80)
a a,a®
De ning the three generators of SU(2):
1 A 1 1
'&a Eﬁa Aa' , A\g Ena ZAa (2.81)

which satisfy Eq. (2.72) and the rational parametrization: X 5 Zijz 2G~"2 5 Eje, with E; the

pair energies, it is possible to show that the pairing Hamiltonian (2.75) stands for an integrable
model (see Eq. (2.71)). In this model, any eigenvalué€ of the pairing Hamiltonian (2.80) can be

written as:

R Npair - N
E" Q EiK Q aa s K 01 ;K max (2.82)
i1l al

where the indexK enumerates the eigenstates in an ascending order of the excitation energy, and
K max is the total number of eigenstates. In generalE X* can be complex and therR"E K*e EK*
is the energy, and2l "EX*«  "K* is the corresponding width of the K " eigenstate.

Now, considering the Bethe ansatz for the eigenstate of!:

Npair
Se M § Se (2.83)

with §i", the generator of the generalized Gaudin algebra (2.59) de ned in Eq. (2.73), it is possible
to show that the eigenvalue problem of the Schrédinger equation can be reduced to an algebraic
problem, i.e the Richardson equations [51,52], given by :

N da N pair 1
a2, E; i xi Ej E.

. . “Ke . . .
where the pair energiesE; = are solutions ofN 5 coupled non-linear equations, ancbl, a4 a2

2.3.3 Generalization of the rational Gaudin model to include the continuum

Generalization of the rational Gaudin model to include the continuum part of a s.p. spectrum,
can be formulated in the Berggren s.p. ensemble [44] which includes bound statéke, resonances
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“re, and non-resonant”ce continuum states. In this representation, the pairing Hamiltonian of the
rational Gaudin model is:

ﬁ Q ini Q S kcnkcdkc
i>b;r c Le

G Q ﬁﬁoe GQ SL @Cﬁ(m@gkcdkagoe
Cc;c®

i;i ®b;r c

G Q s H{b B dk (2.85)

“i>hjre;c c

Sums overc; ¢*denote summations over di erent partial waves™;j ¢ until ~"nax;jmax®. Kc is related
to the energy of a s.p. statec in the non-resonant continuum: ﬁyk§~2m, and m is the particle
mass. The discrete sums run over the real energy bound s.p. states and the complex energy s.p.
resonances enclosed in between the contodr, and the real k-axis. All resonances of the same
guantum numbers "7;j ¢ have the same contourLCM;j . in the complex k-plane. More about the
complete Berggren s.p. ensemble and its application in many-body systems can be found in Sec.
2.2.5.

The pair creation (annihilation) operators satisfy the commutator relations (2.77) for the dis-
crete (bound states and resonances) s.p. states, and

MeiBla 2 ke K& ooy

N

B«c;ﬁ’(oeoe “Ke kfﬁ ccﬂe% kek® cciflk, (2.86)

for the non-resonant scattering s.p. states.
In all practical applications, the continuum has to be discretized. It is convenient to de ne
new pair and number operators:

Rq Wghq ; B, OquBd "By (2.87)

where index g runs over all bound, resonance and discretized scattering states in the Berggren
basis. wq is a Gaussian weight of the integration procedure. For bound and resonance states,
wg 1. With this de nition, all states of the pairs of particles are normalized to unity and treated

N Ny
on the same footing. The new operatorsﬁq;tiiq;liiq satisfy similar commutation relations as the
operators ;B in discrete levels (Eq. (2.77)):

ﬁq;%;oe 2 qqc:ﬁ;
AN Ny N ﬁ'
1y; Dee 2qq<]ECE7q Eq (2.88)

The Hamiltonian of the generalized rational Gaudin model (2.85) expressed in the operators
Rq; By T reads:
(o] (o]

N N A o
q ;o
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where N is the total number of bound, resonance and discretized continuum s.p. states.

In general, pairing models with the state-dependent pairing interaction are not integrable. The
exception from this rule is the hyperbolic model [171, 189] where Gaussian weightsy are linear
functions of s.p. energies 4. Trying to nd a good ansatz for the eigenstate, one has then to look
for reliable approximations of the Hamiltonian (2.89) and/or the commutation relations (2.86) for
the non-resonant scattering states which break the SU(2) commutator algebra.

It is important to note that if we want to diagonalize the Hamiltonian (Eq. (2.89)) we have

ASTIAY
to be careful applying the new normalized operators@rq and Bj;; 1. As the Hamiltonian (2.85) is
expressed in a certain basis of Slater determinants, the contour discretization leads not only to
new normalized operators but also to new normalized Slater determinants, so that the action of

Nn A
Rq; B, and B, on these Slater determinants is de ned as in the discrete case.

2.3.4 Approximate solution for the rational Gaudin model with the continuum

An approximate solution for the generalized rational pairing model (2.89) can be found by
replacing the Kronecker delta by the Dirac delta in the commutator (2.86) for states in the non-

resonant continuum: N

~ C hc‘
B‘C;a;;’%e 2 ke k&I ccOECE: ;

(2.90)

With this change, the pair operators lt\sq“lt\jq for bound, resonance and discretized scattering states
satisfy:

ﬁ’q;%;oa qu&
AN N» A ﬁ

Dy 2 =4 9. 2.91
By; B qq’ECEAr 2w, (2.91)

Note that the di erence between Egs.(2.91) and (2.88) is the presence of the weightvg. The
transformation presented in Eq. (2.91) is mathematically unde ned. Due to this choice, we
cannot have a proper de nition of these new operators and, hence, the direct diagonalization of a
Hamiltonian (2.89) using deformed operators (2.91) is not possible. In the following, we suppose
that the deformed operators act like those in Eq. (2.76).

Let us derive the eigenvalue of the pairing Hamiltonian (2.89). Similarly as in the Richardson
solution [51,52], we take the product of pair states

NpaLir
Snome M S .ogmSe (2.92)
1
as an ansatz for the many-body state, where
N OB W
W
é"'norm c GQ M (2.93)
: g 2q E
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and E are the pair energies (here we removed the indeX to simplify the notation). The
normalization constants ¢ are determined by solving:

1 1 N Wy
il 2.94
cGe? C? %Azq E +* (299
It is convenient to de ne: & & .,om~C , so that
Npair
Smmeé M C&Se CSe (2.95)
1
and
Npair Npair
C MC and Spe M $Se:
1 1
The operators f; S and $o:
N P
S Qb Wy (2.96)
q
satisfy the commutator relations:
o, We
W,
g S By Wo
24 E
O 7
RgiSy 2 W_q%q
4.4 g 2wg" "q 4 Mg 2e
% 5729 E 24 Ee
N wy" g2 A
%4 Q Wq ¢ q
S 2q E
§:8 0 (2.97)

which can be derived from the commutation relations for operatorsﬁq;%g;%q (Eq. (2.91)).
The Hamiltonian of the generalized rational Gaudin model (2.89) expressed in these operators
is:

A S ofq G550 (2.98)
q

and the pair energies for boson and fermion systems are given by:

N W ~ 4 ~De Npair
1 26Q -1 d 26 Q ¢ 1E
X

0 (2.99)
¢ 24 E

The rst sum in these generalized Richardson equations can be split into separate terms coming
from from the resonant states and the discretized scattering states.
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In the continuum limit, the generalized Richardson equations are:

1 ZGS d
i>b;r2i E

" max 3] max dk
2G £ dk
‘% S Pkzm E —©

N pair 1
2G
Cf E E

0 (2.100)

where d i~4  i~2 and similarly for dy..

Equations (2.99) provide the approximate solution of rational Gaudin model with continuum
which is obtained by replacing exact commutator relations (2.86) by approximate ones (2.90) (see
Appendix A.2 for details of the derivation of Eq. (2.99)). In certain limiting situations this solution
is however exact. For a discrete set of bound s.p. levels, all weightsy are equal to 1 and, hence,
Eqg. (2.99) reduces to an exact solution for the rational Richardson-Gaudin model [51,52]. By the
same argument, Eqg. (2.99) provides an exact solution in the pole approximationij.e. neglecting
the non-resonant continuum states. Eq. (2.99) is also exact if the Berggren ensemble contains
only states of the non-resonant continuum because in this case one may take the same weights
wgq w for all continuum states g and renormalize the pairing strength G®¥ Gw accordingly. In
this particular case, the third sum in Eqg. (2.99) goes to 0 and one obtains:

“max ;] max
126 Q Szd%dkc 0: (2.101)
c k

c

2.3.5 Numerical solution of the rational Gaudin model with the continuum

Numerical solution of (generalized) Richardson equations (2.99) is plagued by divergencies if
two or more pair energies coincide with twice a s.p. energy. In the weak coupling limitG  0),
the standard way to approach this problem is to start with an educated guess for pair energiek;
and then evolve them by iteratively solving the (generalized) Richardson equations for increasing
values of G. At each step, the solution for pair energies is updated with the Newton-Raphson
method using the solution of the previous step as the new starting point [190].

This initial guess is determined by solving the generalized Richardson equations in the limit
G 0. The general expression for pair energieg; in this limit is:

(LJimOEi 2q with i 1, ;Npayr and q 1; ;N (2.102)

The analytical determination of pair energies becomes di cult if many pairs occupy the same s.p.
level g. In a general case oN p,r pairs occupying the same s.p. state of energyy, the starting
pair energiesE; are found by solving the set ofN pair coupled equations:

2Gd, L1
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Notice that the non-resonant continuum states in the weak coupling limit G @@ are not occupied
and, hence, the corresponding terms in generalized Richardson equations are absent in this limit.

It is possible to write the analytic solution of Eq. (2.103) for one or two pairs of particles on
the same levelq. If a degeneracy of the s.p. levefjis 4 2, i.e. at most one pair of particles can
occupy this level, the solution of Eqg. (2.103) is:

Ei 24 2Gdg (2.104)

For higher degeneracy of s.p. stateg ( ¢ C4), the analytical solution of Eq. (2.103) for two pairs
of particles is:

»
Ei 2q Gdqg 1+ iG 2dg 1
»
Eie 2q G'dq 1+ iG 2dy 1 (2.105)
Derivations of Eg. (2.104) and Eq. (2.105) are given in Appendix A.3. For three pairs occupying
the same levelg at G @@, we can use a combination of the solutions (2.104) and (2.105).e. one
pair is initiated with Eq. (2.104) while the two others are initiated with Eq. (2.105).

It is interesting to notice that if two pairs at G 0 occupy the same s.p. stateg, then their
energies are complex conjugate. If the s.p. spectrum is real then this symmetry of the pair energies
at G 0 is preserved by the iterative procedure of solving the generalized Richardson equations
for any G. This special symmetry of pair energies in the weak coupling limit is broken for nite
G if the non-resonant continuum states are included in the basis. Indeed, continuum states are
absent in Eq. (2.103) but become occupied for nite values of the pairing strengthG and hence,
the initial symmetry of pair energies is broken in the course of solving the generalized Richardson
equations.

For systems with an odd number particles,i.e. with unpaired particles and seniority X 0, we
have to use Egs. (2.104), (2.105) to initiate the pair energies, and sety in Eq. (2.99). Setting the

q gives the information of how many of unpaired particles occupy the leveh.

Numerical solutions of (generalized) Richardson equations exhibit singularities also for nite
G [191]. Formally, they cancel out and the total energy (the sum of pair energies) is always a
continuous function of G. However, these singularities generate instabilities in numerical applica-
tions which are hard to deal with. Those which occur at speci ¢ values of the pairing strengthGe,
are seen in the convergence of di erent pair energies to the same ener@y,. Consequently, the
derivative of pair energies with respect toG becomes very large and the Newton-Raphson method
becomes unstable.

The practical solution of this problem has been proposed by Richardson for doubly degenerate
levels [192]. In this case, two pair energieE and E =converge to the same energy g, thus it is
convenient to use a new set of variables:

4, E E®
9w E®7 (2.106)

for G G¢. The particularity of these new variables is that their derivative with respect to G does
not diverge at G G.. Thus, it is possible to perform a polynomial tof “Ge and “Ge inthe
vicinity of G¢, and extrapolate the pair energiesE and E =acrossGec.

The reference solution for the rational Gaudin model with the continuum is provided by the
exact diagonalization of the pairing Hamiltonian (2.85). We discretize the contourL. using the
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Gauss-Legendre quadrature method and build the s.p. spectrum which is used both in the gener-
alized Richardson equations (2.99) and in the GSM.

2.3.5.1 Numerical solution of pairing Hamiltonian in the GSM

Exact solutions of the pairing Hamiltonian (2.85) are obtained by diagonalizing the Hamil-
tonian matrix using the Davidson method. This matrix is sparse with only 0.4% of non-zero
matrix elements. The calculation of eigenvalues in this case is e cient because matrix-vector
multiplications are fast and the storage of a matrix can be optimized.

2.3.5.2 Calculation of the pairing gap

A useful measure of pairing correlations in a given eigensatg X eis the pairing gap:

i NV
K* GQ ng "1 ng e (2.107)
q

where the sum runs over s.p. states, anuh;K' is the occupation probability of the state g. Deter-

mination of the occupation probability an' can be done exactly through the diagonalization of
GSM Hamiltonian.
Let us write the eigenstate S X *e of a pairing Hamiltonian (2.80) as an expansion in a basis
of Slater determinants S e:
S ke gcK's e (2.108)

The expectation value of the particle number operatorN is:
N ~ s ™e g c®chk sis e
Q 20" (2.109)
q

Hence, the occupation probability can be determined numerically as:

“K e ~ A CKe 2
NG~ Qg ;q;Ke"CH e (2.110)
whereg™ ;q ;K « is equal to 1 or 0 depending on whether the s.p. statgis occupied or unoccupied
in the Slater determinant  of an eigenstateK .

In the generalized Richardson equations, we have no access to the expansion of tNebody
state in terms of Slater determinants. Therefore, the s.p. occupation probabilities in an eigenstate
K are determined by [191,193]:

«e @S
q @q

where E K" is the total energy of the eigenstateK , and q is the energy of the s.p. stateq.

n

(2.111)
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G (MeV) Nb of pairs Ipts 15pts 21pts 30pts 45pts
2pairs 72138 1® 7.769& B 80458 B 82666 P 84342 T°
3 pairs  2:3513 2 2:5342 12 2:6134 12 2:6800 ? 2:734%k '?
0.01 4 pairs  6:754% 2 7:2574 12 74856 12 7:671lk '? 7:8102 '?
5 pairs  2:5847% ' 2:724% ' 2:808¢e ! 2:8722 1! 2:923% !
2 pairs 1:295% ® 1:3994 % 14467 ° 14840 °® 15142 °
3 pairs  3722% % 40202 ° 415602 ® 4263k ° 4:3496 °
0.3 4 pairs 9:3104 ® 1:003%° 1:.037%° 1:.0642° 1:085% °
5 pairs 2:809% ° 2:990%& ° 3:091%° 3170k ° 32352 °
2 pairs 1:478%® ° 1:5996 ° 1.654% ° 1.698% ° 1:733%°
3 pairs 411162 ° 44524 ° 4608%° 47321 ° 48322 °
0.5 4 pairs 9:6271e ° 1:043%4 4 1:.081c* 11104 1:135%k 4
5 pairs 25972 4 2:800% 4 2:9096 4 2:996% ¢4 3:067C 4
2 pairs  6:898% ° 7:472%° 7737 ° 7:945%° 8114&°
3 pairs 1:9074 4 2:.072% 4 21486 * 2:208% 4 2:257% 4
0.7 4 pairs 4:3862 4 4:788% 4 4977k % 5127%* 5250% ¢
5 pairs 1:159% 3 1:2756 3  1:3361e 3 1:384% 3  1:4254 3

Table 2.2 Comparison between exact GSM diagonalization and generalized Richardson calcu-
lation (2.99). The relative error of the total energy calculated using Eqgs. (2.99) is shown for
various values of the pairing strengthsG, di erent number of fermion pairs and di erent number

of discretization points along the real-energy contour.

2.3.6 Comparison between solutions of GSM and generalized Richardson equa-
tions

2.3.6.1 Bound single particle states

In this subsection, we compare results obtained by solving the generalized Richardson equa-

tions (2.99) for fermions with the exact GSM results for a spectrum of well bound s.p. levels:
qg 5 4 3 2, 1« MeV. Each level is doubly degenerate. To assure the completeness of a s.p.
basis, the set of s.p. states from the discretized real-energy contour is added.

The contour is composed of three segments: ko; kg 0:0;05, Kki:ko 0:5;1:.0, and

K2; Kmax 1:0; 20, and the calculations are performed for di erent strengths G of the pairing
interaction: G 0:.01 MeV, G 0:3 MeV, G 0:5 MeV and G 0:7 MeV. The Gauss-Legendre
method is used to select optimal discretized s.p. levels along the real-energy contour for each given
number of the discretization points. The same set of s.p. levels and the corresponding Gaussian
weights are then used to nd the total energy of the system by solving both, the generalized
Richardson equation (2.99) and the GSM.

The relative error of the total energy E (2.82) calculated using generalized Richardson equa-
tions (2.99) with respect to the exact GSM energy: "E* “Egsm E*~Egswm, is shown in Table
2.2 for dierent total number of the discretization points. Each segment of the contour L. is
discretized with the same number of points. One may notice that the discrepancy between GSM
and generalized Richardson results grows with increasing pairing strength and number of fermion
pairs. Due to the approximation made in the commutator relations (2.86), the expression (2.99) for
pair energies does not account exactly for the pair-pair interaction. For a single pair, as expected,
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the energy obtained by solving generalized Richardson equations (2.99) coincides with the exact
GSM result.

2.3.6.2 Weakly bound and resonances states

The evolution of the relative error of the generalized Richardson equations (2.99) for weakly
bound and resonance double degenerate s.p. levels will be discussed in this subsection as a function
of the pairing strength for 2 and 3 pairs of fermions. Dierent spectra of s.p. states used in
these calculations are shown in Table 2.3. To construct complete s.p. Berggren basis, we take a

Spectrum S.p. energies (MeV)
1 {-25,-15,-05}
2 {-15,-0.5, (0.5, -0.05) }
3 {-0.5,(0.5,-0.05), (1.5, -0.15) }
4 {-25,-15,-05, (0.5, -0.05) }

Table 2.3 The s.p. levels used in the studies of the relative error of the generalized Richardson
approach (2.99).

di erent contour in the complex k-plane for each considered resonance state. The contour used
for the spectrum 1 in Table 2.3 is divided into three segments along the reak axis: ko; k1
0:0;05, ki:ks 0:5;1.0, and ko; Kmax 1:0;20 . The parametrization of contours for
di erent resonances is shown in Table 2.4. Each contour is discretized with 30 points selected by
the Gauss-Legendre quadrature procedure and all segments are discretized with 10 points.

Resonance kg “fm le ky “fm Te ko “fm Lo Kmax “fm le
~0:5; 0:05 0.0 (0.1549 , -0.14) 1.0 2.0
“1:5; 0:15 0:0 (0.2682 , -0.2) 1.0 2.0

Table 2.4 Parameters of the contours in the complexk plane associated with the resonances.

The dependence of the relative error of ground state energy and width calculated using the
generalized Richardson equations (2.99) is plotted in Figs. 2.2 to 2.5 as a function of the pairing
strength G for di erent s.p. spectra shown in Table 2.3. The relative error depends strongly on
both the pairing strength and the number of fermion pairs. One may also notice (see Figs. 2.3 -
2.5) spikes of the relative error at certain values of the pairing strength. At these discrete values
of G, either real or imaginary part of the complex total energy calculated using the generalized
Richardson equations (2.99) is equal to the GSM energy. We found these spikes inEes and/or

~ e only in the cases of s.p. spectra with at least one resonance.

Table 2.5 shows the relative error of the total energy for all discrete states in the space spanned

by 3 fermion pairs in ve doubly degenerate levels with energies:
i ~ 25, 1.5, 05,705, 0:05;"1.5; 0:15 in units of MeV. The s.p. contours in the k-plane
are given in Table 2.4. Results are shown for two values of the pairing strengthG  0:4 MeV and
G 0:7 MeV. One can see that the precision of the calculation using the generalized Richardson
equations (2.99) can vary by two orders of magnitude from one state to another. As a rule, the

38



CHAPTER 2. STRUCTURE DESCRIPTION OF BOUND, WEAKLY BOUND
AND UNBOUND SYSTEMS IN NUCLEAR PHYSICS

101
10 3t
10 5t

10 7t

(E)

10 9t

10 11

10 13

15 ‘ ‘ ‘ ‘
10 0.0 a2 Q4 a6 a8 1C

G(MeV)

Figure 2.2 Spectrum 1 (Table 2.3): The relative error “Ee of the ground state energy calculated
using solutions of the generalized Richardson equations (2.99) for the pair energi€s, is plotted

as a function of the pairing strength G. Results for two (three) pairs of fermions are shown with
the solid (dashed) line.

G 0:4MeV G 0:7MeV

State Conf “Ee T e “Ee T e
11100] 82900 * 1:6856 ° | 6:3687% > 2:0974 ?
11010| 5:8954 4 4:929% 2 | 3:990% 3 2:967% !
11001| 7:6322 > 1:5083% 3 | 7:0742 4 1:3266 ?
10110| 2531% % 51784 2 | 2.3193% 2 1:3863% !
01110| 6:2516 2 6:160% 2 | 4:3516 2 1:703% 2
10101| 1:5258 4 1:34262 % | 1.703% % 1:233% !
10011| 2:2406 4 1:702% 4 | 87716 4 57504 °
01101| 2:2482 4 1:5166 ° | 1:197% 4 6:150% 3
01011| 2:4802 2 1:24262 3 | 1:3286 %2 7:730% °
00111| 6:9734 4 7:949& * | 1:6944 ° 5:6188 3

[EEN

©oO~NOULAWN

(B
o

Table 2.5 The relative error of the complex energy for all excited states of a pairing Hamilto-
nian (2.85) with three pairs of fermions distributed over ve doubly degenerate levels and three
discretized continua. The pole space con guration for each statej.e. the occupation by pairs of
fermions of each discrete s.p. level, is indicated in the second column f@ 0. For more details,
see the description in the text.

relative error for the imaginary part of the total energy is bigger than the corresponding error of
the real part.
In Figs. 2.6, 2.7, and 2.8, we present the relative error for other relevant quantities: the
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1017 S - -

10 11

10 13
10 ?f
10 4t
10 6t
L
~ 108
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14 ‘ ‘ ‘ ‘
10 0.0 a2 a4 a6 a8 IC

G(MeV)

Figure 2.3 Spectrum 2 (Table 2.3): The relative error of the ground state energy "Ee¢ and width

" < which are calculated using solutions of the generalized Richardson equations (2.99) for the
pair energiesk;, is plotted as a function of the pairing strength G. For more details, see the
caption of Fig. 2.2.
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10 f
10 3t
10 5t
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10 11}

10 13
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10 4t
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10 14 . . . .
0.0 Q2 Q4 Q6 a8 1C
G(MeV)

Figure 2.4 The same as in Fig. 2.3 but for spectrum 3 in Table 2.3.
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10 2t
10 4

(B)

10 8}
10 29}

1012

14 ‘ ‘ ‘ ‘
10 0.0 a2 a4 a6 a8 IC

G(MeV)
Figure 2.5 The same as in Fig. 2.3 but for spectrum 4 in Table 2.3. The contour in the
complexk plane for the resonance pole at0:5 MeV; 0:05 MeVe is: Kkp; k1 0:0;70:1549 0:2- ,

ki:ko "0:1549 0:2+;1:.0, and Kk2; Kmax 1:0;20 in fm 1. Results for two (four) pairs of
fermions are shown with solid (dashed-dotted) line.
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Figure 2.6 Spectrum 2 (Table 2.3): The relative error of the generalized Richardson solution for
real parts of: (i) the correlation energy Ec.orr (the upper part), (ii) the pairing gap (the middle
part), and (iii) the occupation probability nq for 5 lowest s.p. statesq 0:::;4 (the lower part).
These calculations have been performed for the ground state of the spectrum 2.
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Figure 2.7 The same as in Fig. 2.6 but for the rst excited state.
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Figure 2.8 The same as in Fig. 2.6 but for the second excited state.
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Figure 2.9 Spectrum 2 (Table 2.3): The evolution of the three lowest complex eigenvalues
~E'"; ""e:i 0;1;2) of the pairing Hamiltonian is plotted as function of the pairing strength for

2 pairs of fermions. The upper most (lowest) gure shows results for the second excited (ground)
state, whereas the gure in the middle is for the rst excited state. The solid and dashed lines

show the exact GSM solution, and the solution of the generalized Richardson approach (2.99),

respectively. Numbers at the curves denote limiting values of the pairing strength (in MeV).
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Figure 2.10 Spectrum 2 (Table 2.3): The evolution of the lowest two (complex) pair energies
E; Ke (i 0;1) with the pairing strength for 2 pairs of fermions. The pair energies are obtained

by solving the generalized Richardson equations (2.99) for the ground statéK 0Oe, and for the
two lowest excited states K 1;2). Numbers at the curves show limiting values of the pairing

strength (in MeV).
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correlation energy Ecorr, the pairing gap , and the occupation probability nq for 5 lowest s.p.

for the ground state, and the next two excited states. The correlation energy is calculated as:
Eoor Es o E. The pairing gap s calculated according to Eq. (2.107). In GSM, the occupation
probabilities are determined using Eq. (2.110), whereas in the generalized Richardson equations
approach we use Eqg. (2.111). One can see that deeps in the relative error of di erent quantities
shown in Figs. 2.6-2.8, do not appear at the same values of the pairing strength.

The trajectory of complex eigenvalues E ) of the pairing Hamiltonian in the energy-width
plane is plotted in Fig. 2.9 as a function of the pairing strength G in the interval from 0 to 1
MeV for the ground state "K  0e (the upper part), the rst excited state "K  1e (the middle
part), and the second excited state K 2) (the lower part) excited state. The solid (dashed) lines
show the solutions of GSM (generalized Richardson equations). One may notice that the relative
discrepancy between exact and approximate results is largest for the rst excited state at large
values of the pairing strength G .

In Fig. 2.10, the trajectory of pair energies in the complex energy plane is plotted for the
ground state "K 0« (the upper part), the rst excited state "K 1e (the middle part), and the
second excited stat6 K 2¢ as a function of the pairing strength G in the interval from 0 to 1 MeV.

In the upper part of the gure, one can see that the pair energies in an interval0 @G @0:53 MeV
tend to approach each other along the real-energy axis. AG 0:53 MeV, these two pair energies
exhibit an avoided crossing and then move rapidly into the complex-energy plane with increasing
value of the pairing strength. The pattern of avoided crossings,i.e. mixing pair energies, is a
general pattern and can be seen for excited statesK 1;2+ as well.

2.3.7 Application of generalized Richardson equations to physical systems

In the previous sections, we solved the generalized Richardson equation for the rational Gaudin
model with the continuum. In order to obtain the Richardson-like solution for this generalized
pairing problem, we had to compromise commutation relations for the non-resonant continuum
states. Therefore, whenever the occupation of hon-resonant continuum states becomes important,
one might expect that the solution of the generalized Richardson equation is less accurate. This
happens for strong pairing correlations.

To test this expectation, we compared solutions of the generalized Richardson equation with
exact GSM solutions. We have shown that even though the relative error of the generalized
Richardson solution grows with the number of fermion pairs and the pairing strength, nevertheless
it remains rather accurate, especially in the limit of weak pairing correlations. One can use this
model to simulate various situations involving pairing correlations and continuum in weakly bound
or unbound states. In particular, one can use this model to test the common strategy of nuclear
SM to replace e ects of continuum couplings by the phenomenological adjustment of both s.p.
energies and two-body matrix elements.

Like many well-known group theoretical models developed in nuclear physics, the rational
Gaudin model with the continuum can be applied to calculate not only energy spectra but also
transitions probabilities in the long series of isotopes. One should stress however that the absence
of particle-hole interaction makes this model unrealistic, as the essential element of the competition
between pairing and quadrupole interaction is missing.

Below, we will apply generalized Richardson equations to calculate spectra of carbon isotopes
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and investigate the role of the continuum in these spectra. We will also comment on a possibility to
investigate the weak-pairing limit of the ultra-small superconducting grains which is characterized
by strong uctuations of the pairing eld.

2.3.7.1 Chain of carbon and oxygen isotopes

To illustrate possible applications of the generalized Richardson equations, we will now calculate
spectra of carbon isotopes with1l4 BA B24. The choice of parameters in the Hamiltonian (2.89) is
motivated by the experimental spectrum of 23C and the binding energy of'4C. In this calculation,
we assume the core of?C and calculate energies of all states if* 2°C with respect to the energy
of this core.

Berggren basis consists of the pole s.p. statesOp;—», 1S1-5, 0ds, 0ds-, Of;,, and the
two non-resonant continua: “dsoe, “f;oe. S.p. energies of bound state®p;», 1S15, 0ds-
are given by experimental energies ofl-2,;1-2, and 5-2; states in 13C: op, 4946 MeV,

18, 1:.857MeV, and o4,, 1:.093MeV. The energy of resonance$ds, and Of 7, are [174]:
0ds, 2:267 MeV; 0:416 MeVe and f,, ~9:288 MeV; 3:040 MeVe. The complex contours
“dz»e and “f,e associated with 0d;, and Of ;, resonance are given in Table 2.6. They are
discretized with 10 points per segment,i.e. 30 points per contour. For the pairing strength, we

Resonance kg “fm e ki “fm le ko “fm Yo Kmax “fm Lo

3o 00  (0.332,-0.03)  0.66 2.0
frs 0:0 (0.678 , -0.1) 1.24 2.0

Table 2.6 Parameters of the contoursL in the complex k-plane, associated withOd;, and Of 7,
resonance poles. Each contour consists of three segmentko; ki , Kki;Ko , K2;Kmax , and each
segment is discretized with 10 points.

take: G -A, where 11:13 MeV. The constant is adjusted to reproduce the experimental
binding energy of 1*C with respect to *2C.

To evaluate the role of the continuum in the spectra of carbon isotopes, we compare results of
the generalized Richardson equations (2.99) with results of the standard Richardson calculations
(2.84) without continuum couplings and with real s.p. energies. In the latter case, the s.p. energies
of the bound states: Op,-,, 1S,-,, 0ds-,, are the same as given above, and energies@fs;, and Of ;_,
resonances are real: oq,, 2:267 MeV and of,, 9:288 MeV. To reproduce the experimental

binding energy of 14C in this SM-like basis, the pairing strength is increased ~ 15.064 MeV.

In Table 2.7, we compare experimental binding energiesBexp) With binding energies calculated
using either generalized Richardson equationsBgr) or standard Richardson equations which
neglect continuum e ects (Br). All energies are given with respect to the energy of?C. One can
see that continuum changes theA-dependence of binding energies. InterestinglyBgr is equal to
Bexp both in ¥4C and in 2°C.

Fig. 2.11 presents the spectrum of'4C calculated using either the generalized Richardson
equations for the rational Gaudin model with the continuum, or the standard Richardson equations
for the same model but without the continuum. The experimental spectrum for this nucleus is
shown for a comparison. The pairing strength in both calculations is adjusted to reproduce the
experimental ground state energy of'“C with respect to ?C. The calculated spectra in both
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Isotope Beyp (MeV) Bgr (MeV) Bgr (MeV)

14c 13.123 13.124 13.124
16¢c 18.590 20.814 20.477
18¢c 23.505 25.130 24.386
20¢C 27.013 27.170 25.886

Table 2.7 Binding energy in the chain of carbon isotopes** 2°C. Bgr and By give results of the
generalized Richardson equations (2.99) and standard Richardson equations (2.84), respectively.
Bexp gives the experimental binding energy. All energies are given with respect to the energy of
12

C.

Conf State Egr"MeVe Er " MeVe

162 0 0 0

" 262 0 5.805 6.173
“1e172¢1 0 :1 6.321 6.321
“1e173:1 2:3 7.085 7.085
362 0 0.821 0.871
"2e1731 2 10.174 10.174
"3e173el 2 :4 12.031 12.031

Table 2.8 The initial con guration ( G 0) and excitation energies of di erent states of *4C
calculated using both the generalized Richardson equationsHgr) and the standard Richardson
(Er) equations. The initial con guration is denoted by the index of an occupied level"1 0p;-;2
1s,,;3 0ds»* and the number of particles in a given level (1 or 2).

Conf State Egr"MeVe ER"MeVe
1027202 0 0 0
1027362 0 5.996 5.646
"1e272e173.1 2 -3 6.337 5.946
"1e2°3e1°3:1 2 14 7.051 6.655
"2e27 161731 2 13 7.392 7.947
"2e2°302 0 7.719 8.304
"2e2°3:173.1 2 -4 12.923 12.913

Table 2.9 The initial con guration ( G 0) and energies of di erent states of*®C calculated using
both the generalized Richardson equationsEgr) and the standard Richardson (Egr). For details,
see the caption of Fig. 2.8.

models are identical, except for the excited) states which are shifted down by the coupling to the
continuum. The rst excited 0 state is shifted by almost 400 keV with respect to the ground state
even though the experimental one- and two-neutron separation energies in this nucleus are large.
Identical energy for other states is an artifact of having'2C as a core, namely, these states can be
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Conf State Egr"MeVe ERr"MeVe
"10272627342 0 0 0
"102726273.1731 2 14 5.788 5.328
"102°36272:1731 2 .3 5.730 5.459

1027364 0
"2e2°3:27 11731 2 .3 7.668 7.820
"3 1e2s1 001 7.744 8.096
" 2027304 0 9.161 9.846
"102°362°3. 1731 2 14 9.166 8.449
"2e2°3:2°3.1731 2 14 14.041 14.059

Table 2.10 The initial con guration ( G 0) and energies of di erent states of *8C calculated
using both the generalized Richardson equationsEgr) and the standard Richardson equations
(Er). The secondO, state could not be calculated due to a singularity problem arising at a nite
G. For other details, see the caption of Fig. 2.8.

Cong State Egr (MeV) Egr (MeV)

"1e27 2627304 0 0 0
"102°262°3:2°3:173.1 2 -4 5.168 4.613
"1e273047 2017301 2:3 5.578 5.289
"2e2° 304 101731 2 -3 8.054 8.183
730671017001 0:1 8.452 8.848

Table 2.11 The initial con guration ( G 0) and energies of di erent states 0f?°C calculated using
both the generalized Richardson equationsEgr) and the standard Richardson [Egr) equations is
compared with the experimental spectrum. We omitted con gurations with more than 2 pairs on
a level.

created only by breaking a pair of valence neutrons int*C. The pairing correlations in this case
are absent and so are the continuum e ects. For each calculated state dfC, initial con gurations
and excitation energies are shown in Table 2.8. The initial con guration (G=0) is de ned by an
index of an occupied level,e.g. 1 0p;»;2 1s;5;3 0ds, etc. and the number of particles in
agivenlevel  1;2;:::). n 1 means an unpaired particle.n 2 or 4, denotes 1 or 2 pairs of
particles, respectively.

Fig. 2.12 presents the spectrum oft®C. Both the generalized Richardson equations and the
standard Richardson equations for the same model without the continuum fail to reproduce an
experimental sequence of states. This is a failure of the schematic two-body interaction in this
model. Comparing the spectra of'6C obtained in the two variants of the rational Gaudin model,
one may notice signi cant relative energy shifts which depend strongly on the con guration of a
given state. The individual shifts due to the continuum couplings in this model can be as large
as 600 keV. Similar conclusions can be made by comparing results of the rational Gaudin model,
with and without the continuum couplings, for 8C (Fig. 2.13) and 2°C (Fig. 2.14).
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Fig. 2.15 shows the evolution of the pairing gap (2.107) with the mass number in the ground
state of even-even carbon isotopes. The pairing gap is calculated either neglecting the continuum
( r) by solving the standard Richardson equations, or including the continuum ( gr) and solving
the generalized Richardson equations. Parameters in these calculations have been described in Sect.
2.3.7.1. One can see that the pairing gap in*C and C is strongly reduced by the presence of
0d;», and Of ;, resonances and their associatedds,* and “f,.,* non-resonant continuum states
in the complex k-plane. The A-dependence of the pairing gap is also signi cantly changed by the
presence of the continuum. gr is more robust than g, and at the 0ds-, subshell closure in®*C
is almost 2 times bigger than R.

The A-dependence of the ground state energy in even-even carbon isotopes is shown in Fig.
2.16. The energies are given with respect to the energy dfC. The solid line shows experimental
data, whereas the dashed and dashed-dotted lines exhibit results of Richardson calculations with
(Ecr) and without ( Er) the continuum. One can see that both Egr and Egr have incorrect A-
dependence forl4 B A B 20 what is due to an absence of the particle-hole component of the
two-body interaction in the Hamiltonian (2.85) of the rational Gaudin model. In view of the
simplicity of this Hamitonian, it may be considered as surprising that Egr describes well both
the binding energy of 2°C, 22C isotopes, and the experimental position of the neutron dripline.
The magnitude of a rapid increase of the energy atn 24 depends on theOds-,-0d;-, spin-orbit
splitting and the ~dz* non-resonant continuum.

Fig. 2.17 compares experimental and calculated-dependence of the ground state energy in
even-even oxygen isotopes. In this calculation, we assume a core 8D and calculate energies of
all states in *® 280 with respect to the energy of this core. Berggren basis consists of the pole
s.p. states: 0ds, 1S1», 0ds-, Of ;», and the two non-resonant continua: ~dsoe, “f;5e. S.p.
energies of bound states and resonancékls,, 1s,,, 0ds, and Of ;, are given by experimental
energies 0f5-2;;1-2;, 3-2;, and 7-2; states in 1'0O: o4, 4143 MeV, 15, 3273 MeV,

0ds, 0:944 0:.048+ MeV,and or,, ~1:557 0:002). The complex energy contours dz»* and
“f ;e associated withOd;_, and Of ;_, resonances are given in Table 2.12. They are discretized with
10 points per segmentj.e. 30 points per contour. For the pairing strength, we take: G~ ~A, with

Resonance ko “fm te ke “fm 1o ko “fm Yo Kmax “fm e
dasp 00  (0.224,-005)  0.448 2.0
fy 00  (0.274,-001) 0.548 2.0

Table 2.12 Parameters of the contoursL in the complex k-plane, associated withOd;, and
Of ;, resonance poles. Each contour consists of three segmentso; ks , ki;Kk2 , Kk2;Kmax , and
each segment is discretized with 10 points.

10:602 MeV for generalized Richardson calculation and  13:338 MeV for SM-like, standard
Richardson calculation. The constant is adjusted to reproduce the experimental binding energy
of 180 with respect to 0.

It can be seen in Fig. 2.17 that the non-resonant continuum does not play a signi cant role for
18 240 and, consequently,Egr (the dashed line) andEg (the dashed-dotted line) are almost equal.
Continuum plays a signi cant role only in the vicinity of the neutron dripline, for A C26. The
A-dependence of bothEgg and Er di ers signi cantly from the experimental dependence (see the
solid line in Fig. 2.17), however the experimental position of the neutron dripline at?*O in oxygen
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is reproduced by the generalized Richardson calculation. On the contrary, the dripline predicted
by the SM-like calculation without the continuum ( Eg) is at 2°0.

These examples show that the continuum couplings in the rational Gaudin model have signif-
icant and non-trivial e ects on the spectra of studied systems. Adjusting parameters of the SM
Hamiltonian in one nucleus, **C in the studied chain of isotopes, to include e ectively neglected
continuum e ects does not solve the problem in heavier isotopes of the same chain for which sig-
ni cant state and con guration dependent energy shifts due to the continuum couplings are found.
On the other hand, this simple pairing Hamiltonian reproduce correctly an experimental position
of the neutron dripline in carbon and oxygen isotopes if the continuum states are included. At
this point, it is di cult to asses if this encouraging result is generic and can be associated with
the predominance of pairing correlations close to the two-nucleon driplines [7].

Even though the rational Gaudin model is not a realistic approximation of nuclear SM Hamil-
tonian, one is tempted to conclude that results of this model are more general than the model
itself, i.e. the coupling between discrete and continuum states cannot be replaced by simply tting
the two-body matrix elements to the observed spectra in a certain mass region. This standard
procedure in many practical applications leads to wrong conclusions about the nature of e ective
interactions and the structure of many-body states. This is particularly worrisome if one wants to
study states in long chains of isotopes from the valley of stability towards the drip lines.
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Figure 2.11 The experimental spectrum of *C is compared with the spectra calculated using
either the standard Richardson equations (no continuum)”Er), or and generalized Richardson
equations " Egr). For more details, see the discussion in the text.
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Figure 2.12 Experimental spectrum of 16C is compared with the spectra calculated using either
the standard Richardson equations (no continuum)”Eg), or and generalized Richardson equations
"Egr). For more details, see the discussion in the text.
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Figure 2.13 The spectrum of '8C calculated using either the standard Richardson equations
(no continuum) "EgR), or the generalized Richardson equations Egr). For more details, see the
discussion in the text. We omitted the second0 as mentioned in Tab. 2.10
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Figure 2.14 The spectrum of 2°C calculated using the standard Richardson equations (no con-
tinuum) "Er) is compared with the spectrum obtained by solving the generalized Richardson
equations (Egr). For more details, see the discussion in the text. No excited states are known

experimentally for this nucleus.
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Figure 2.15 The pairing gap (2.107) in even-even carbon isotopes. The dashed line shows results
obtained by solving the standard Richardson equationsj.e. neglecting the continuum. The solid
line depicts solutions of the generalized Richardson equations. For more details, see the discussion
in the text.
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Figure 2.17 The same as in Fig. 2.16 but for even-even oxygen isotopes.

2.3.7.2 Ultra-small superconducting grains

In 1959, Anderson [194] claimed that the phenomenon of superconductivity must disappear
for metallic grains if the mean level spacingd, which is inversely proportional to the volume, is of
the order of the superconducting gap in bulk ~. A simple argument supporting this conjecture is
that the ratio ~~d measures the number of electronic levels involved in the formation of Cooper
pairs, so that if ~~d B1 then there are no active levels accessible to build the pair correlations.
Apart from some theoretical studies, this conjecture remained largely unexplored until the recent
fabrication of ultra-small metallic grains.

Ralph, Black and Tinkham [195,196], in a series of experiments, studied the superconducting
properties of aluminum grains at the nanoscale. Giaever and Zeller [197] were among the rst
to probe the Anderson's criterion experimentally. Studying tunneling through granular thin Ims
containing electrically insulated Sn grains, they demonstrated the existence of an energy gap for
grain sizes right down to the critical size estimated by Anderson, but were unable to prove that
smaller particles are always normal. Later, Ralph, Black, and Tinkham [195, 196] succeeded to
study transport through individual nanometer-scale aluminium grains. These experiments revealed
the existence of a spectroscopic gap larger thad which could be driven to zero by applying a
suitable magnetic eld. It was found in these studies, that the mean level spacings isl  0:45MeV,
whereas the bulk gap is™ 0:38 MeV which satis es the Anderson's condition d C ~.

These experimental observations produced intense theoretical activity focused on the study of
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the pairing Hamiltonian with equally spaced s.p. levels [198 202]. The pairing Hamiltonian used

in the studies: 5

D
H Q" ¢ dQeeee (2.112)

belongs to the class of rational Richardson-Gaudin models. Here, the s.p. levels are given
by: d, d is the average level spacing, is the chemical potential, and is the dimen-
sionless coupling constant. The Hamiltonian (2.112) has two regimes depending on the ratio
d~~ 2sinh"1~ «~N, with N the number of electrons, between the equidistant spacing and the
bulk superconductivity [203]. In the weak coupling limit: “d~~ AAle, which corresponds to small
grains or small coupling constants, the system is in a regime with strong pairing uctuations above
the Fermi sea. In the strong coupling limit: “d~~ @@», which corresponds to large grains or strong
coupling constants, the bulk BCS wave function describes correctly the ground state properties of
the grains.

The role of continuum couplings in these two regimes of the pairing Hamiltonian (2.112) is
unknown but could be easily studied using the generalized Richardson equations for the picket fence
set of bound states, resonances, supplemented by the non-resonant continuum states. Generally,
two types of quantities are calculated as functions of increasing~", i.e. increasingN : the even and
odd (b 0and 1, respectively) condensation energ)Eg, and the Matveev-Larkin parameter [204].
The condensation energy is given by:

E,S EJ° 'FSH &se (2.113)

the di erence between the ground state energy of the pairing Hamiltonian Eq. (2.112) and the
energy of the Fermi state (FS) which is the Slater determinant obtained by simply lling all levels
up to the Fermi surface. The Matveev-Larkin parameter:

1
we ErNe S Eo'N 1o Eg'N 1s (2.114)

measures the di erence between the ground state energy of an odd grain and the mean energy of
the neighboring even grains obtained by adding and removing one electron. Both the condensation
energyEbC' and the Matveev-Larkin parameter . can be easily investigated for di erent both
s.p. spectra and numbers of electrons. In particular, one expects that the continuum coupling may
have an in uence on the ultra-small grains in the weak coupling regime of the pairing Hamiltonian.

61



Chapter 3

Towards a uni ed model of nuclear
structure and reaction

Nuclear reactions are used to probe properties of the atomic nuclei and understand various
astrophysical processes from the Big Bang nucleosynthesis to the evolution of stars and the relative
abundances of di erent isotopes/nuclei in the Universe. Reaction cross sections are one of the
most important observables which provide information not only about the reaction probabilities
but also about the structure of the nucleus. Indeed, many structural properties of the nucleus are
determined by means of nuclear collisions. For example, direct nuclear reactions can select the nal
state of the reaction process. The transfer or knockout of one nucleon probes the single particle
(s.p.) states, the inelastic scattering excites collective states and the transfer of two nucleons
brings information about the pairing correlations. Single neutron transfer using the (p,d)-reaction
became a common tool to explore neutron capture reactions at stellar energies (see Ref. [205]). In
general, complex projectiles such as deuteron, triton, alpha, or even heavier nuclei are involved in
transfer reactions and hence their theoretical modeling is di cult.

Nuclear elastic scattering processes can be described using the complex one-body potential
[206 208] (the optical potential) where the imaginary part takes into account an absorption of
the wave function, in analogy to the absorptive imaginary part of the index of refraction in wave
optics. This approach reached its maturity in the works of Feshbach and others [209 211] on
the generalized optical potential which e ectively takes into account couplings to the inelastic
channels. Later, Mahaux and Sartor [212] developed the dispersive optical model which uses the
dispersion relation to link the imaginary and real parts of the optical potential and hence, the
elastic scattering cross sections with the properties of bound s.p. states [213].

A more general formalism is required to describe the inelastic scattering or transfer reactions.
In these reactions, one has to introduce additional quantum numbers to label internal states of
colliding nuclei and di erent partitions of nucleons in the collision process. For this purpose, it is
convenient to introduce reaction channels [214 216] to de ne the asymptotic states of the quantum
system before and after the collision. Any partition of nucleons among collision partners de nes
an arrangement channel. The particle transfer process becomes then the quantum hopping process
in the space of arrangement channels.

Narrow resonances are observed in various nuclear reaction cross sections. According to Niels
Bohr [217], the long lifetime of these states is related to their complexity which arises because the
available energy is shared among many nucleons. Accordingly, it was for a long time considered

62



CHAPTER 3. TOWARDS A UNIFIED MODEL OF NUCLEAR STRUCTURE AND
REACTION

almost hopeless to approach nuclear reaction theory from a microscopic point of view. Many earlier
formulations of the reaction theory [218 220] proposed an expression for the collision matrix with
no explicit reference to the nuclear Hamiltonian. These formulations were devised to provide a
convenient framework for the analysis of the resonance processes.

Nuclear reaction theory received a considerable impetus from Feshbach [42,43] who emphasized
the dynamical origin of resonances and of the optical model. In his work, the collision matrix is
expressed in terms of the matrix elements of the nuclear Hamiltonian [42,43,221]. In its rst for-
mulation, the Feshbach's formalism neglected the antisymmetrization of theA-body wave function
which is a serious challenge to any nuclear reaction theory [94,222,223].

At higher energies, the precise knowledge of the structure of projectile and target nuclei is
not always mandatory for the quantitative description of nuclear reactions. On the contrary,
details of the shell structure of colliding nuclei and their many-body wave functions are essential
for understanding the low energy radiative capture or transfer reactions, and this cries out for a
uni ed framework. The attempts in this direction led to various formulations of the CSM/SMEC
[34, 35, 38, 39,41, 104, 224] which are based on the Feshbach projection formalism [42,43]. These
models were the rstto provide a truly unifying picture of nuclear structure and reactions but their
applications for processes involving more than two nucleons in the non-resonant continuum were
too complicate to be pursued. The CSM is formulated in the coupled-channel (CC) framework
which is well suited for decay processes and reactions. On the other hand, the description of
spectroscopy requires the reformulation of the CSM to include the discrete part of the continuum
spectrum (the s.p. resonances) in the con guration mixing [225].

Recently, the GSM has been proposed which uses the Berggren basis [44 46] and the external
complex scaling method [137] to regularize the resonance wave functions. Contrary to the CSM,
the GSM is not limited by the number of particles in the scattering continuum. On the other hand,
the GSM is the con guration interaction approach and as such it is the tool of choice for nuclear
structure studies. To reconcile the GSM with the reaction theory, a reformulation of the GSM in
terms of the coupled channels is mandatory [226]. The rst applications of the GSM in the CC
framework (GSM-CC) have been achieved for the elastic and inelastic scattering of protons on
SHe [226],28Ne [227], and™*O [228]. The GSM-CC has also been applied to study proton/neutron
radiative capture reactions [229, 230].

Our aim in this chapter is to formulate the GSM-CC approach for transfer/knockout reactions
and extend its applicability for reactions involving complex (multi-nucleon) projectiles. Moreover,
since GSM-CC describes reactions in the COSM coordinates, the resulting theory can be applied
to study elastic and various inelastic reactions involving also medium- and heavy-mass nuclei.
However before approaching this goal, in the next section (Sec. 3.1 ) we will recall basic features
of the CSM/SMEC which were the rst theoretical approaches to bring together the con guration
interaction approach (the SM) and the reaction theory (the S-matrix, the optical model potential).

In Sec. 3.2 we discuss the CC formulation of the GSM. In subsection 3.2.1 we remind general
features of the Schrédinger equation in the channel representation. In the following subsections,
we discuss the Hamiltonian of the projectile (Sec. 3.2.2) and the Slater determinant expansion of
the states of the composed system projectile+target (Sec. 3.2.3 - 3.2.4). The orthogonalization
condition for states of the composed system with respect to the occupied states in the core is
discussed in Sec. 3.2.5 . The following subsections (Sec. 3.2.6 - 3.2.7) concentrate on discussing
matrix elements of the Hamiltonian, approximations in the treatment of antisymmetry in the
system projectile-target at large c.m. energies, and details of the actual calculation of the matrix
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elements of the Hamiltonian and the norm.
Sec. 3.3 is devoted to the discussion of the numerical resolution of the CC equations. Among
many things, we discuss the Green's function approach to obtain the solution of the CC equations.
The next section (Sec. 3.4) is devoted to the presentation of some applications of the GSM-CC
approach to nuclear reactions. After giving few practical tips concerning the GSM-CC calcula-
tions, we will present results of the calculation for the reaction **O(p,p') and properties of the
intermediate system *°F in this reaction.

3.1 From Feshbach projection formalism to the CSM

The basic idea of CSM is to use a nite depth potential to generate the s.p. basis. This potential
is generally a Wood-Saxon potential, plus a spin-orbit and Coulomb term, and it generates s.p.
bound states and resonances. Both bound states and resonances have an outgoing asymptotics
but the resonance wave function is not square integrable. To overcome this problem, one should
separate the localized part of the resonance wave function inside the Coulomb and centrifugal
barriers from its tail at large distances [225]. The localized part of resonance, properly normalized
and orthogonalized to all bound states, is then put in the subspace of discrete s.p. states, whereas
the resonance tail remains in the non-resonant continuum. The scattering states are taken along
the positive real-k axis. By construction, the CSM is formulated in Hilbert space. The many-body
states are Slater determinants made of bound s.p. states and anamneses of the s.p. resonances.

At this point, the Feshbach projection formalism is used. The idea is to separate Hilbert space
into the two subspacesQ and P such that: H Q 8P, whereH is a Hilbert space. The subspace
Q is the subspace of Slater determinants with only discrete states occupied, while the subspabBe
is the complement subspace which includes the non-resonant continuum states. In the following,
we will only consider a simpler case wherd® stands for the set of con guration with only one
nucleon in the continuum.

The projection operator @ and P on the subspace<Q and P, are de ned as :

Q QSDhhesD,S; P 1 & (3.1)

where the Slater determinants D, e are build of the discrete s.p. states generated by the mean
potential. Using Eq. (3.1), one can rewrite the Hamiltonian K of the A-nucleon system as:

H P QHP Q PHP QHP PARQ OHQ

ﬁpp |4Qp ﬁpQ |4QQ (32)

with:
RogSie EiSie (3.3)
Hpp Se E Se (3.4)

Here Eq. (3.3) is an eigenvalue problem, wher8& je P, ¢, SD,e while Eq. (3.4) is a CC equation
with: ..
Se Qs %rZS&;r-edr (3.5)
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where S€;ree S %T ea®’;j; e ’ are the channel states andruc."re “c;reSe Here, S %Te is
the target state with Jt its angular momentum, $; ';j; eis the projectile state with j its angular
momentum, and J is the total angular momentum. The boundary conditions de ning the uc"re
are: (i) the outgoing wave behavior in all channelsc, and (ii) the incoming wave behavior in the
entrance channelcy. The correlations between the projectile and the target are taken into account
through the microscopically calculate coupling potentials between di erent channels.

Let us consider the state: Se "P Q+Se Spe Sge of the A-nucleon system. The
Schrodinger equationlq S e E S ecan be rewritten using Eq. (3.2), and then projected on the
subspacedQ and P as follows:

"Qe "E Hoq*S oe Hop Sre (3.6)
“Pe "E HppeSpe HpgSce (3.7)
Introducing the resolvent operator:
G "E  Hppe ! im"E i Hepe '
the solution S peof Eqg. (3.7) can be written as:
Spe Se Gp E*HpoS e (3.8)

Note that S peis a sum of the unperturbed solutionSein P, i.e. the scattering part, plus a term
taking into account the coupling with Q. Using Eqg. (3.8) in Eq. (3.6), one obtains the following
expression forS ge

"E |4QQ ﬁQp GPAE'IQPQ'S Q€ |4Qp Se (39)

Using expressions (3.8), (3.9), and the completeness relation:

Q Sie S 1 :
i
one obtains the solution forS ein the whole spaceQ 8 P:

S e 1 .
Se Se Q Sie & ‘e’ {S——-—Sje" ;Hopr Se (3.10)
: E ﬁe
| QQ
The state S eis thus written as a sum of a direct part Se and a resonant part. HereS\/; ‘eis the

extension of S jein P: )
® ‘e G, "E<HpgSie (3.11)

and |quQ is the e ective Hamiltonian in Q:
IquQ ﬁQQ ﬁQp GPAE'quQ (312)

In general, the e ective Hamiltonian |quQ “E e is non-hermitian and energy dependent. It contains

an internal interaction in Mg which makes the con guration mixing like in SM, but it contains
also an external interaction Hqop G, E*Hpq which couples the states inQ and P and generates
the energy correction to the Q-space eigenvalues.
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Let us now discuss the description of bound states and resonances of thenucleon system. In
this case,S eis a set of discrete states? S,e E,S,e andS,e S ge S Be Removing the
scattering part Sein S 3 e one can see that the statesS ”Qe are the eigenvectors of the e ective
Hamiltonian:

"E HS, E*S qe 0;

with the eigenvaluesg,"E+¢ i ,"E*~2. Then, it is possible to de ne 8#;1 ‘ethe extension of S Q€
in P as: )
S, ‘e GpE+Hpo S qe:

The states S ”Qe and w;] " can be expressed in a basis @& je and Sv; “e respectively:

S qe Q ['Sie
i
e Q s, ‘e (3.13)
i
Now, de ning ) )
S,’e Sge B, e
and inserting in Eq. (3.10) twice the following two completeness relations:
QSge s 1
n
QS,e ,'s 1% (3.14)
n

one obtains the nal expression forS e

1 .. n
Se Se 2—=Q S, e = (3.15)
2% " E EvEe inf
where o
~ 2 jSigpse (3.16)

are the coupling matrix elements between the pure scattering states lying inP and the bound
states and resonance$ 5elying in Q.

It is interesting to notice that the states S eand S n “eare equivalent in the following sense:S e

is a scattering state which takes into account corrections from the discrete states whil§ , “eis the
resonance state which takes into account corrections from the scattering states. The corrections
from the discrete states to the scattering statesS eare contained in the sum over these states (the
second term in Eqg. (3.15)), while the corrections from the decay channels to the wave function

S, "eare contained in S, ‘e
For a given incoming channelcg and an exit channelc, the S-matrix is expressed as:

B TP b
o Seq leC «0'Q (3.17)

" E En'Es Q2
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Here, ;0' is the scattering phase shift for the same incoming and exit channelsség)' is the matrix
element for the non-resonant part of the scattering process, ands is de ned as:
[0}

. "0 4_ a ~
~ e Uce rew; redr 3.18
n —ﬁrc SwSO c i ( )
with  the reduced mass of the collision partnersfucere ~~c*reSeand wi"@r- T c%reSvie

Finally, the cross section describing the wave scattered from an incoming channep to an exit
channelc is given by:

d . N R
d_ Co Ce k—zg 2 | 2 1Yr£ : ® SCCQ cCo 'é (319)
Co B ’moe

By construction, CSM considers the con guration interaction for Slater determinants build by
harmonic oscillator wave functions for bound s.p. states and anamneses of s.p. resonances [34 41]
in the internal subspace Q-space). The external subspaceR-space) is supposed to include only
non-resonant continuum states what implies that the special procedure to extract the localized
part of the resonance wave functions has to be de ned. The coupling between the internal SM-
like states, and the external subspace F-space) is evaluated by solving the CC equations. The
quality of the CSM approach depends on the goodness of the separation method betweéhand
P subspaces. In the future, one could envisage the variant of Feshbach projection formalism in
which GSM instead of SM is used to build the subspace of discrete many-body states, leaving the
selected channel wave functions irP.

3.2 Coupled channel formulation of the GSM

GSM is the generalization of SM to the resonant and non-resonant continuum. Like in SM,
the many-body states in GSM are written in terms of Slater determinants and hence, the GSM
is a tool par excellencefor the nuclear structure studies. The fundamental problem which will be
discussed in this chapter is how to reconcile the GSM with the reaction theory. A similar problem
challenged already the forefathers of the microscopic reaction theory, like Feshbach, Kerman,
Mahaux, and others, who were preoccupied by the (in)compatibility of the SM with the reaction
theory. This fundamental problem returns again because we know now that the SM is not a
satisfactory formulation of the con guration interaction in all binding and boundary conditions.

The reaction theory deals with scattering wave functions which are solutions of the Schrodinger
equation with the appropriate boundary conditions. This scattering state could be provided by
the GSM, but the Slater determinant representation of a GSM wave function is not suitable
for a description of reactions because the entrance and exit channels cannot be easily identi ed.
Furthermore, the determination of constants C and C (see Eg. (2.52)), which are associated
with the A-body scattering wave function and allow to calculate theS-matrix, is not possible using
the Slater determinants.

To break this deadlock, one may formulate GSM in the CC representation. In general, the
scattering state in such a formulation is a combination of di erent reaction channels. The coupling
between di erent reaction channels is then given by the coupling potentials which are calculated
microscopically using the GSM wave functions. The expansion of the radial wave function gives
an access to theS-matrix [231] which provides the whole information about the reaction process.
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3.2.1 Coupled channel problem in Berggren basis

As discussed in the introduction of this chapter, to go beyond elastic scattering one has to
take into account the internal structure of the collision partners and consider di erent reaction
channels. In this formulation, the nucleus is seen as consisting of di erent cluster partitions of the
projectile and target nuclei. The wave function of an A-body system in any of its cluster partition
is fully antisymmetrized. A similar view on the reaction dynamics has been put forward by the
resonating group method [232,233]. With this assumption, the channel state is written as:

St;ree AS JTeaS e ;“A : (3.20)
with S " eand S P ethe state of the target and the projectile respectively, andJr and Jp their
are the associated total angular momenta.J, is the total angular momentum N N KN and
M4 its projection. Here r denotes the relative distance between the c.m. of the projectile and the
target. This relative distance is contained in S ‘g,"ewith all the other quantum numbers de ning
the projectile state:

S¥e $Jin;Jpe (3.21)

In this expression, " is the orbital angular momentum, Jj the intrinsic angular momentum, and
N N Ni. Note that $ e stands for the c.m. part of the projectile. Hence channel indexc
stands forthe™A a;Jt;a; ;Jint; Jp* quantum number, with "A  a and a the number of nucleons
in the target and projectile respectively. The channel statesSt;ree form a complete basis:

a

Qs St;ree"ciresdr % (3.22)
C

so that the A-body state S e can be expanded in this basis as:

J Ucre 2. :
S MAAe (g S Tr SC;reedr ; (3.23)
with “c;reS e ru¢'re. The state S e describes the scattering process in relative coordinates, as
the c.m. part of the target-projectile system is neglected since it reduces to a plane wave. Thus,
the ucre is the radial wave function describing the relative motion between the target and the

projectile. Using Eq. (3.23), the Schrédinger equation becomes:

a

Uc're

Qs, r*How ENce 0; (3.24)
C
where:
Hee 1 Bre " e®rR¥F] St ree
Newo I 1 % " e®r%STree (3.25)

Egs. (3.24) are the CC equations which determine the radial wave functioruc"re.

The projectile state S ﬂf’e % ";Jint; Jpecan be split into radial and internal parts:

8 Jint ;Jpe Bea S Jin ;Jpe:
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Using a one-body Berggren basi§See, one can write:

“”r“ Be (3.26)

$e Q
n

where 'n$e u,"re~r. Then, the expansion of the projectile state in Berggren basis of the c.m.

states reads: R
Up e

8 Jint ;Jre Q ®; % Jint ;Jpe (3.27)

n
Note that n refers here to the (cluster) c.m. Berggren state of the projectile nucleus, while it
refers to a standard one-body Berggren state for one-nucleon projectiles. Finally, one obtains the
expression for the channel state in the Berggren basis:

- Ja
J [e
St;ree AS 77ea$din ;Jpe MAA AS JTea ® u”r B Jint ;Jpe’
n MA
e )
Q h " g's Tea ®; " Jin ;Jpe .
n Ma
Q ””rr' St nee (3.28)
n

Using these expressions, the matrix element$i.<r;r % can be formally expanded in a basis of
B Jin Jp Mpestates as:

Upre Upsr%®

Hewr®  Q Hewnin® e

n;n®

(3.29)

In the following subsection, we will provide useful details on how to compute matrix elements of
Heer 1 %,

3.2.2 Hamiltonian of the projectile

The determination of He=r;r % involves the projectile Hamiltonian qu which has not been
de ned until now. This Hamiltonian generates states of the projectile ;" ;Jixe We start by
writing the Hamiltonian of the A-nucleons system in the laboratory coordinates:

&2 lab

R Q

Vi ; 3.30
om, QU (3.30)
where i;j runs over all nucleons, andV; is the nucleon-nucleon interaction in the laboratory
coordinates.
In the following, we want to separate the projectile Hamiltonian into the c.m. and intrinsic
parts. Let Oitarget be the mean- eld created by all target nucleons and acting on projectile nucleons
i:

j >target
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We assume that the one-body potential 09" is spherically symmetric and spin-independent.
Neglecting couplings between the target and the projectilej.e. at large distances, the projectile
Hamiltonian Hp can be written as:

B O i Ofafget“ Q% (3.32)

7 2m| .

As linear momenta of valence particles are identical in laboratory and COSM coordinates, and as
Rcore COrrections are second-order when one goes from laboratory to COSM coordinates (see Sec.
2.2.4), Bp in COSM coordinates is the same as in Eq. (3.32). Hence, from now on, we will use
COSM coordinates only. We can write:

1& 13
IQP Q ) 2|,nl1a.b Oitarget. Q Oij
i>proj | i @>proj
7 . 3
i>proj [ i@ e i>proj

where P, Q P In this expression, a is the number of nucleons in the projectile,m the
i>proj
nucleon mass, andVi the reduced mass which is de ned as:
1 1 1
Me Mp M7

(3.34)

with Mp and Mt the masses of the projectile and target, respectively. Assuming the cluster
approximation, i.e. implying N RL.. and replacing Re:m: by r for the sake of simplicity, the
average eld created by all targets nucleons can be approximated by:

Uem 1% Q UR rr® g, Ut rr @ a, U@ty % ; (3.35)
i >proj

where a, and a, are the number of protons and neutrons in the projectile, respectively. Conse-
quently, Hp reads:

qu |qint |qc:m: (3.36)
with:
o LR 7
Fin Q — 2= Q ¥ (3.37)
t i>Pr01 2m i @>proj J
Ng:m:
|qczm: M, 0c:m: (3.38)

Fin is the intrinsic Hamiltonian of the projectile and Hcm. only involves the c.m. coordinates of
the projectile and bears the spherical symmetry. ClearlyHp generates the®; *; J i e states (3.27).
Here 9; e are the eigenstates o cm:, and Fin e is the exact ground state of the projectile and
the eigenstate ofH .
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3.2.3 About the harmonic oscillator basis in the expansion of projectile states

The determination of He 11 % involves the calculation of matrix elements of the interaction
for target and projectile states expanded in a basis of Slater determinants. The procedure is
straightforward for the target states which are calculated in GSM. The construction of projectile
states as the linear combination of Slater determinants requires the separation of c.m. and intrinsic
parts.

Let us start with the de nition of projectile states (3.21) in k-space:

Sre & Jin;Jpe; (3.39)

where k and ~ are the relative momentum and angular momentum of the c.m., respectively. In
order to use implement targets and projectile within a GSM picture, we should be expand the
projectile state in a complete basis of Slater determinants:

Ske QC?S?e; (3.40)

where the Slater determinants are built from the s.p. states of the Berggren ensemble. To ensure
the exact numerical reproduction of the Dirac's delta:

J J%R ~ .
rsi®fe kK%

one should consider an in nite set of Slater determinantsS 2ewith an extremely ne discretization
of the one-body continuum. The exact reproduction of "k k% ensures the separation of c.m.
and intrinsic parts of S e

To circumvent this numerical problem, we will use the harmonic oscillator basis. As the nuclear
reactions are localized close to the target, the wave function of the projectile can be approximated
by the bound state wave function, so that we can use the harmonic oscillator basis to expand it.

Let us de ne the harmonic oscillator expansion of the projectile state as:

Jp

S¥e QB¥?% SN;Lé*OasimeM (3.41)
P

with S 2ea Slater determinants made of the one-body harmonic oscillator states. The many-body
state ®;L;J int qf,,F’P has to be computed. For this, we begin by calculating the ground state of the

cluster with a Os c.m. part:
S OL O M 0eS3ii;Mire (3.42)

In order to calculate the c.m. harmonic oscillator many-body states e ciently, we introduce the
rang 1 tensor ladder operator:

4 ¥4

Ml A- 1 -
A R i P, 3.43
2R 'R (3.43)
where 1;0; 1, andR' ¥, pY represent the position and momentum of the projectile in c.m.
system, respectively:
R a . R a "
R lgar , pr gp (3.44)
ajq i1
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r{;l’, and I5;;1' in (3.44) are respectively the position and momentum of each nucleon of the projectile

in the c.m. system, anda is the number of nucleons in the projectile. In practice, the action ofA"
on S 2eis calculated using:

Rt ~Q glsere ; P Q> plsere (3.45)

with S e; S ethe one-body harmonic oscillator states, and®” “¢ ¢ the particle creation (annihilation)

operators. If we apply the A* tensor operator on the ;L; M e state, we increase the2N L by
one harmonic oscillator c.m. quantum:

2N L 2N L 1 2N® L= (3.46)

At this point, we couple the tensor operator A acting on &;L;J int;Minr €

L® e
A BiL; Jint;Minte ;e Cuym S ELEM R ; Mine (3.47)
where the coe cient C',jf"oedoes not depend ofM ®because it can be expressed as:

CN™ NRLEM BA" B0 L3 i s Mince ) o
1

o= N®LBASELe (3.48)
2L 1

using the Wigner-Eckart theorem. Note that A" does not act onGi:Minre Therefore, we can
build the set of states
"N; LM L dine s Ming ee (3.49)

because the harmonic oscillator degeneracy induced b is lifted by the L coupling. Then using
Clebsch-Gordan coe cients, we couple the many-body state in Eq. (3.47) toJp:

‘N;L;M L;Jint;MintN;L;JinthwPP (3.50)

As we already mentioned in (3.41), each state®l;L;J ;e has to be expanded in the basis of
harmonic oscillator Slater determinants S ?e. For that, we used (3.45) in:

A L Jin;Mice CNLE SIZL % ;Mice Q B2A S (3.51)

which allows to determine all coe cients B2 of each state®;L;J int; Mint €
We now express the projectile state in the Berggren basis:

Se QC?s?e (3.52)

The C? coe cients are readily obtained:

C*  *®LJing; QB ?S?e (3.53)
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As S 2eand S 2eare built from di erent one-body basis states, the overlap™ 2S 2emust be calcu-
lated using the de nition of SD as a linear combination of non-antisymmetrized tensor products:

3S% Q° 1P g8, P S L€ (3.54)
P

where P is the permutation operator. In this expression, $je are s.p. states of the Berggren basis
occupied inS 2g and Sjeare s.p. states of the harmonic oscillator basis occupied i 2e

3.2.4 Expansion of nuclear states in a basis of Slater determinants

In the previous section, we have discussed how the projectile states are expanded in a basis of
Slater determinants made of the one-body Berggren states. In this section, we will calculate the
expansion of theA-body S e

Se "C_

J J .
83 int ‘%J\APP Stye, QCS e; (3.59)

whereCy, ..., e is the projectile creation operator. For that, we use the expansion ofS #T ein "A

as-body Slater determinants and 8; *; J int e;]\,fp in a-body Slater determinants, which are obtained
from the diagonalization of the GSM Hamiltonian K :

ST’e QCh?3sh 3 (3.56)
8 iy, Q C3S?e (3.57)

One may notice theaand A a<-body character of expansion coe cients and Slater determinants
in the above expression. Applying the creation operator of Eq. (3.55) on the state (3.56) with
a given angular momentum projection M, and using Eq. (3.57), the following uncoupled fully
antisymmetrized A-body wave function appears:

~c

, Sye ch ac: S %
9.5 int eiAPP T Q

D3 int ei,lpp
Q C* 2C? A"S A 2eS%e.
QC S e (3.58)

where the Slater determinants:
S e "1 ASA %Sl
are A-body basis functions, and the expansion coe cients:
C "1 b

include the rearrangements phase” 1 . The angular momentum projection My veries: M
Mp Ma. The Slater determinants S evanish if S 2eand S e have at least one s.p. state in
common. The expansion ofA-body wave function (3.55) can then be determined by coupling the
wave function (3.58) to a given angular momentum.
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3.2.5 Orthogonalization condition model in GSM-CC approach

If we act with C» 3jp ONS %Te, we have to ensure that all calculated wave functions

B int €y
are orthogonal to the occupiepd states in the core, as demanded by the orthogonalization condition
model. In principle, this should be assured by handling all states in the basis of Slater determinants.
However, the orthogonalization condition model does not work in the nite model space, as in
this case formally exact cancellations become numerically inexact and generate large unphysical
couplings. Thus, we have to use a di erent procedure to avoid the occupation of core states.

We will introduce projectors de ned with c.m. and relative coordinates:

Q Q %1 Jint;IpiMpen; Jin; IpsMpS (3.59)

N BN min

P 1 Qum (3.60)

where nmin is chosen so as to remove the cluster eigenstates HBfp sizably occupying the core.
Using Egs. (3.59) and (3.60),H¢m: is rede ned :

ﬁc:m: ﬁﬁc:m:'s ﬁc:m: Q'qc:m: ﬁc:m:o quCZmZQ (361)

The new operator generates an additional short-range interaction which should be added tétp
in Eq. (3.32). The modi cation of Mp also generates a modi cation of the coupling part between
the target and the projectile, while ¥ (3.30) remains the same. This orthogonalization procedure
has been checked to be reliable and numerically stable.

3.2.6 Matrix elements and approximations

Let us de ne the projectile state as a product:

kreI Bkmax

involving the low relative momentum state X e which embodies its compact cluster structure,
and the c.m. part &.m.e Here kmax Stands for a maximal linear momentum allowed for pairs of
nucleons, related to the average relative velocity of nucleons inside the cluster. The Hamiltonian
iswritten as: B T Ocore  Wres, Where Ocore is the potential of the core andYes is the two-body
residual interaction.

In order to evaluate the matrix elements:

NN N Ia T, . In
A TTff K re ¢ Jinet e ST\/IASq &S TTi'ea S i Jinti Jp;iE."MAe (3.63)
we separate the HamiltonianH into a part which generates the basis, and the residual part:

ﬁ f 0basis A\/)res LI)O' (3.64)

where Opasis is the optimal potential of A-particle system and Uy Opasis Ocore. The advantage
of this decomposition is that V' Ves Op is nite-range.
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The two-body matrix elements “a; b3} $;de involved in the target-projectile coupling at high
ke:m: energy are negligible (see Appendix A.1):

Ka; kp BKmax and Keore; Kg B Kmax

‘a; b $:de 0 unless e
Ka; Ko AKmax and Keore; Kd AKmax

(3.65)

@e; Pe; $e and e in (3.65) are Berggren states of momentunky, Ky, Keore and kg, respectively.
kmax is an arbitrarily large momentum of the one-body state. Another way to formulate Eq. (3.65)
is:

‘a;bX) 8;de 0 if §i;j*>"a;b;c;d Ski Bkmax and Ki AKmax (3.66)

wherei;j >"a;b;c;c. This property of “a;bS) $;deis useful to derive the analytic form of the CC
equations.

3.2.6.1 The antisymmetry of a target-projectile system at large c.m. energies

Results obtained in Sec. (A.1.1) imply that assumingKe.m: AKem:max: With Kem:max ~ 2Kmax the
only non-vanishing two-body matrix elementsa; b¥ $; deare those for whichk; Akmax | i >~ a;b;c; .
Therefore, an important consequence of the decoupling between target and projectile is that the
antisymmetry can be suppressed between projectile and target iKe:m: AKe:m:max, @s in this case
linear momenta of the occupied states verify:k Bkmnax in the target and k Akmnax in the projectile.

We will use in practice a basis of harmonic oscillator states to expand c.m. states whereas all
previous results implied the use of Bessel and Berggren basis states (see Appendix A.1). However,
the overlap "ke¢.m: Bl eis small at large momentumKe.m: unlessN AN max for Nmax Su ciently large,
because for Bessel functions of momentunkem:: Kem: BN e U,'\,*O“kc;m;-. Hence, all previous
results remain valid if we replace c.m. Berggren states of momentunkcm: AKc:m:max Dy €.m.
harmonic oscillator states of principal quantum number N AN nax.

3.2.7 Matrix elements of Hamiltonian Heee ;1% and norm Neeelr®

In this section, we will discuss the computation ofNc=r;r % and Hees r;r . The calculation
of the overlapsN¢=r;1r % is straightforward:

Up re Upe r%

Nt 1% Q L
nne T re
UnAr' uncx’?‘r(e\ JTi . é” SJTe
. r ree T 8, Jint € B Iinee" T
Upre Upe r'® .
T _—QCC« e (3.67)
n;n®e r re e

1

S ein this equation are given in Eqg. (3.58). Due to the decoupling of the target and projectile
at high energy, it is more convenient to rewrite the Hamiltonian F by introducing the target
Hamiltonian B:

Br Tr O0lue “Ves Do’ % (3.68)

where “Vres Ope” % is the part of Ures 0o acting on the "A  as-body target state, and where
T+ and O], are the target kinetic and potential parts of the Hamiltonian H, respectively. The
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Hamiltonian can thus be written as:
|4 |4T |4p ﬁTp , (369)

whereBp H Ht Hp by de nition.
The action of target and projectile Hamiltonians H1 and Fp (3.36) on A-body states is e ected
by considering non fully antisymmetrized A-body states:

|4T °S TEea S pee A|qT S Tea S peEe (370)
ﬁpAS TeaSpes % tea ﬁp S peZ (3.71)

Matrix elements Hesr;r % (3.29) can be decomposed in four terms using Eq. (3.29):

Unre Upe r%®

Hewrr % Heew N;n% ———
ce
n Bn max r r
n(Bnmax
Q H Ca;n_noeun“r- Upo %
C ’
n Bn max re
N%AN max

N Un"re Upe r' %
Q Hccoen;no? n n='

rCE
n An max
NBN max
- Up“re Ups r'®
Q HeEnn%
r(E
N An max
N%AN max

(3.72)

The rst term is a nite sum and can be calculated using standard shell model formulas.
Sums in the second term will be shown to be equal to zero:

H cceda; N2
72N i Ip MpSARA S 1Tea 8= 1%, J% M SBe
TRn iy Jp MpS%Rr Hp ARpAZS 1Tea d® R IR MBe  (3.73)
7SN Jin Jp MpSEcm: Er Eit S 7 ea 8% %% J% M %Re
QCC" ' HpS e
"Ecm: Er Eint® cceme Q C C° St S e (3.74)
QCC > HpSe Q CC ; fS e SQaaasS e (3.75)
, . ’; >T;p

because the conditions (3.66) are veri ed. Indeed, due to Egs. (3.70) and (3.71), the antisym-
metrizers have been suppressed in (3.73) except fét1p. In Eq.(3.74), the term involving Ec¢m:,
Et, and Ej; disappears because we havex n“and ¢ x ¢ Then, only the sum involving the Slater
determinants remains in Eq. (3.75). In this equation, Se; Se; Se; Sestand for s.p. states which are
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occupied in target and projectile. As the conditions (3.66) are veri ed, we have' ; 'S e 0,
and Eq.(3.75) is equal to zero.

The third sum in Eqg. (3.72) is treated identically for symmetry reasons. The last sum in Eq.
(3.72) reads :

Heer N;N%
TN i Jp MpS%Rr Hp ARpAZS 1Tea 8= JE MFe  (3.76)
TN Jine Jp MpSHT Hp S TTea 3% JB M Be
TN i Ip MpSHAT B Hem S 17ea 3T R B M Se
"Et Eint Ecm:® c=me (3.77)

Here, the matrix elements involving H1p in Eq.(3.76) are equal to zero due to the decoupling
between the target and the projectile because we hava Annax and n®Annax (see Sec. 3.2.6.1).
Consequently, we can express the matrix elementsl . r;r % as:

~ ~ . Up"re Uper® R Un"reu, r%
Hewrr ¥ Q Hee n;n% = cce Q Et Eint Ecm:® =
r?%\nmax r r NAN max r r
max
(3.78)

The sums in Eq. (3.78) involving n Anmax and N“Anmax can be written as:

. Up reunr%
Q Er En Ecm:e A -

NAN max r roe
- Up"reu, r%
Et En Ecm:®
(g in cm: r pres
- Upreu, r%
Q "Er Eim Ecmse = (3.79)
NBNmax r r

where the rstsumin Eqg. (3.79) can be expressed with Dirac delta's due to completeness properties
of u,"re states:

. Up“reu, r%
Q Et Eint Ecm:* =
n r r
ror% ror®
- e ————— rr %
Et Einte pyes Tem: e Ucm: 1

(3.80)

Tem: and Ugm:"r;r % in (3.80) stand for the c.m. kinetic and potential parts of Eq. (3.38),
respectively. Hence, we can write nally:

R & & 1 ror®

Heef 11 % —— ——— Et Epy —

oc ' oM. @F 2M, r2 T T e
celdem: T ¥ Veerrr ® (3.81)
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where Ve=includes the remaining short-range potential terms of the Hamiltonian kernels,i.e. the
rst sum of Eq. (3.72,3.78) and the last sum of Eq. (3.79):

Upre Upe r'®
r(E

Up"re u, r%

Ve Q Heef n;n%

n Bn max
N%BN max

Q "ET Eint Ecm:e

NnBNmax r

(3.82)

r(E

H.< n;n% in the above expression is:

HeefMn% "Ecm: Et Eig® ceme Q CC 5 S e SaaasS e (3.83)

i >Tip

To compute the matrix elements* ; 'S e it is necessary to use the harmonic oscillator basis
to calculate the last term involving ¥ in Eq. (3.83), because it is more convenient and stable
numerically. For this, we perform an expansion of the eigenstate®; " e of B m: into an harmonic
oscillator basis : ®;°e Py, N;L®; eS;Le

3.2.8 Calculation of the reaction cross sections

In this section, we will discuss the determination of cross sections for elastic, inelastic or transfer
reactions. Let us start with the following ansatz for the A-nucleon eigenstate of? :
J a ue;JAAr. )
e, C AL
S MAAe Qc So fr SC;reedr (3.84)
In the above expression, we have introduced additional indice8a, M a, and e in the total state and
in the relative wave function. These are the total angular momentumJa de ned as X\ J¥ J¥,
its projection M4, and the entrance channele. The asymptotic behavior of the radial amplitude
uSJa~re associated with the channelc is:
u¢atre B 1 ceH-." e kre  SIAH- " ¢ KCre
2i (3.85)
ceF.” erkCre Té]é\ H.~ e Kore

where F-.” ¢; k®re is the regular Coulomb function, and the Sommerfeld parameter. TheS-
matrix and the T-matrix elements are related by the expression:

"SIA 1eg.

Tol >

(3.86)

In the reactions involving light projectiles (A B 4), mostly the target states stand for the
actual physical channels. Let us denote bye the set of quantum numbers which completely de nes
target states, so thatc ~€;7;Jint;Jpe. The physical scattering wave function, characterized by
the entrance state of the targete (usually the ground state), the magnetic quantum numbersM 5
and M7 of the projectile and the target, respectively, reads:

A‘eJimJ-?JA
5e MEME g eeds J 3.87
MeMee . ke MA Me ME Ae ( " )
Pt SNESNN P
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where the coe cients are given by :

S g e C» 000
AB;JS'R;':;JA “JEM ESeMedintMinte JIAMASEMEIEM Eei'e 4 "2, 1e€ (3.88)
Here, - is the Coulomb phase shiftdenedas - arg™ ~° 1 i e with the Euler's gamma

function. This particular partial wave decomposition in terms of S ‘,f,iJAAe confers to the physical
scattering state S ‘,3' ey ¢ €its correct asymptotic behavior, that is:

pYiT

g - AL~ e;J

stﬂgmgeD exp”i kz IN“K™r zeee 9Girea S MTTe

"k IN"2Kre e :
Te Exp 1 Kr n ' Sintean,’lJTTe

eMgM

eMSM

Q

o —h

(3.89)

In the above expression, we changed notations and replacedlby e de ned as¢c “€;; Jint*, and
e by ewith e “e;";Jirre. These modi cations are motivated by the fact that ~";Ji,c* are not
measured experimentally, so the cross section will only depend osand e.

The scattering amplitude in terms of the T-matrix elements is:

f .
eMEME  eMEME

e MgMg Meme fe

C‘BJSJTB‘CJSJT"JA (3 90)
MEMEMEME “c '
Q = u = u TJ‘% €-.a'C CY e e € eA ; .
ke eeJgiecdf p M7 Mg ME

KRCNERIN

where
€JEIECICICIA
MEMEM EME
~1€ eae e, 1C 4 e €acC e e € € €
‘]PMPS OMintMPe Jp MP MT MTS MP MT Mp MTMintMPe
JAME MESEMEIEMEeJa ME MEISMS ME MEJISMSe
»

.~e ¢

i T4 72 led e et (3.91)

C

From the expression (3.89) of the physical scattering state, the di erential cross section for the
scattering process to the channele;M5;M{+ at a given angle reads:

d ememe emgme . k® -
4" jeSemgme emgme S (3.92)

The di erential cross sections of the scattering process to a given target state thus reads:

d e e~ l ke ~
. = Q =SBeveme ememe s S
d ZPCEETI ST

(3.93)
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3.3 Numerical resolution of the coupled-channel equations

In this section, we present di erent numerical methods to calculate theA-body scattering states
S ﬁ,lAAe (3.23). TheseA-body scattering statesS JMAAeare expanded in a basis of channelSt;ree.
However, due to the antisymmetrization between the projectile and the target, the channel are not
orthogonal among each other. Thus in Sec. 3.3.1 we shall detail the method used to orthogonalize
the channel statesSt; ree. Observables can be calculated if we know the radial amplitudei."re for
each channelc involved in S ﬂAAA e Hence, in Sec. 3.3.2 and 3.3.3 we shall detail the the boundary
conditions that we considered for the radial amplitude. In Sec. 3.3.3 we shall detail the method
of the equivalent potential which is used to deal with non-local potential occurring in Eq. (3.81)
when we solved the CC equations (3.24) with direct integration. Finally, in Sec. 3.3.5 we present
an alternative method of the direct integration, which is based on the use of the Green's functions,

to solve the CC equations (3.24).

3.3.1 Orthogonalization of the channel states

The CC formalism leads to a generalized eigenvalue problem because di erent channel basis
states are non-orthogonal. To formulate the GSM-CC equations as the generalized eigenvalue
problem, one should express Eq. (3.24) in the orthogonal channel basiST;ree s:

. . CBean ror%
o "cErIST;ree, 7 o (3.94)

The transformation from the non-orthogonal channel basis'S; rees to the orthogonal one™S’c; ree e
is given by the overlap operatorO:

Stiree O SE: ree,
The CC equations in Eqg. (3.24) written in the orthogonal basis are:

Qs, drr2° 5" c®r®F,Se;ree, Eo "C;reSISE;ree e "c;reS ge 0 (3.95)
C

where : B, 028012 s e O2seE, OFE and:

o " C®r¥3,SE;ree, “c®r %31 St ree
o " CBr®DSE; ree, " cRr®ST; ree (3.96)
The transformation of this generalized eigenvalue problem into a standard eigenvalue problem is
achieved with a substitution: Se &S e One obtains:

a

QSO drr? o " c®Br®F Se;ree, Eo " c®r¥St;reee, "c;reSe 0 (3.97)
C

with
- - 1 .
ocireSe cre®iSe worer:

In the non-orthogonal channel basis, these CC equations become:

a ~ PN
- . We're W I %
Qs, drr?> c®r%$1,,S¢; ree Cr E—CS
C

(3.98)

rw
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with
0" CRr%$ISe;ree, " c®r¥gA,St;ree

Bm in (3.98) is the modi ed Hamiltonian: By O 2B 2. In practice, the O 12 operator is
calculated using the Moore-Penrose pseudoinverse method [234,235].

In order to have a more precise treatment of antisymmetry in the calculation of matrix elements
of Bm, we introduce a new operator™: & 2 " 2, which is associated with the part of O 2
acting on the low-energy channel states. Then, instead of calculating the matrix elements dft,

directly, it is possible to calculate them as:
Bn ~" tew””™ 4 B A" "R "A" (3.99)

In this formulation, the non-antisymmetrized terms are taken into account exactly with the identity
operator. Inserting Eg. (3.99) in CC equations (3.98), one obtains the CC equations for the reduced
radial wave functions w¢ re~r:

¢ 6 - 1
CE—CE@ _—
2M. @¢F r2
“non-loce ~
N WoT e a 0 r;rcﬁwcogrcg . Wcre
VAL P dr %y & ¢ E Er Epge
¢ r ?@SO rr e ree L

(3.100)

whereE;jy; is the intrinsic energy of the projectile (it is zero in the case of a single-nucleon projectile)
and the non-local potential Ve - ¢~ ®r o reads:

1 . ~non-loce - - . . .

EVCOQCO” OC Ry e r®re 2 “gce BT B ce 2 WU "gce: (3.101)

Note that we split the local and non-local part of Uem:"r;r ® and Vs r;r % (see 3.81) intchA'OC'

and V, ™°™°°*  The radial channel wave functionsug™re~r are then obtained from solutions of Eq.
(3.100) using the equation:

Uc're  Wc're
r r

W %
re -

Qs, drF® " cire®z " A2 Se%r Fe (3.102)
C@

3.3.2 Boundary conditions and basis functions

Boundary conditions for the radial wave functions atr 0O arew:r 0« O for all channels.
Forr 2 |, we have an outgoing wave behaviows're w, “re for all channels, except for the
incoming channel where it is:we're  We ~“re  We “re. In our problem, the incoming part we
is xed, and the outgoing parts w. ~“re and we ~"re have to be determined. Due to the channel-
channel couplings, the radial wave functionswc"re for r 0 are not alwayswe r 1, like in the
GSM.

To solve this problem, radial wave functionsw;"re are expanded in the forward basis corre-
sponding to the internal region (0 Br BR) where the nuclear part of the potential is not negligible,
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and in the backward basis corresponding to the asymptotic region R Br BRmax) where the nu-
clear part of the potential can be neglected. The expansion of the CC equations in the forward
basis is integrated fromr Otor R, and the expansion in the backward basis is integrated from
r Rmax tor R. Contrary to the radial wave functions w;"re, these new basis states have the
correct boundary conditions. Thus the CC equations can be integrated numerically in each region,
with the matching condition at r R.

The expansion is written in the forward basis forOBr BR:

W' Q Cp W re (3.103)

and in the backward basis forR Br BRmax:

We're Q Cp "oy re wg Tre (3.104)
b

Eq. (3.103) stands for bound states, while Eq. (3.104) is general for scattering states and reso-

nances. Note that for resonances we havew, “re 0). For ¢ b, the forward basis atr 0 is
de ned by: Wc?t;AI“ r » 1. Other channels ¢ x b) are ruled by: wc?t;Ar- o’r v . The backward
basis veries forc b:

We, re Cp TH™ pikpre (3.105)

b
and for other channels ¢x b) :

Wep re 0 (3.106)
It should be stressed that in the regionr AR, the solutions (3.105) and (3.106) are exact, because
only the Coulomb+centrifugal interaction remains in this region. However, as the centrifugal po-
tential is singular at r 0, one cannot demand that channels withc x b verifying wc?b'”r- o'rb Le
should be put to zero forr 0, as it would be not precise numerically. It is therefore necessary to
devise their behavior forr 0.

For that, one writes the CC di erential equations for a channel cxbatr O:

N AN

"0e c ¢ 1
wo =P, g =

> ac' W;?b“r- Q AW re o”w;?l;”r" (3.107)

cxc

wherea;  “2m~R2eVoE¥ 00 k2, and age “ZmQ-VQC?"O-. All terms inside the sum in this
equation are orole except the one for whichc® h. One also haswc;ot;“r- o'r v e, Thus, the
Eqg. (3.107) becomes:

~ Qe ) 1. “ Qe ~ N A "
W,y ©Fe %Wc;b re apr®® orole (3.108)

It is then immediate to verify that for cx b

“0e~ "0 ap 3. .

w_.re C,. re=; X 2 3.109
cib bibef T 2 T 30 o e cX b ( )
~Oe ~ ~0e ap . " . . . )

Wep T* Copery 5 In“re ¢ b 2 (3.110)

Note that Ct;%.ef are the constantscgc" calculated during the previous iteration. It is necessary to

useCt;?t;ef and Ct;;b'ef in the asymptotic form of the channel components because the local equivalent
equation used is inhomogeneousd,e. the fact that w’re is a solution of the local CC Schrodinger
equation does not imply that const w’re is a solution as well.
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3.3.3 Components of the basis functions

Matching linear combinations of the two sets of basis wave functions (Egs. (3.103), (3.104))
and their derivatives, at a given radius r,, provides the full solution of the CC equations:

Q Ck;o'w;?t;‘rm- C, 'w;;b"rm- W, ““rme (scattering) (3.111)
dw 2 . dw, A dwe
e; b . eb A N e - .
rme C me rme* (scatterin 3.112
(g %:b dr m b dr m @ dr m ( g) ( )
Q Ck;o'w;?b”rm- C, 'w;;b”rm- 0 (all other cases) (3.113)
dw . dw, A
cb A ch
rme C. —227r oA 0 all other cases 3.114
(% % o m i @ ( ) ( )

For scattering states,c ¢y in Egs. (3.111), (3.112), andc x ¢g in Egs. (3.113), (3.114). For bound
states and resonances, one should use Egs. (3.113), (3. 114) for all cases.

In Eq.(3.111), w, b “re Cc0 “eo " corkeore for r AR, with Cc0 0 for bound states and reso-

nances, andCcO' C pef 12 for scattering states (see Appendix A.4).

For scattering states Egs. (3.111)-(3.114) form a linear system of equationsAX B, which
is immediate to solve. For bound states and resonances (Egs. (3.113), (3.114AX 0 as there
is ho incoming channel. In this case, one has to havdetA 0, and detA can be considered as
a generalization of Jost function for the CC equations. The constantsC Cb are given by the
eigenvector of zero eigenvalue.

3.3.4 Method of the modi ed equivalent potential

The CC equations are systems of coupled di erential equations function of a single variable
r. Using the equivalent potential method, one can include the integro-di erential equations in the
same class of systems. For this, we de ne the matrix di erential equation:

WEFe M 8 reWre S ¥ "re; (3.115)
where W’re is a vector where each component is &/.. Then M eq'Ar- is equal to:

M_STore ~om-RRey e @SS T

e o > k? cee; (3.116)

and S;eq”r- is the residual source coming from the equivalent potential method. One has then
for Eqg. (3.100):

“non loce ~

~ ~ a ~
1 FereRr Ve rr%weer% dr®

“eqe A “loce ~
V%dﬁ re V%dﬁ re vvdér-
S°*re QFwres V_hon 106~ ¢ By r % dr® (3.117)
CCE

where Feere is a function removing the singularities due to the zeros ofveere.
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3.3.5 Green's function representation of the CC equation

The methods presented in previous sections are iterative and hence can present instabilities if
the channel-channel coupling is too strong. In this case, it is preferable to use the Green's function
method to obtain the scattering solution of Eqg. (3.100).

We start from the A-body scattering state S ,J\AAAQ of energy E, which is the solution of the
Schrédinger equation:

WSy e ESjre (3.118)

The A-body scattering state is decomposed in a channel basis as:
Ja fuCre 5
Su.e Q S, Tr SC; reedr (3.119)
C

Here, u;"re is the radial wave function associated with the channek. Note that the radial distance
r stands for either the distance between the projectile and the target.

In order to see the appearance of the resolvent, we introduce an approximate Hamiltoniadl "
Qe

and its eigenvectorS e
B £ Ouasis (nucleon)
Tfow Ocwm  (cluster) (3.120)
R*s % ES e (3.121)

1 "% is the matrix with all non-diagonal elements equal to zero, and one non-zero diagonal element
for the entrance channel (only ¢p is activated). Eq. (3.121) is straightforward to solve asH
leads to a one-dimensional di erential equation.

Let us separate” and S ﬁ,IAA ein two parts involving 1% and S "®e and a remaining part:

& I R (3.122)
Sie S %e Sige (3.123)
Using Egs. (3.118), (3.121), (3.122), and (3.123), one obtains:

"B E*S este Se (3.124)
Se HestS e (3.125)
where the source termSe has been introduced. One can see from (3.125), that ifl es; is Of nite

range, thenS’re  Owhenr 2 . Hence,$ecan be expanded in the Berggren basis generated
by K", so that Eq. (3.124) becomes a linear system in this representation:

ME rest S (3.126)
where
" rest®nic MG CS rest€ (3.127)
"MEg*nc nece n%CH  EB;ce (3.128)
"Senc N cSe (3.129)
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and 9; ceis a Berggren basis state of indexn in the channel c.

Similarly to the Lippman-Schwinger equation, the fundamental problem of Eq. (3.126) is the
non-invertible character of Mg on the real-energy axis. The standard remedy is to replac& by
E i ,with 0 . In this way, the linear system of equations (3.126) becomes invertible, and an
outgoing asymptotic of uc"re in all outgoing channels is imposed.

This method becomes unstable for small. To circumvent this problem, the contour de ning
9; ce Berggren basis states is chosen so that the energy of basis states has always a non-zero
imaginary part. Consequently, Mg is invertible along this contour, and Eq.(3.126) is numerically
solvable. The outgoing wave character ofS g€ in all channels is guaranteed by the nite norm
of S (est€ in the Berggren basis representation. Indeed, a$Se:S&E nite, we have (et"2z* 0
if z a wherez r "R re€ , R is a radius outside of the range of nuclear interaction,
and angle (0@ @ -~2) is properly chosen. OnceS (egte is calculated in the Berggren basis, its
calculation in the coordinate space becomes straightforward. It has been checked numerically that
if the equivalent potential method is numerically stable, then both the Green's function method
and the direct integration method provide the same solutionS KAAA e

The Berggren basis is also useful to determine bound states and resonances of the CC Hamil-
tonian H, in which case the CC problem becomes the matrix diagonalization problem. The
application of the Berggren basis for solving the Faddeev equation is discussed in the Appendix
A5.

3.4 Applications of the GSM-CC to nuclear reactions

In this section, we will present some applications of the GSM-CC formalism. In Secs. 3.4.1 and
3.4.2, we will comment on practical aspects of the nuclear reaction calculation. In particular, Sec.
3.4.2.3 is devoted to a study of the importance of deuteron and non-resonant reaction channels
for the completeness of the channel basis in GSM-CC calculation ¢fSc. In the following section
(Sec. 3.4.3), we will discuss thé*O(p,p") 1O reaction and the structure of *°F.

3.4.1 Practical issues involved in GSM-CC calculations

The GSM-CC calculation requires a rigorous approach to produce relevant results. Thé-body
state of a nucleus in GSM-CC calculation is built using the basis of channel states which includes
information about target and projectile nuclei. In the applications presented in this manuscript,
we consider one-nucleon projectile (proton or neutron). The computer code for deuteron induced
reactions projectile is in progress.

Target states are described in GSM, using di erent approximations for continuum states. In a
typical calculation, we have to de ne: (i) the core and the valence space in target nucleus, (i) the
truncations, (iii) the mean- eld potential and (iv) the residual two-body interaction. The choice
of the core xes the number of active nucleons,.e. the number and the nature of nucleons in the
valence shells.

S.p. states in valence space are either harmonic oscillator or Gamow states. In the harmonic
oscillator space, one works with the real-energy continuum which is discretized by a nite number
of harmonic oscillator states. In this case, one has to x both the maximum angular momentum
" max and the maximum energyn max R, wheren max is a positive integer number. For each ;j o
state, the highest oscillator shellN nax considered is xed by the relation: 2N max = N max -
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Working with the Berggren ensemble, one has to de ne rst the pole states,i.e. the s.p. bound
states and/or resonances. Decaying resonances lie in the fourth quarter of the complé«plane
and satisfy: R"ke A $"keS In order to ensure the completeness of the Berggren ensemble, one
should include non-resonant states from the contour ink-plane which encompasses resonances
included in the valence space. In practice, one performs a partial wave decomposition of the
continuum, and choose di erent complex contour for each™ ;| ¢ state. Cauchy theorem guarantees
that results of the Berggren basis calculation are independent of the chosen contour if the number
of ”7;j »-resonances inside of the contour remains the same. Similarly as in the harmonic oscillator
calculation, one should choose the maximum angular momentum’ {ax) and the maximum energy
or momentum (Kmax) Of s.p. states in the continuum.

Valence shells are de ned by s.p. states of the average potential generated by the core and
acting on the valence nucleons. This potential can be described either by an in nite depth harmonic
oscillator potential:

1
Uno re EMcore! 22
or by a nite-depth potential, like the Woods-Saxon potential:

r Ro

UWSAI” Vo 1 exp«<

or the Hartree-Fock potential. In the harmonic oscillator potential, Mcqe iS the mass of the
corg and! is the oscillator frequency. They are put together in the oscillator length parameter:
b [SEV] core! *, With a standard value b 1:01A1% fm [236,237]. Concerning the Woods-Saxon
potential, Vg is the depth, Ry is the radius, anda is the di useness of the potential with a standard
value a 0:67 fm [236,237]. ParametersRg and Vy are chosen according to the size of the core:
Ro 1oAY, Vy 51 33N Ze~Ae MeV, wherery 1:25 1:27 fm [236,237]. These formulae
provide useful initial values for the optimization of an average potential in each studied case.

In the study of nucleus A  Acore Ay, Where Acore and Ay are the number of nucleons in
the core and valence shells, the rst step is to determine the average potential which ts binding
energy and excited states in a nucleug\c.ore 1. In general, we have di erent average potentials for
protons and neutrons, but also for each angular momentum. The "-dependence can be justi ed
by the non-locality of the nuclear potential.

In the next step, we go toAcore 2 Nucleus to x parameters of the two-body interaction which
allows to describe binding energy and spectrum of excited states in this nucleus. These can be
readjusted again at a later stage to nd the best compromise between the description of nuclei
Acore 2 and Acore Ay.

In the calculation of nuclei with A CAcre 2, we have to choose the truncation scheme in the
space of Slater determinants. In practice, this space is limited by two kinds of truncations: (i)
the energy truncation in the s.p. space, and (ii) the limitation of the number of particles excited
from the pole space into the non-resonant continuum. The latter truncation is crucial in GSM-CC
studies of medium mass and heavy nuclei with the large number of valence nucleons.

GSM can be useful to adjust parameters of the GSM-CC Hamiltonian. The rst step consists of
xing the many-body pole states in GSM-CC, i.e. many-body bound states and resonances of the
composite system of projectile and target (see the discussion at the end of Sec. 3.3.5). In general,
the calculation of many-body pole states requires less numerical resources than the complete
calculation of the cross section. Moreover, these states are useful to determine important reaction
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channels, or estimate the role of the non-resonant channels which are built using scattering states
of the target. In some applications, these non-resonant channels are not included to simplify the
GSM-CC calculation. Then the correction factors are determined to rescale the two-body part of
channel-channel coupling potentials and in this way compensate for missing non-resonant channels.
These correction factors ensure that the GSM-CC and GSM spectra of many-body pole states are
the same.

One could think that once the relevant reaction channels are identi ed and the channel-channel
coupling potentials are rescaled, if necessary, then the calculation of the reaction cross sections is
straightforward. Unfortunately, in the partial wave decomposition of the projectile wave function
it might happen that for certain values of °, the associated average potentials are not constrained
by the pole states of the composite system. Nevertheless, these partial waves play a role in the
partial wave decomposition of the projectile and thus in the reaction cross section calculation.
In this weakly constrained problem, the GSM-CC calculation of cross sections or phase shifts for
smaller systems, like the nucleon scattering on Acore)- OF the (Acore  1)-nucleus, can be useful
to adjust those unconstrained parameters of the average potential. In this way, one may obtain
better average potentials for the description of reactions involving the"Acore  Aye system. We
will return to this discussion in Sec. 3.4.2.

3.4.2 Tests of the GSM-CC approach with deuteron and non-resonant reaction
channels

In this section, we present various tests of the GSM-CC approach on the examples of the elastic
scattering reactions “°Ca(p,p), *°Ca(n,n), the neutron transfer reaction “°Ca(d,p)*'Ca, and the
spectrum of 4°Sc. The role of non-resonant reaction channels, built by the scattering states of
target nucleus, on the spectroscopy of bound and resonance states will be discussed by comparing
the spectrum of GSM-CC pole states with the GSM spectrum for*?Sc.

3.4.2.1 Parameters of one-body potentials and two-body interaction

To illustrate certain aspects of the GSM-CC approach, we present in this section an example
of GSM-CC calculations for systems with one and two nucleons outside of the core 6fCa . The
423c is studied in the basis of reaction channels consisting dPCa+d and “'Ca+p, and *1Sc+n.
GSM is used to construct target states (3.56) and x one- and two-body terms of the Hamiltonian.
Here, we consider a core of°Ca with a valence space de ned in either a harmonic oscillator basis
or a Berggren basis. The harmonic oscillator basis is limited by a maximum energy cf2® what
implies: 2n  ~ B12 This means that we have 7 shells for 0, 6 shells for™ l1and™ 2,and5
shells for™ 3and™ 4.

The target nucleus (*°Ca) is considered as an inert core in & state. Low-lying states of
4lca (*1Sc) are described using the Woods-Saxon potential as one neutron (proton) outside of the
40Ca core. Parameters of the potentials for 1and” 3 are adjusted to reproduce experimental
energy of 7-2,, 3-2,, 52, and 1-2; states in *!Ca and *!Sc. These states are considered as s.p.
states, and their energies determine the position of subshellef ;-,, 1p;», Of 55, and 1p;-, in the
GSM calculation. In the Berggren basis, we consider non-resonant continuum states on a complex-
energy contour for each of these real or complex-energy s.p. pole states. In addition, we include
complex-energy continua fors;, ds-, ds-, g7, and gg-,. Each contour is discretized with 21
points, i.e. the Berggren basis contains 193 s.p. states which become shells in the multiparticle
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calculations. All s.p. continuum states along the chosen contours have a complex energy (see Tab.
3.1) in order to avoid singularities in a calculation of the resolvent in the Green's function method
(see the discussion at the end of Sec. 3.3.5).

GSM calculation of the spectrum of 4°Sc determines parameters of the two-body FHT inter-
action [238]. In this calculation we use the Woods-Saxon potential which is adjusted if'Ca and
4scfor® l1and® 3.

Woods-Saxon potentials for'  0;2; 4 are adjusted using the GSM-CC approach. Thesé-waves
contribute to the reaction cross-sections but are not unambiguously determined by the spectra of
4lca and*'Sc. Woods-Saxon potentials for  0;2; 4 are obtained by tting elastic scattering cross
sections for#°Ca(p,p)*°Ca and “°Ca(n,n)*°Ca reactions calculated in GSM-CC.

Figure 3.1 Di erential cross section for the reaction °Ca(p,p)*°Ca at 9.61 MeV in the c.m. [239].

The cross sections for*%Ca(p,p)*°Ca and “°Ca(n,n)*°Ca reactions are presented in Figs. 3.1
and 3.2. The projectile (proton or neutron) is described by partial waves’ in the range from 0 to
4. One can see that GSM-CC with tted Woods-Saxon average potentials fails to reproduce the
data at backward angles m: C120°. This suggests the de ciency of a simple structure assumed
for “°Ca and low-lying states in*'Ca and #!Sc.
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Figure 3.2 Di erential cross section for the reaction 4°Ca(n,n)*°Ca at 2.69 MeV in the c.m. [240].

3.4.2.2 GSM-CC calculation of the pole states in di erent approximations for 41ca,
41sc, and 4°Sc

Calculation of the pole states provides a test of the GSM-CC computational scheme. It consists
of diagonalizing the Hamiltonian (3.69) in a basis of the channel statesS¢; nee (3.28). As a test,
let us compare the two diagonalization schemes:

() the diagonalization where the c.m. part of the projectile 9; e (see Sec.3.2.2) is described with
the same basis €.g. the harmonic oscillator basis) as the one used in GSM for the calculation of
target states: SC;ngsvwe and

(ii) the diagonalization where the c.m. part of the projectile $; eis described in Berggren basis
and used in the Green's function method (see Sec. 3.3.5). R

The GSM space used fofST; ngsv *€ is de ned by a maximal energy of 12R) (see the discussion
above), while the Berggren basis used foBC; hgeee is de ned in Tab. 3.1 for neutron and proton
projectiles. The comparison between these two diagonalizations is presented in Tab. 3.2 fétSc.

GSM space in Tab. 3.2 is the harmonic oscillator spacéGSM HOe+ with non-resonant chan-
nels described in the harmonic oscillator approximation. One can see an excellent agreement
between results of the GSM-CC diagonalization in the space of channelSt; ngsy *e and the GSM
diagonalization in the space of Slater determinants. This proves the equivalence of these two
formulations in the same model space. A small discrepancy between the two GSM-CC diagonal-
izations is due to the di erence between the harmonic oscillator basis (HO), and the Berggren
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States| ko (fm 1) ki (fm Y ko (fm 1) ks (fm 1)
Of 72 - - - -

1p1-2 - - - -

Of 5 - - - -

1ps-2 - - - -

S1o 00  (05-0.05 (10,0.05) 2.0
Py 00  (05-0.05 (1.0-0.05 2.0
PLo 0.0  (05-0.05 (1.0-0.05 2.0
ds 0.0  (05-0.05 (1.0-0.05 2.0
A 0.0  (05-0.05) (1.0-0.05 2.0
foy 00  (05-005) (10,005 20
fo 00  (05-0.05 (10,0.05) 2.0
Jos 0.0 (05005 (1.0-0.05 2.0
Grs 0.0 (05005 (1.0-0.05 2.0

Table 3.1 Berggren basis of the c.m. state®; " efor the neutron/proton projectile. All pole states
which are not presented here, are contained in the core. For each segment of the contour, we
consider 7 scattering states.

State *'Sc (GSM-HO) #!Sc (GSM-CC) (HO) “'Sc (GSM-CC) (GF)

72 -1.085 -1.085 -1.099
32 0.632 0.632 0.513
52 1.503 1.503 1.471
12 2.380 2.380 2.090

Table 3.2 Spectrum of 4'Sc calculated in GSM and GSM-CC in di erent approximations. GSM-
CC (HO) denotes the calculation in the harmonic oscillator space including the non-resonant
channels. GSM-CC (GF) is the calculation in Berggren basis using the Green's function method.
GSM calculation is performed in the harmonic oscillator space with the non-resonant continuum
described in the harmonic oscillator approximation. All energies are given with respect to thé°Ca
core. For more details, see the text.

basis (GF), namely: (i) the scattering wave functions are di erent, (ii) the number of continuum
states is di erent, (iii) and the truncation in those bases is di erent. Note that the Berggren basis
used in GSM-CC (GF) (see Tab. 3.1) includes the complex contour. Such a contour is necessary
to perform numerically stable Green's function method calculation which avoids the singularities
in the resolvent operator (3.128).

In Tab. 3.3 we present the same calculations as in Tab. 3.2 but using the Berggren space
for GSM (GSM-B) calculations. This Berggren basis is de ned in Tab. 3.1. Here the agreement
between the two GSM-CC calculations is excellent. Again, if the same s.p. basis is used in GSM
and GSM-CC (GF), one nds identical pole states. This provides a stringent test of the GSM-CC
solution using the Green's function method. This method will be used later to calculate reaction
cross-sections.

In Tab. 3.4 we present a comparison between the two GSM-CC diagonalizations and the
GSM calculation for 4°Sc. The GSM space is the harmonic oscillator spaceGSM HO- with
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State #'Sc (GSM-B) 4ISc (GSM-CC) (GSM) “1Sc (GSM-CC) (GF)

72 -1.085 -1.085 -1.085
32 0.632 0.633 0.629
52 1.503 1.503 1.502
12 2.380 2.380 2.384

Table 3.3 The same as in Tab. 3.2 but in the Berggren basis. For more details, see the caption
of Tab. 3.2 and text.

State 42Sc (GSM-HO) #2Sc (GSM-CC) (HO) 42Sc (GSM-CC) (GF)

0 -12.632 -12.089 -12.112
1 -12.172 -11.626 -11.657
7 -11.789 -11.669 -11.693
3 -11.122 -10.836 -10.870
5 -11.044 -10.832 -10.864
2 -10.999 -10.740 -10.772

Table 3.4 Spectrum of 4?Sc calculated in GSM and GSM-CC in di erent approximations. All
energies are given with respect to thé’°Ca core. For more details, see the text.

non-resonant con gurations included in the harmonic oscillator approximation. The GSM-CC
solution using the Green's functions method (GSM-CC (GF)) is performed in the Berggren basis
St:ngr*e given in Tab. 3.1. Only channels with one-nucleon projectiles*'Sc+n and *'Ca+p, are
included in this calculation. The channels of*2Sc are built using 72, bound state, 3-2;, 5-2;, 12,
resonances, and non-resonant continua® 9-2,¢, “1-2;¢, 52+, 32y, "7-2;¢, "3-2;¢, "1-2;°,
“7-2,+, and 52« in #1Ca, and 7-2;, 32, 52, 1~2, bound states and non-resonant continua:
T92e, T1210, T52pe, T32pe, T72;e, "32;e, "12;+, "7-2;+, and "52;¢ in #!Sc. One can
see that the di erence between the two GSM-CC calculations is of the order of 100 keV. This
amounts to di erent s.p. bases, as discussed in Tab. 3.2 and 3.3.

One can also notice a more important di erence between the GSM calculation and both the
GSM-CC diagonalization in the harmonic oscillator spaceSt;ngsm*e (GSM-CC (HO)), and the
GSM-CC diagonalization in the Berggren spaceSc; ngree (GSM-CC (GF)). This is due to the
orthogonalization procedure between many-body channels involved in the description of?Sc in
GSM-CC. Indeed, among all considered reaction channels, there are many redundancies because
the same con gurations of*°Sc can be generated either b§'Sc+n channels or by*'Ca+p channels.
The redundant channels have a nonzero overlap with other channels, but their norm is close to 1.
This means that each redundant channel contains a small physical component which is orthogonal
to all other channels.

Redundant channels generate numerical instabilities in the Moore-Penrose pseudo-inverse pro-
cedure which is used to invert the overlap matrix O (see Sec. 3.3.1). To avoid this problem,
one could simply remove redundant channels, but this brute force cancellation of small physical
components contained in redundant channels would break slightly the completeness of the channel
basis and, therefore, would lead to numerical imprecisions. These imprecisions generate di erences
between the GSM and GSM-CC calculations (see Tab. 3.4 ).

Redundant channels can be a serious problem for nuclei lik¥Sc which are described in a small
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s.p. basis and where all states can be generated doubly, either ihHSc+n or “'Ca+p channels.
Fortunately, the spurious e ects of redundant channels can be kept under control in most applica-
tions by a suitable choice of the model space, they can be kept under control. Their importance
can be quanti ed by making a comparison with the GSM results in the same model space. In
the following section, we will discuss the GSM-CC reaction calculation for**O (p,p) **O, which is
almost free from the spurious e ects of the redundant channels.

One should stress that the possibility to compare the GSM eigenvalues with those obtained by
diagonalizing the GSM-CC Hamiltonian matrix in the space of channelsSt; nee, gives a control of
the numerical precision of GSM-CC reaction calculations, in what concerns the role of both the
non-resonant channels and the redundant channels.

3.4.2.3 Deuteron and non-resonant channels in the GSM-CC description of 425¢

At present, we continue the study of 2Sc by including reaction channels with deuteron pro-
jectile and the non-resonant reaction channels. The intrinsic part of the deuteron is al state
which is calculated in a NCSM formalism using NLO chiral interaction [241]. The c.m. part of
the deuteron which is calculated in Berggren basis with max 2, is de ned in Tab. 3.5.

L (2S+1)LJ pole scattering ko (fm 1) ki (fm 1) ko (fm 1) ks (fm 1)

0 3S1 5 30 0.0 (0.2,-0.1) (1.0,-0.1) 2.0
3P0 4 30 0.0 (0.2,-0.1) (1.0,-0.1) 2.0
1 3P1 4 30 0.0 (0.2,-0.1) (1.0,-0.1) 2.0
3P2 4 30 0.0 (0.2,-0.1) (1.0,-0.1) 2.0
3aD1 3 30 0.0 (0.2,-0.1) (1.0,-0.1) 2.0
2 3D2 3 30 0.0 (0.2,-0.1) (1.0,-0.1) 2.0
3D3 3 30 0.0 (0.2,-0.1) (1.0,-0.1) 2.0

Table 3.5 Berggren basis describing the c.m. part of the deuteron wave function. The columns
pole and scattering give the number of pole and scattering states, respectively. Here S is the
spin of the deuteron, L its angular momentum and N N &l In the following three columns, we
present the complex contour of the Berggren basis for each state.

State 4°Sc (GSM-HO) #2Sc (GSM-CC) (HO) 4?Sc (GSM-CC) (GF)

0 -12.632 -12.088 -12.095
1 -12.172 -11.891 -11.966
7 -11.789 -11.670 -11.740
3 -11.122 -10.973 -11.229
5 -11.044 -10.890 -10.969
2 -10.999 -10.740 -10.758

Table 3.6 Spectrum of 2S¢ calculated in GSM and GSM-CC in di erent approximations. As
compared to results shown in Tab. 3.4, the deuteron projectile channels have been added.

In Tab. 3.6 we present a comparison between the GSM and GSM-CC spectra 4fSc. The

GSM-CC calculations include deuteron projectile channels. Inclusion of these channels improves
the description of 42Sc for 1, and 3, states. However, a signi cant di erence between GSM and
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GSM-CC remains, i.e. signi cant correlations are still missing in the GSM-CC wave function for
discrete states of*’Sc.

State 4?Sc (GSM-HO) “2Sc (GSM-CC) (HO) “#?Sc (GSM-CC) (GF)

0 -12.632 -12.580 -12.549
1 -12.172 -12.134 -12.091
7 -11.789 -11.788 -11.873
3 -11.122 -11.121 -11.42
5 -11.044 -10.998 -11.089
2 -10.999 -11.043 -11.084

Table 3.7 Spectrum of 42Sc calculated in GSM and GSM-CC in di erent approximations. As
compared to results shown in Tab. 3.4, the deuteron projectile channels and the non-resonant
channels have been included.

The role of non-resonant channels can be seenin Tab. 3.7. Tab. 3.8 we present the non-resonant
channels used fo*'Ca and #!Sc.

J Nb of scattering states
72 4
32
52
12
12
32
52
72
92

ggooooh~bSD

Table 3.8 Non-resonant scattering states of*'Ca and #'Sc which are used to build the non-
resonant channels in*?Sc.

One can see that taking non-resonant channels into the basis improves signi cantly the spec-
trum of 4?Sc. One may expect that the non-resonant channels are also indispensable for a com-
prehensive analysis of the reaction cross sections involving th&Sc in the intermediate state. Fig.
3.3 compares GSM results with those of the GSM-CC approach which are obtained with (GSM-
CC(NRC)) or without (GSM-CC) non-resonant channels. No correction factors have been used
in this calculation to compensate for missing reaction channelsi.e. the absence of non-resonant
channels in the channel basis is a principal reason of the discrepancy between GSM and GSM-CC
results.
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Figure 3.3 Spectrum of #°Sc calculated in GSM and in GSM-CC without the non-resonant
channels (GSM-CC) and with the non-resonants channels (GSM-CC(NRC)).

3.4.2.4 Neutron transfer reaction 40Ca(d,p) *Cagys.

Fig. 3.4 presents the GSM-CC calculation of the neutron transfer di erential cross section for
the reaction “°Ca(d,p)*'Cag.s. With the deuteron projectile. The one-body Woods-Saxon potential
for ° 0:2;4 has been adjusted to describe*°Ca(p,p)*°Ca, “°Ca(n,n)*°Ca, and “°Ca(d,p)*'Ca
di erential cross-sections. In this exploratory GSM-CC calculation of the transfer reaction, we
do not include non-resonant channels to describe the spectrum dfSc. Consequently, we apply
small corrective factors in the channel-channel coupling potentials which are: 1.05, 1.1, and 0.965,
for1,2 ,and 3 states of*’Sc, respectively. One can see that the GSM-CC approach describes
satisfactorily the experimental neutron transfer di erential cross section 40Ca(d,p)‘”Ca(‘,,s,. Small
deviations with respect to the experimental data [242] are seen at most forward and backward
angles.
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Figure 3.4 Neutron transfer di erential cross section for the reaction “°Ca(d,p)*!Cags at Eq 1:9
MeV incident deuteron energy in the laboratory system, is calculated using the GSM-CC approach
without non-resonant reaction channels. Experimental data are taken from [242].

3.4.3 Proton scattering on 140

In this section, we shall discuss GSM-CC calculation for the reaction:*O (p,p) **O. This
investigation was stimulated by the recent experimental study of this reaction at GANIL [228].

Properties of the ground stateJ ~ 1-2, and its rst excited state J  5-2; of 1°F were mea-
sured several times [243 249] (see Ref. [250] for a recent compilation of the experimental results).
Both states 1-2; and 52, are unbound by 1:3 MeV and 2:8 MeV, respectively. The theoretical
predictions of the ground state width vary from 0.5 MeV to 1.3 MeV, whereas the rst excited
state is estimated to have the width 300 keV [250 252]. The structure of the ground state
(rst excited state) of °F has been interpreted as the 0 (* 2) proton coupled to the 14Q9S
core [253]. Both states are described well as the s.p. con gurations with a spectroscopic factor of
S A0:5 [250, 253, 254].

In the mirror nucleus °C, the second excited state is known at 3.103 MeV with) ~ 1-2; with
a width 29° 3« keV [255]. Cantonet al. [256] used the multichannel algebraic scattering theory
with the Pauli-hindered method to calculate low-lying states in 1°F. They predicted a very narrow
width 5 MeV for the second excited stateJ — 1-2;.

Fortune and Sherr [257] used a potential model to determine the s.p. widths which they scaled
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down to reproduce the measured widths int°C. The extracted spectroscopic factors was then used
to estimate widths of mirror states in *°F. These calculations con rmed that narrow resonances
are expected in'°F, but their width for the second excited state is 10 times larger than the one
reported in Ref. [256].

Experimentally, a rst indication of the second excited state in °F was obtained in the transfer
reaction 20" 14N: 1°C«15F [247]. In this experiment, 150(100) keV width was found, but the spin
and the parity of this state were not determined. This narrow width is surprising because the
second excited state in'°F is  3:5 MeV above the combined Coulomb plus centrifugal barrier in
140 p. Later, the same state was observed through the angular correlations of decay products in
the fragmentation of *'Ng [258].

15F has been studied recently in the reaction'*O(p,p)**O at GANIL SPIRAL1 facility [259].
The excitation function was measured in the inverse kinematics. The excitation function at low
energy is dominated by Coulomb scattering, but it also shows peaks and interferences that corre-
spond to the presence of resonances YF. Properties of these resonanced,e. resonance energy,
width, and spin, have been deduced from thdr-matrix analysis of the shape of the peaks [260,261].

Due to the unbound nature of 1°F, a proper treatment of continuum couplings is mandatory.
The GSM-CC formalism is particularly adapted for the description of *°F. It allows to compare the
calculated GSM-CC excitation function for *O(p,p)**O and the GSM/GSM-CC spectrum of *°F
resonances with the experimental data. In this way, one may extract the structural information
about unbound states of 1°F without recourse to uncontrolled approximations.

| a0 (MeV) R fme Vo (MeV) Vo MeVe

0 0.65 3.13 59 0
1 0.65 3.13 60 5
2 0.65 3.13 56 5.22

Table 3.9 Parameters of the Woods-Saxon potential for the description of'3N, 140 and °F.

Parameter Value (MeV)

V ¢ odd,t 159.778
\ C,even,t -10

V ¢ odd,s 2

V C’e\/en’s 9876
V s0,0dd,t 38.644
\ SO,even,t 1000
V T odd,t 34.411
\ T,even,t -10

Table 3.10 Parameters of the FHT interaction [238] for the description of 1O and *°F
In our studies, the translationally invariant GSM Hamiltonian consists of (i) the Woods-Saxon

potential with a spin-orbit term which describes the eld of '2C acting on valence nucleons inN,
140, and *5F, (ii) the Furutani-Horiuchi-Tamagaki (FHT) nite-range two-body interaction [238]
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K min ~fm L. K peak ~fm Lo K middle ~fm Lo Kmax fm L.

L, 0.0 0.3-0.1 0.6 2.0
L 0.0 0.25-0.1 0.5 2.0

S1-2

Table 3.11 Parameters of the contours in the complexk-plane

for valence nucleons, and (iii) the recoil term (for details see Sec. 2.2.4). The Woods-Saxon
parameters (see Table 3.9) are adjusted to reproduce the ground state2;, and the excited states
1-2, and 52, of 13N. Parameters of the FHT interaction (see Table 3.10) are adjusted to reproduce
energies of the low-lying states in**O and °F, and the one- and two-proton separation energies
in 15F.

15
1"2-(.4_'7_5.7.’% ....................... % :::::::::::%.P2

13N+2p 1-2
£, (27940305 (27940308 (80211 .,

52
1p &:270876) . @270876) (11950437)

12

140+p
Exp GSM GSM-CC

Figure 3.5 “2Sc spectrum calculated in GSM and GSM-CC, and compared with experimental
data.

The s.p. space consists of three resonant shelBp;-», 0ds, 1s1», and several shells in the
discretized non-resonant continuum onLy  and Lg , in the complex k-plane. Each contour
consists of three segments (see Table 3.11), and each segment is discretized with 10 points, so
altogether de and Lg , contours are discretized with 30 points. Scattering states states along
each contour are generated by the same Woods-Saxon potential.

To reduce the size of GSM matrix, the basis of Slater determinants is truncated by limiting the
number of particles in the non-resonant continuum to 2 nucleons. Moreover, thg;, continuum is
approximated by 5 lowest harmonic oscillator wave functions. Similarly, theps;-, and d;-, continua
are approximated by 5 and 6 harmonic oscillator states, respectively.
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The antisymmetric eigenstates of GSM-CC are expanded in the basis of channel states which
are built by coupling the GSM wave functions for the ground state 0;, and excited states1,, 0,,
31, 24, 01, 2,, 2, with the proton wave functions in partial waves: S; 5, Pi1-, P32, dz» and ds,.

The two-body part of the FHT interaction from which the channel-channel coupling potentials
are calculated, is rescaled by the multiplicative factors 1.07, 0.96 and 0.95 fat-2,, 52, and 1~2;
states of 1°F, respectively, to compensate for neglected channels built from higher lying resonances
and non-resonant continuum states of'*0O. We checked the mutual consistency of the GSM and
GSM-CC by comparing '°F eigenvalues which are calculated either in the Slater determinant
representation (GSM) or in the CC representation (GSM-CC).

The lowest resonances)  1-2;;5-2;, and 12, in 1°F, are shown in Fig. 3.5. We compare
the experimental spectrum with GSM and GSM-CC calculations. Numbers in the brackets give
energy and width of these states. All energies are given with respect to the energy 6fC core.

The narrow resonancel~2; can decay either by one- or two-proton emission. In GSM, this
state:

B, 11,5 2€? 097 ; ° Bp, 10ds, 26° 0:02 (3.130)

is an almost pure con guration of two protons in s;-, resonant and non-resonant shells coupled
to 13N. The non-resonant continuum s;, plays an important role in the structure of this state.
The collectivization of near-threshold state due to the coupling to the nearby two-proton decay
channel, helps to increase the weight of this diproton con guration in GSM calculation [92].

The diproton nature of 1-2, state implies that the one-proton decay width is suppressed as
compared to widths of low-lying levels1~2, and 5-2,. Indeed, the emission of two protons from
this narrow state is energetically possible. Since there is no intermediate state accessible, it should
be a direct two-proton emission to the ground state of'3N. However, the available decay energy
is only Qzp 129 keV (see Fig. 3.6) and the Wigner limit for 2He cluster emission with™ 0 is:

2pe Ae eV (t,, 165 s)[228].

Figure 3.6 (Color online) Level scheme of'°F. Open decay channels for thel~2;, resonance are:
the one proton emission (red arrow), the gamma transition and the two proton emission (red
dashed arrow). The hatched areas correspond to the width of the resonancds2, and 5-2;.
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Figure 3.7 (Color online) Experimental excitation function of the reaction *O(p,p)**0O at 180°
in the c.m. system is compared with the GSM-CC results [228]. Inset shows the calculated and
measured excitation function at around the narrow resonancel~2; .

Even if spectroscopic factors are model dependent, their values within a given theoretical frame-
work provide a useful insight into the structure of the calculated wave functions. The spectroscopic
factors make more sense in the uni ed framework, such as the GSM (GSM-CC), where both the
reaction cross sections and the spectra are calculated using the same Hamiltonian.

Table 3.12 presents the one-proton spectroscopic factors calculated in GSM fdr2,, 52,, and
1-2, resonances in°F. One can see that the ground statel~2; is mainly the p;-, proton coupled
toJ 1, state of YO at E 5:173MeV, and a 1s;., proton coupled to the ground state of 140.
The dominant con guration in the rst excited state 5-2,; is a Ods-, proton coupled to the ground
state of 1*0. The 1-2, state exhibits large one-proton spectroscopic factors to the excited states of
¥%0:3 1, atE* 5173MeV,J 0, atE* 7:040MeV,andJ 3, at E* 6:272MeV. The
P1» spectroscopic factor to the ground state of**O is very small, reducing the one-proton decay
width signi cantly. The weight of the non-resonant continuum in these spectroscopic factors is of
the order of few percents.

The GSM-CC excitation function for the reaction *O(p,p)1*O at 180° in the c.m. is compared
with the experimental data in Fig. 3.7. The overall agreement with the data is excellent. The
calculated cross section abové~2; resonance is lower than seen experimentally. This de ciency

99



3.4. APPLICATIONS OF THE GSM-CC TO NUCLEAR REACTIONS

12, 52, 12,
S™12,%,, 9,60 [ 095 S"52, S ®yee[084] ST12,%,, 9,6 | 055
S™ 12, %, , Byer | 085 S”52,9y  Syee | 0.05| S71-2, %, , Syer | 0.47
SV 12, %, §,ee | 0.02 “12,% e | 031
~12, %, , Bres | 0.05
“12, %y See | 0.001

nun n n nu n

Table 3.12 Real part of spectroscopic factors calculated in GSM for di erent resonances in°F.

can be explained by the absence of higher lying resonances and non-resonant continuum states of
140.

Figs. 3.8, 3.9 and 3.10 show the di erential cross section for elasti® , and inelastic 1 ,
3 channels, respectively. The GSM-CC calculations are done for di erent c.m. energies of the
incident projectile: E¢cm:  6:5 MeV; 8.5 MeV; and 105 MeV.

The elastic di erential cross section (Fig. 3.8) varies strongly with the excitation energy, mainly
at intermediate ( ¢m: 40 °) and backward ( ¢m: 160 °) angles. One can see a signi cant
increase of the di erential cross section forEcy C8:5 MeV at backward angles which is due to the
opening of inelastic channels:1; and 3; at 5.17 MeV and 6.27 MeV, respectively.

Figs. 3.9 and 3.10 show the inelastic di erential cross section inl and 3 channels. The
magnitude of these di erential cross-sections depends strongly O ¢.i,:.
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Figure 3.8 Di erential cross section for the elastic channel 0 at di erent c.m. energies.
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Figure 3.9 Di erential cross section for the inelastic channel 1 at di erent c.m. energies.
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Chapter 4

Conclusions

Two problems have been addressed in this work. The rst one concerned generalization of
the Richardson solution for the pairing Hamiltonian of a rational Gaudin model including the
continuum. The second one was devoted to the formulation of the GSM-CC approach for nuclear
reactions with multi-nucleon projectiles. This paves the way for the applicability of the reaction
theory which is rooted in GSM for a broader class of reactions, including the transfer/knockout
reactions.

The rst objective is related to an urgent need to characterize and understand e ects of the
continuum coupling on nuclear spectra and binding energy. Algebraic models, based on emergent
symmetries of nuclear many-body problem, helped in the past to identify elementary building
blocks and essential concepts behind the formation mechanism of rich spectra of excited states.
In the domain of weakly bound and/or unbound nuclei, such models do not exist, what hinders
the understanding of qualitative features of the continuum. The pairing model plays a special
role among the algebraic models. Exact solution for this Hamiltonian was derived by Richardson
for a spectrum of bound s.p. levels [51,52]. In this work, pairing Hamiltonain was generalized
in Berggren basis and the generalized Richardson solution was derived for this problem. The
comparison between this solution and exact results of GSM, obtained by the diagonalization of the
pairing Hamiltonian, con rmed that the generalized Richardson solution is a reliable alternative of
an exact GSM diagonalization, in particular in heavy nuclei with large number of valence nucleons.
In the problem of ultra-small superconducting grains, the generalized Richardson solution of the
pairing Hamiltonian in Berggren basis could help to understand the in uence of continuum on
pairing properties, in particular in the transitional region of the weak coupling limit.

There is an intense activity to describe the A-dependence of nuclear binding energy in theb
initio framework, using the interactions derived in chiral e ective eld theory [23, 102,262 264].
In these studies, it was found that the chiral 3-body interaction plays a signi cant role reducing
the over-binding which is found systematically when only 2-body interactions are used. In SMEC
studies with the e ective 2-body Hamiltonian including the continuum, it was found that the
continuum coupling plays an essential role to explain one- and two-neutron separation energies in
oxygen and uorine chains of isotopes,i.e. it may change the A-dependence of nuclear binding
energies [265]. In this work, the chain of carbon isotopes was studied using the (generalized)
Richardson solution for a schematic pairing Hamiltonian in two approximations: (i) in the closed
guantum system approximation, i.e. with bound s.p. levels and neglecting continuum couplings,
and (ii) in the open quantum system approximation using Berggren s.p. ensemble. Fixing in both
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approaches the strength of pairing interaction in a nucleus {*C) with 2 nucleons outside of the'?C
closed core, it was found that theA-dependence of binding energy and the spectra f 2°C depend
strongly on the continuum coupling. Of course, the interaction in this model is much too simple
to draw de nitive conclusions but the qualitative e ect is indisputable. Another observation was
that the e ect of continuum coupling on eigenvalues and structure of their eigenfunctions, depends
strongly on the coupling of nucleons and, hence, varies rapidly from one state to another. Again,
the interaction in a pairing model is too simple and the coupling to the one-nucleon continuum
neglected, in order to draw the quantitative conclusions. Nevertheless, results of this generalized
pairing Hamiltonian gives a warning that one should be cautious not to over-interpret results of
SM with tted two-body matrix elements as this model is missing signi cant physical ingredients.

The development of reaction theory which would be compatible with GSM is a challenge to nu-
clear theorists and urgent need for the experimental nuclear physics. The analysis of experimental
data is done using often unjusti ed theoretical concepts, such as the local optical potential, be-
cause for several decades there was no su cient progress in the consistent application of dispersion
relations in the optical model, or in the derivation of new non-local parameterizations of the optical
potential which are based on the GSM or CSM. One should stress that there is also no general
acceptation among experimentalists of the fact that the systematic and hence, dull experiments on
proton/neutron scattering in the broad range of energies and in long chains of (stable) isotopes,
are mandatory to understand the in-medium interactions of nucleons. Instead, the experimen-
talists concentrate e orts on producing pseudo-data, like the spectroscopic factors, and produce
an avalanche of 'exciting' data/conclusions using not well understood experimental techniques.
An example of such are transfer and knockout reactions which give contradictory results on the
spectroscopic factors and their dependence on the asymmetry of neutron and proton separation en-
ergies [266 268]. All that calls for a strong involvement of theorists in the development of reaction
theory which would be rooted in GSM and allows for a direct connection between spectroscopic
and reaction observables within the uni ed framework. This is a key problem not only in the
physics of exotic nuclei in the vicinity of drip lines, but also in the traditional playground, close
to the valley of -stability.

GSM-CC approach provides the link between experiment and theory which allows to determine
spectroscopic information directly from reaction physics observables, such as the (in)elastic scat-
tering cross-section, excitation function, nucleon transfer cross section, etc. In this work, such a
consistent application of the nuclear reaction theory (GSM-CC) has been presented on the example
of spectrum of low-lying resonances in*°F which was studied experimentally via the excitation
function 14O(p,p)**0. Here, combined application of GSM and GSM-CC approaches allowed to
link directly the reaction data to the structure of °F without any inconsistent 'massaging' of the
data. Moreover, the exploratory study of the neutron transfer cross-section has been presented
for the reaction “°Ca(d,p)**Cays. Further development of the GSM-CC approach for transfer and
knockout reactions is urgent not only to avoid above mentioned hubbub in knockout vs transfer
reactions, but also to verify claims that the surrogate reaction, like (d,p), can inform us about the
low-energy (n, ) radiative capture cross-sections of interest in astrophysics.

In this work, we have made a progress by completing the formulation of nuclear reaction theory
based on GSM, which allows to describe any binary reaction process with multi-nucleon (nuclear)
projectiles. Numerical applications of this consistent microscopic theory are very demanding and
o er surprises, like the problem of redundant reaction channels which has to be treated with
great caution. The great advantage of the present formulation of reaction theory is that by
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comparing the spectrum of eigenvalues calculated in GSM and obtained by diagonalizing the
GSM-CC Hamiltonian matrix, one can estimate an importance of redundant channels. In the
same way, the lack of non-resonant reaction channels can be judged according to their in uence on
the spectrum of GSM/GSM-CC eigenvalues. As an interesting by-product of the formal reaction
theory based on GSM and Berggren basis, we have also discussed the application of Berggren basis
to solve Faddeev equations.

The GSM-CC formulation which has been presented in this thesis uses the COSM coordinates
to reduce dimensionality of the Fock space and to remove (approximately) the spurious c.m.
excitations. In this way, heavy nuclei with a limited number of valence particles, can be studied
systematically. Similarly as the no-core generalization of the standard GSM, one can envisage
the studies of reactions in light nuclei using no-core GSM-CC approach with modern interactions
derived in chiral e ective eld theory.
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Annexes

A.1 Matrix elements and approximations

A.1.1 Neutron-neutron case

a) Plane waves
Neutron wave functions in the asymptotic region are free wave functions, so that they can always
be expanded in a basis of plane waves, even if they are scattering states. Plane waves will be
denoted as®e and we will perform a decomposition into relative and c.m. parts, for a moment
with the real linear momenta:

Rl e MMl gl B ghhm: R (A1)
where:

R 8R and Rn R R (A2)

Ry %%Sla Nz and R R R (A3)

The translationally invariant character of V implies that:
‘Na;k{)ﬁﬁlc;k‘lde \Nrel;klc:m:ﬁg\hreel;wd%:m:e ANc:m: Mg;m;“k‘l@@@d}%e : (A.4)

As we are dealing with the e ective nuclear interactions, of low-energy character, we can demand
V to verify ‘R, S Rl e 0, unlesskye B Kreimax @and k%l B Kreimax - This requirement is clearly
consistent with the cluster de nition of Eq. (3.62).
Let us write the equation of energy conservation arising from Eq. (A.3):
k2, 4kZ, 2°k2 kde: (A.5)

rel

Due to the cluster approximation, Kie P Kem: if Ke:m: AKmax, as the nucleons in the projectiles
virtually follow the same trajectory. Thus, Eq. (A.5) becomes:

k2, 2k ki for kaAkmax Or  KpAKmax (A.6)
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up to an error which can be made arbitrarily small. Moreover, having kg A Kmax, Kb B Kmax Or
ka Bkmax, Kb AKkmax iS also impossible within the cluster approximation, as they correspond to the
con gurations for which the cluster dislocates. Consequently, from Egs. (A.5), (A.6) one obtains :

ka B kmaXa kb B kmax kc:m: B 2kmax (A7)
ka A kmax ’ kb A kmax kc:m: A kaax (A8)

with other cases leading to vanishing matrix elements oV due to the cluster approximation.

Consequently, the only non-vanishing matrix elements'R,; RLS &9; Kée are those for which
Ki Bkmax or ki Akmax | i >7@a;b;c; @, because the case for whiclka B Kmax, Kp B Kmax, K& A Kmax
and kPA kmax have the Dirac delta function “kem: kEm:* and vanish, and other cases imply
that ka AKmax, Ko Bkmax OF Ka Bkmax, kb Akmax (same fork& k. Hence, RL; R &% ke 0
when Eq. (3.66) is ful lled by plane waves.

b) Bessel functions

The matrix elements R & &¢=, e will be expanded in a set of Bessel functiondXKiel; "rel; Mrel€°.
This representation is convenient to handle because of its natural connection to planes waves, and
because Berggren basis functions become asymptotically equal to Bessel functions for large linear
momenta:

NV | . . e
Krel; rel,mrel§>$ rels rel, Me€

NN o~ Ve a0 . g\ N N
S k‘lrelgrel. rel; Mrel€ Korels ~ rel; Mre &% e I}‘Irel§ﬁ\llreele d g, d ke (A.9)

The overlaps in Eq. (A.9) are determined using the plane wave expansion in partial waves arising
from the additional theorem:

N 1 ik 1 . ® 4 o A A
ke e gk . glkr cos e Q Q ij KreY.M~ Loym k°¢ (A.10)
. . . “m

where ®stands for the angle between the two vectord®l and N The overlap between plane wave
and Bessel function thus reads:

~

\INFelgrel; “rel; Mgl S \lNJFeI DNei€ Trel; 1, Brels rel; Mrer€ diNegl

Y
1 2 . . . e R .
o 432 — S Krel rreI’Y*rrzlre' rg € Nl ARy
Y
4 2 R S .
~ .32 —Y\rr:lm ket ® ST ™0 Krel Trel®] kFel Trel® rr2e| drye
4 el ~ e Myel ~
A2 3~2I krel k reI'Y\ rel kre' * (All)
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Inserting Eg. (A.11) in Eqg. (A.9), one obtains:

re rel

N y 1 v - me .
Bo9dhe 1 o i Eymes M

NI
rel * gl

. &

Mrel ;Mg

~ ®E ~|,0e o2 fo<To ceqeoes ., e ce cecece
S kreI kreIqe rel krqu: rels ’m§$reli ’mreledkreloed rel

1 AN NS m me +
. . ~ ~ N N . e .~ Ce. ce
2_ Q Pl el reIrE| Krel .Y‘?&rel kg * Krel: "rel; mr9|g> &el; ey Mrei©
NS
rel » re|
Mg ;M %
(A.12)

c) Berggren basis

In order to treat the general Berggren basis ensemble, we write the asymptotic behavior of the
Berggren wave function in terms of Bessel functions, rstly for larger and then in the entire space:

ure C h-"kre C h-"kre, r 2 (A.13)

where the functionsh. and h. are Hankel functions, andC , C their associated coe cients. Let
us to write Eq. (A.13) in terms of Ricatti-Bessel functions [~“kre krj -"kre:
h.-"kre h."kre

2i

N kre (A.14)

Hence:
ure Cf\"kre Dh-"kre, r 2 (A.15)
where u"re is written in terms of Bessel and purely outgoing parts. Eq. (A.15), valid in the
asymptotic region, can be extended to the entire space:
Se C.%,, e @e (A.16)

where &,; eis an other Bessel function, and® &
@ e gk;'@ epkedk guy "ke$ -"keedk (A.17)

ka and k should belong to di erent contours, as ;e must lie above the k-contour so that it can
be treated as an integrable state using the complex scaling.
In order to determine the asymptotic behavior of u, “ke for k 2 | we will use the fact that
ua"ke veri es the following Schrodinger equation Hp in momentum space:
K2
2m

Due to the low energy character ofUpasis, Eq. (A.18) implies that u;"ke O faster than any
inverse power ofk, whenk @ (same fork xed and k; 2 ). Eq. (A.16) implies that:

2
Ua’\k. S Ubasis’\k; kQUaA k(ﬂdk(}? 2:13 Ua’\k‘ (A18)

k%" a%e Uk%e K% ke k% i@ e (A.19)
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Thus, 'a &%;ae Ofork% @ andk, xed (same for k% xed and k, 2 ).

If KFAKmax or K¥ Bkmax, then there is at least onek; Bkmax or ki Akmax , respectively (con-
ditions from Eq. (3.66)). Thus, if we have for examplek% Bkmax and ka Akmax then the r.h.s. of
the Eq. (A.18) is unbounded while the I.h.s. is bounded, andu"k%e O~ 1..

By injecting this in Eq. (A.18), one obtains:

. 1,
u"k%Ge O(].:k—g

Repeating this n times, one obtains:

1
Lk, ‘ .
kB OG5

and with Eg. (A.19) we have: 'k%; 2% e 0. Finally, if we have either K¥ Akmax or K¥ Bkmax then
there is at least one product kF; *{$ ewhich vanishes. Hence, the matrix elementsf 5; f bs‘7$c;fde
always vanish if we have the conditions (3.66).

Let us write the matrix elements of ¥ using Eq. (A.15):

ab¥8;de  Q  Cfafp¥$cfee; (A.20)
faifpifeifa

where $ie "i; j;mie; $ ee with i "a;b;c;d. We express the matrix elements
‘fa;fb§7$c;fde using the Bessel function expansion of;e states:

fa;fp e fge S fa&%; a;mae Tp&%; b mpe T &% "¢ mee T4&S; “g; mge
k% a4 ma K b MpS &% o me; k%E; " g; mgedk % dkBdk Bdk %
(A.21)

where Eq. (3.66) is supposed to be veri ed. Note that a product in the integrand of Eq. (A.21)
is negligible if only one of its factor is negligible, because all factors therein are bounded, due to
the normalizations of basis states and the low-energy character of .
Letus rstconsider KEBkmax | i >~ a;b;c;d or KE Akmax | i >"a;b;c;c, sothat k% a;: kg p¥ &E; “¢; KF:; ™
Thus, there is at least one$;e whose associated linear momentunk; is far from k¥ i.e. ki BKkmax
and K¥A Kmax, or ki Akmax and kB kmax. Due to k; x k¥, we have f; &%, i;m;e equal to zero if
$ieis equal to &;; 'i;mje If $ieis equal to $ g “fi&F, i; mjeis negligible (see Eq. (A.19) and
below).
The last case to consider is that of thek™verifying Eq. (3.66) | i >"a;b;c;a. For this, we will
expand ‘k%; a; ma; K% o; mpY KE; *c: me; k% “4; mgein relative and c.m. basis states, so that the
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demonstrated properties of the relative two-body matrix elements of? at high energy can be used:

k% 2 Mar K b mpY K% S me; k% s mge

S K aimar k% b mpBl; Rie R RUKE: i me k% g me

R R B R edhl aR LR,

S aiMaS k€ hMpS k€ ¢;McS k€ g;MyS k€

Alglc:m: lE’d’g:m:’ ) ﬂelﬁﬁeledﬂad&dﬂcdﬂd

1 Y R

= Q i “gY™ ev3® et

2 sm; ®me

TaiMaS k€ b MpS k€ ¢ MeS k€ d;MgS g, €

‘krel;‘;m§$0|?el;‘o?m%d kad Kkpd kcd kg (A.22)

To derive the above expression, Egs. (A.4) and (A.12) have been used.

As we have at least onek¥ Bkmax and k§ Akmax with i;j >"a;b;c;a, we have either ki
bounded and k%, unbounded, or vice versa, so that ke; ;MY &%, ®m® is always negligible.
Hence, a;b® $;de 0 when Eq. (3.66) is ful lled for all cases.

The Berggren basis possesses in general the complex-energy states, so that Eq. (3.66) has to
be extended to this case, with the inequalities related tokmax now veri ed by the real parts of
linear momenta. For this, one can see that we can apply analytic continuation on linear momenta
in Eq. (A.22), because radial and angular parts are well separated therein. Thus,a;b® $;de 0
when Eq. (3.66) stands is also ful lled for complex linear momenta.

A.1.2 Proton-proton and proton-neutron case

For the cases involving protons in"a;b;c;d, we will consider the screening method in order
avoid divergences due to the in nite-range of the Coulomb potential arising from the proton gen-
erating potential. This is justi ed by the fact that reactions of importance always occur relatively
close to the target, all the others reducing to pure Rutherford scattering. Hence, we can con-
sider that the Coulomb Hamiltonian acts up to a radius R. Consequently, proton wave functions
become proportional to neutron wave functions at large distances. We then have to prove that
normalization of screened and unscreened proton wave functions is asymptotically the same for
R 2 so that the plane wave decomposition method elaborated for neutrons in the previous
paragraph can be applied in the proton case as well.

For r BR, but nevertheless su ciently large to be outside of the nuclear region, the asymptotic
behavior of the screened Berggren proton wave function as a s that of Coulomb wave
functions:

Ug're ug're C™H. "kre C%H. “kre

C gkt i In"2kre o ikr i oIn"2kre O<i° (A.23)
kr

where H. and H. are the incoming and outgoing Coulomb wave functions. Forr AR, the
asymptotic behavior of proton wave functions goes back to that of neutrons:

us're  Coe" Ce ™ m%- (A.24)
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where the index s stands for screening. Constants in Egs. (A.23) and (A.24) are determined
using the continuity of the wave function and of its derivative:

. CS eikR Cs e ikR

$ ~ kR i 2R KR i In"2kR- 1
: C e|kR i In"2kR C e|kR i In"2kR O«

kR
; (A.25)
P kR i NC2kRe o g kR i IN2KRe 4 1, C.dkR g kR
fo] kR S S
, 1 o
so that for R @ | knowing that C; Cg 5 we have the normalization:
1 1
CC — Oc=e A.26
2 ‘R (A.26)

and we have proved that screened functions have the same normalization as unscreened functions.
Therefore, if protons are present in"a;b;c; @, Eq. (A.26) implies that:

‘a; bV 8;de “ag bV 85 dse O<%-: (A.27)

Consequently, asR can be arbitrarily large, one can consider that'a;b® $;de 0 in Eq. (A.27)
when the conditions embedded in Eq. (3.65) are veri ed.

A.2 Derivation of the generalized Richardson equations

An approximate solution for the pairing Hamiltonian in Berggren basis (2.89) can be found by
replacing the Kronecker delta by Dirac delta in the commutation relation:

Bl 27k kO?CE% ﬁ—z'“ (A.28)
With this change, the new pair operators satisfy:
ﬁq;/t\i;oe 2 qqc%
Byt 2 qqueCE% % (A.29)
q

where the index q runs over bound, resonance and discretized continuum states. In this approxi-
mation, let us now derive the solution of the Schrédinger equation for both the fermion and boson
system: HS iom€e ES nom & With E PN"f’ E PQ q q Where E are the pair energies,
N pair the number of pairs and N the total number of bound, resonance and discretized contin-
uum states,i.e. N 2N with Pg‘ q the number of unpaired particles. As an ansatz for
the many-body state we take:

Npair
Shom€ M S pom®; & om €G
1

f W
q
A.30
o E (A.30)

alz
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where the normalization constantsc are given by:

1 1 Wq
—s —5 G — A.31
cGe? C? %“qu-Z (A3D
In order to simply the derivation, it is more convenient to dene & $"™»~C so that:
Npair
Smwme M CS&® CSe (A.32)
1
where
Npair
C mC
1
and
Npair
Se M $%e
1
Let us begin by evaluating the commutator:
N pair K N pair * 1 o« + N pair i
M SR Q ,,M& HAS M & (A.33)
R N 1 1
It is convenient to rewrite the Hamiltonian (2.89) in a discretized form:
N N A, 0
B Q q¢fqy G5% ; & QB Wy ; (A.34)
q q

whereN is the total number of bound, resonance and discretized continuum states. Thus, knowing
the following commutation relations:

2 A ~ Aq F%fq : A A
By 0 5 DyBe 2af 2wq' . Rgbe 2 g0, (A.35)
we get:
Ny O
Wg Nowg"q2 R
fq S My W . 84 g Yad¥ Mo (A.36)
d 24 E S 2q E

and with S3;S 0 we have:

A& Q qRd G &&6
q
Wg g2 Rq"

A.37
P (A37)

! N
ES §.1 GQ
q
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Inserting (A.37) into Eq. (A.33), one obtains:

Npair i Np air ! ’ Npalr “
M SR Q Mé S M
1 4 1
N pair  Npair “
Q Mé Eé M
1’ 1
N pair i ! N w N 2 ﬁ, w 1 Npair
Q,Aﬂé'éml GQ 11— M
1 1 g 2q E
Npair ’ Npair o Npair ' Npadr u“ 1 Npair
QE, MS Q,M$ S M
1 1 1 1 ° 1
N pair R N W A ~2 ﬁ, + N pair “
Q ,M$& §GQ —"—— ™M &
1 1 ° g 2q E 1

where the 2nd term can be expressed as:

@

Npa|r 1 “ ’ Npa|r “ Npair , Npalir
Q M ‘8 S, M § Q1 St M1 S—
X L]
and the 3rd term :
N pair N W A 2 ﬁ, + Npair “
Q .M s éGQ —“2: =, 1§".
q
N pair ' « N W A ] ﬁ_ + Nopair “
60 &, m & ot i ¢
1 q q 1
Npair W, 2 Npalr “
GQ a"o S-Mm S—
1 2 q E 0 ” 1 .
X
Npar ©+ 1« N é ﬁq N pair “
GQ . .MS Q.M S,
q 1
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Now, let us derive the expression for fq; L Npair é" using Eqg. (A.36):

! Npair & ' Npair “ ’ Npair [
g, M &  fJEs o, M S S R, M S
1 2 2
+ Npair “ ' N pair “ + Nopair «
feEs o, M S fqEj ,o=M =& & fq, M S
2 ” 1 . 3
X 2
! Npair & ’ Npair “ , Npair ‘
feEs o, M S fqEy ;o= M S = fJE; ;o= M &=
2 ” 1 ° ” 1 °
X 2 X 3
+ N pair «
5 .5 8 Jfa, M S

To simplify notation in the above expressions, we have de ned:

Zi
Wq
ArS % fE .
q 2 q E q
Eq. (A.41) can be generalized as follows:
! Npair i Npair ~ ' Npair ‘ ! Npadr i
B, M & Q fgEse=M &= M & f
1 m 1, 1
X
and one obtains:
—_ o 1 “
N pair A N pair 2 _qu N pair
@qv M SR > E..-M —
1 A 1 4a Eacw1
X
Consequently Eq. (A.40) becomes:
N pair N w N 2 A, N pair “
Q Mé éGQM" M S
q 249 E 1 °
Npair W, 2 Npalr ‘
G Q LQ -M &=
1 2 q E 0 n 1 .
X
N pair 1 « N éu 1+ Npair “«
GQ,MéQ L
1 249 E 1
N pair 1 « Npair N 20 VTqéa%a ' N pair

= - M
2q E2q Eyey

X

GQ. Mé.‘Q Q
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Inserting (A.39) and (A.45) into Eq. (A.38), one nds:

Npair i\ Npair ’ Npair “ Npair ! N GW N ~2“ ' Npalr “
%; M &R E,M$& Q,1Q 5 : “E S-mM S—
1 A 1 1 1 q 24 o1,
- X
N pair 1 1 « N é" + Npair “
G Q M S Q oM & A
2q E 1
o N ’ “
N pair 1 « Npar N 2 W_éwbq N pair
G S 70 - =
Q-M=..Q QAZq E 24 Erer s .

(A.46)

Applying the commutator (A.46) on the vacuum state ®e and using: 1 ®e 0, one obtains:

N pair ? N GW O/A ~2 Zu » N pair “
AS,e EnSpe Q ,1 Q 9% 9 & M & e
1 q 2q9 E y x o °
(o] N ’ w“
N pair » 1 « Npair N 2G W_é" N pair
Q. .M$ Q QA E.Agoqu =M $%e
1 1 2q q Jm 1

R °
X

The summation over g in the last term can be rewritten as:

y MO Nn
SEISTY 1 g 0, Wg bq
E E;, E Ej 372q E 24 EJ.
N /qu Wa
Q q
- q E o 2 q E‘]\’
Hence, the last term of Eq. (A.47) can be expressed as:
(o] N ’ 1]
N pair * 1 « Npair N 2G W_qéf)bq N pair
Q l\/l S Q Q = - -M &=
°e 29 E24 Eje, 1.
X
N pair » 1 « N pair 2Gé6 éé" é"' , N pair :
Q ,MS Q - M &=%e
1”1 "1 EE m 1,
X
Npair ! Npair ZG Npalr ‘ Npair ! Npair 2G Npalr “
= é _M §—%e —— é _|v| §—%e
Qlﬂ‘QlE EJ O . QllY‘QlE EJ 0 .
x‘ x
If we consider the Heavyside functionH” * and the function f~; e, where and
integer parameters, then:
N pair ~ ~ N pair - N pair ~ N pair 1 ~
Q f7; «H * Q Q f5 + Q Qf; -
1:x 1 1 1 1
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Using this property, one can do the following modi cation of indices involved in the sums in the
rst term of Eq. (A.49):

o N ’ “
N pair * 1 « Npair N 2G VTqéE’)bq N pair
Q. .MS Q Q= - =M &=
1" 1 * 19 29 ET2q Eycn 1,
X
Npa\ir 1 ZG ’Npair “ Npair ! Npair ZG b ,Npair ‘
Q ® ¢ $—M $=S%e Q , Q =, $—M S—Se
1 1 » 1 . 1 1 E ” 1 .
X X
Npair ' Npair 2G ‘ , Npair ‘
Q =0 —$;-M S =Se (A.51)
1» 1B B V.,
X X

As 1S e ES e one obtains from (A.47) the generalized Richardson equations (A.52) for the
pair energies of the discretized pairing Hamiltonian in the Berggren basis:

Noowgdg NP 2G

0 A.52
E Y E E (A.52)

A.3 Initial conditions for solving the generalized Richardson equa-
tions

Initial conditions are essential to solve numerically the generalized Richardson equations (2.99).
They are usually determined by considering the solution for pair energies in the weak coupling
limit (GP 1):

claimoEi 24 i L Npair s 9 LN (A.53)

In the case of one pair per level (  2) and G @@, the generalized Richardson equations (2.99)

become:
2Gdq

249 Eg

1 0 g L1:::;N (A.54)

The solution of Eq. (A.54):
Eq 2q 2Gdgqwg
provides a good starting point for solving the generalized Richardson equations (2.99) using the
Newton-Raphson procedure in the case of one pair of particles (bosons or fermions) per level.
In the case of two pairs of particles”i 1;2+ on a s.p. levelq, the boundary conditions in the

weak coupling limit G P 1 are:
imE; IlmE, 24 (A.55)
GO G O
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where E1 and E, are the energies of the two pairs being on the same s.p. level & 0. In such
a case, generalized Richardson equations (2.99) become:

g 2Gd
L 6o O
| qg E1 2 E1
: 1 2Gdq 2G 0 (A.56)
o 2q E2 E1 E;
One can rewrite them in the following form:
¢ . 2 -
Ei1 E,° 2G4 E;i Ep» O
L 1 2 q 1 2 (A57)
Egs. (A.57) can be linearized:
2G 0
® (A.58)
4Gdg 2G 0
in variables:
44 E; E; and "E1 Ep?
The solutions for and  are:
4Gdy 2G
8G%d, 4G? (A.59)
and hence the expression foE; and E2 in the weak coupling limit is:
1,\ »
1 »
E» 24 EA . (A.60)
A.4  Normalization of scattering states including the Coulomb po-
tential
A.4.1 Partial overlap integral
The radial Schrédinger equation for a spherical non-local potential reads:
1. a
uSEre E = Vire k% ucre S, wrr Sur% dr® (A.61)

where " is the orbital angular momentum, v°re is the local part of the potential and w’r;r % its
non-local part. In the asymptotic region, one demands:

Vire m for 1 ARpot (A.62)

wrr%® 0 for rARpet or r*ARpo (A.63)
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where is real and Rpot AO. These conditions are always satis ed in practice.
Let us consider two dierent linear momenta ky A0 and ky AO, and a radius R ARpot. Eq.
(A.61) provides the overlap ofuy, and uy, in 0 R . After simple manipulations, one obtains:

R

S, US reuy, re uRE reuy, re dr

~lL2 2 R ~ ~ R R ~ ~ ~ ~

ks Kge s, Uk, Teuy, redr S, S, wrr % ou T r®u Cre u, r%uCre drr
(A.64)

As Wr;r % is symmetric in r and r% the integral involving w'r;r % in Eq. (A.64) vanishes identi-
cally. Hence, integrating the l.h.s. of Eq. (A.64) and using the fact thatuy,"0s u,, "0 0, one

obtains: o @ “Ret "R ® “Reu "R
~ ~ ~ Uk * Uk * Uxk * Uk *
l 2" Re Uk, reuy, “re dr b 2 2 b
ab 1t Sy Hka Tk kZ K2

| an”Re will be shown in Appendix A.4.3 and A.4.4 to converge weakly to a Dirac delta.

(A.65)

A.4.2 Asymptotic expression of partial overlap integral

From Egs. (A.62) and (A.63), u-g. is equal to a linear combination of incoming and outgoing
Coulomb wave functions:

uc’Re CiH "7 ;kRe CH "7 ;kR » (A.66)
where ~k is the Sommerfeld parameter, andC, are xed up to an overall factor to be deter-
mined.

H 7 ;KR », u-r. and its derivative have simple analytical form in the asymptotic region :
H " :kRe el kR «In2kRe 5 e (%. (A.67)
dH " ik - ik @ "KR kIn"2kRe T5 T e O<l' (A.68)

dr PR R

where -~ e is the Coulomb phase shift. The asymptotic form ofuy”Re and ux= Re derive from

Egs. (A.66), (A.67),(A.68):
U Re CysinkR  ¢In"2kRe ¢ O« %- (A.69)
U% Re CkkcoSkR In"2kRe ; (A.70)
where C2 4C, C,, and  is the phase shift associated tai,"re, which veri es
e« C.~C,

Note that C, and , are real.
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Inserting Egs. (A.69) and (A.70) in Eq. (A.65), one obtains:

kainA kaR Ka In"2k;Re Ka® CO§kbR Kp In“2kbR- kp®

o Re GG "Ka Koo Ka Kpe

Ci.Cr, kacoSkaR . In 2kfR- k'i. sin"kpR  k, IN"2kpRe O<1-
Ka kp* " Ka Kp® R
C. C kaSianb ka*R kbln”2kbR- Ka In"2kRe Kp Ka®
o ke ko Ka'ka ke
sin™" ka kb' R Ka In"2k;Re Ko In‘2kbR- Ka kp®
Cha Gl 2Ky koe
sin” ky ka*R k. IN"2kpRe ko IN"2kaRe g Ka® 1
Cha Gl i Tk - ; Ocpe
kasin® R IN"Re  f "kg;kpee
CkaCkb a k abAkk o a» Kb
k a b
SiTka KPR "~ iy ko IN"Re | “karkpee
CkaCkb - 2Aka Iibl :
sin” kR ab kINTRe f "Ka;kpee 1
CkaCk — O<c—-
b 2 ka kb. R
and nally:
in" kR IN"Ree
IabAR. CkaCkaIn Kk 5 a: kN
. . ST "Ka; Kpee 1
CkaCkaIn kR ab kIn R“Gfkacos = a b '
k Ka koo 2 g
sin"f “Ka; Kpee
Ci.Ck, COS KR ap i In"Ree kol - _far ™.
k Ka Kpe
sin"ka kp*R 7 g kp® INTRe T "Ka;kpee
C C a b
ka >ko 2ka  Kpe
sin” kR ab klnAR° f Aka;kb" 1
Ck.C Oc¢c—e; A.71
ka Cke ke ke ‘R (A.71)
where:
k kKo Ka
ab Kakp
f Aka;kb‘ Ka InA2ka- Kp InA2kb- Kp Ka - (A.72)

The ve terms which enter Eq. (A.71) are denoted respectively as];b” kiRe, 1>71;2;3;4;5e.

Only J;é” k; Re provides a Dirac deltaif R 2 . All the other terms will be shown to vanish
in this limit.
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A.4.3 Generalized Riemann-Lebesgue lemma

We will formulate the generalization of the Riemann-Lebesgue lemma in the case R enters
integrated functions logarithmically. The generalized lemma will be then used to prove that all
terms not leading to a Dirac delta vanish forR @

Let us consider a di erentiable function fgr ke de ned for k > kmin Kmax , and verifying:

$r°keS O"In"™Ree !k
kmax
S ®keSdk O"In""Ree (A.73)

Kmin

wheren is an integer which can be the same fof g"ke and fgre ke. Integration by parts provides:

kmax . . kmax .
s, frke R dk %< fr ke kR E:’“ S, f ke kR dke (A.74)
Thus, majoring Eq. (A.74), one obtains:
Kmax ~ ikR 1 ~ ~ Kmax @~
\S . fR k. e de B ﬁ(SR kmm .S $R kmax's S . $ R k'Sdk'
n~ L]
o RR © 0 (A.75)

A.4.4 Weak convergence of the overlap to a Dirac delta

In order to show that |5,"Re converges to a Dirac delta, we will integrate | 55" Re with a
smooth test function F~ e+ of a compact support: ¢ > ..  kmx » Where ka @ g, @0
and

kmax A0 (These conditions are consistent with the requirementsky A0 ( xed) and k, AOQ.):
IF'Re s ™ F kelwRed k Qs F @3 GRed i (A.76)
Kmin i1 Kmin

Integrals involving J‘,;L” k;Re for i C2in Eq. (A.76) can be written as the real or imaginary part

Kmax _ “je A
of g fn

Kmin

e € % d |, where:

cost “kg;kpee 1
k Ka Kp* 2 g

“De A i “Re
fR K® CkaCkbe' ab kIn"R Kk,

- “f "Ka; Kpee
f3° o CrCyé » KR af—'” 2 b
R k Kp 3 “Ka
F% e g Ci @KaR kR CI% “Kaikper
R ka I(b
~E. "Kakp®
fo " k* Ck,Ck,€ = «IMR Gfk kb’ (A.77)
a

One can check from Eq. (A.77) thatf ;'A k* always veri es Eq. (A.73) for i C2. Consequently,
from the generalized Riemann-Lebesgue lemma (see Appendix A.4.3) one nds that integrals

involving J;L'“ k;Re fori C2in Eq. (A.76) vanish for R 2
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A.4. NORMALIZATION OF SCATTERING STATES INCLUDING THE
COULOMB POTENTIAL

In the integral involving Je;&'“ k; Re, let us expand the sine function in products of sine and
cosine functions:

max _ . TR Ck.C max _ . . . . d
S ‘ F* e " GRed i ~ka 2o ‘ F* kesin® (Re coS zp kIn"Ree K
Kmin 2 Kmin k
Ck,C max . . = A d
MS ‘ F™ kecos (Re sin® g kIN"Ree K
2 Kmin k
(A.78)

The second integral of Eq. (A.78) is a real part of:

max ; A ~ d
S T EN ed KR g o In"Res — K (A.79)

Kmin k

This integral vanishes ifR 2

~

fR K® F- k‘SinA ab k|nAR“~ K

because the functionfr™ e veries Eqg. (A.73).
The rst integral of Eq. (A.78) is a real part of the integral:

“Ce A~ C C max ~ . A i “"Re d
1" Re %5 g~ esin (Re g ® kIR —kk (A.80)
Kmin

To determine the limit of I;C'“R- for R 2 | we introduce the function GR~ ge:
F* k» F0:U" o (GRr"~ g+ e' @ kMR- (A.81)

Whel’e UA k® 1 for k > Kmin Kmax 1
(A.81), one nds that |-""Re becomes:

and U” e O elsewhere. Then, from Egs. (A.80),

K max d K K max

~ge C = - A
|- "Re “ha ko @00 g sin® kRe s GRr™ k* sin® gRed |
2 Kmin k Kmin
C C ma)(R . A max A « A
CClo qeogeg ™ Tsinxe X g ™ Ggm 4o ST (Red | (A.82)
2 Kmin R X Kmin

where a change of variable has been e ected in the rst integral.

The rst integral of Eq. (A.82) clearly has as alimitwhen R 2 . The second integral in
Eq. (A.82) equals:

- i «R kmax ~ ~ i kR ‘
Gr k* € *d g S Gr ke e Kd g (A.83)

Kmin Kmin

kmax

1
5 B

By reversing and deriving Eq. (A.81), we can show that the function GR~ k¢ has the same
properties as the functionfr™ e in Eq. (A.73). Thus, the integrals in Eq. (A.83) vanish if
R 2 .

We can now evaluate the limit of | ;"R (Eq. (A.71)) when R 2

l " Re 5033 “Ka Kpe (A.84)
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and obtain (see Eq. (A.65)):

a

s, Uk, Teuy, re dr Ec,fa “"ka kp* 2C, Cy, “ka kp* (A.85)

The Dirac delta normalization arises from the following equality:

a

SO uka‘r-ukb‘r- dr "Ka Kp® 2C ka 1 : Uk (A.86)

A.5 Solution of Faddeev equation using Berggren basis

Berggren basis, due to its completeness properties, can be used to solve the reaction problems
represented by the Faddeev equation. Its Hamiltonian and Schrédinger equation read:

HSe ESe (A.87)
H Hp E Vs (A.88)
2 7

where Hp is the intrinsic Hamiltonian of the projectile, ™ is the linear momentum of the c.m. of
the projectile with respect to the target, T is the reduced mass of the target and/s is a potential
describing the scattering of the projectile subsystems away from the target.

Let us consider Berggren basis associated with the intrinsic HamiltoniarHp of the projectile:

HpSpe e Spe (A89)

In the case of a three-body problem, whereby the projectile bears two subsystemsip in Eq.
(A.89) becomes a one-body Hamiltonian:

Hp ﬁ VpAI" (A90)
2 p

where r is the intrinsic radius, PNthe intrinsic linear momentum, p the reduced mass of the
projectile, and Vp"re the intrinsic interaction of the projectile. In this case, S peis a one-body
Berggren basis state, which is straightforward to calculate.

In the continuum discretized CC method, the scattering statesS pe are dealt with the bin
states, obtained by integrating scattering states on nite energy interval. In this way, one obtains
a basis of discrete bound states. It is however not necessary to use this procedure if one works with
the Berggren basis, as one would consider scattering state3pe of a xed energy. Such a method
is already used in the mid point method, where one takes the middle energy of the considered
bin to dene Spe However, the energies would hereby be determined with a Gauss-Legendre
guadrature, so that one would expect a much better precision for a xed number of discretized
scattering states.

The standard method of solving Eq. (A.87) is to expandS ein a basis of intrinsic and c.m.
projectile states:

Se QSp"es ™e (A.91)
n
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A.5. SOLUTION OF FADDEEV EQUATION USING BERGGREN BASIS

where S ;,”°e is an eigenstate ofHp and S "eis a c.m. projectile state verifying the equation:

& Vo R Ept R Q Ve R MR 0 (A.92)
271 nn
ViR~ Fys Me (A.93)

where Rl is the space coordinate of the c.m. of the projectile with respect to the target, and

En E e,. Expanding ™Rk in partial waves, one obtains the set of CC equations which must
be solved to obtainS &

el Qi L CReYLS ge (A.94)
L
R @ L'L 1 ;. ;. el . .
2 T CEdR2 R2 Vaa R‘ En a R. a%a| Vaam R' a%® R‘ 0
(A.95)
VaaeRe ;,"OeYLOEJ ¥sS 2V e (A.96)

whereJ is the total angular momentum of the system anda represents di erent quantum numbers
associated to the total system.

As Eg. ( A.95) has the same form as Eqg. (3.100), it can be solved with the Green's function
method described in Sec. (3.3.5). As this method replaces the direct integration of CC equations
by a linear system, it should be more e cient, insofar as the number of channels in Faddeev
equations is usually very large. If we have more than two subsystems in the projectile, Eq. (A.89)
becomes a many-body problem which can be solved by the GSM as well.

124



Bibliography

[1] E. Rutherford, Philosophical Magazine. Series 6, voR1 (1911) .
[2] P. Navratil, J.P. Vary and B.R. Barrett, Phys. Rev. Lett. 84, 5728 (2000) .
[3] P. Navratil, J.P. Vary and B.R. Barrett, Phys. Rev. C 62, 054311 (2000) .
[4] P. Navratil et al., J. Phys. G : Nucl. Part. Phys. 36, 083101 (2009) .
[5] N. Michel et al., Phys. Rev. Lett. 89, 042502 (2002) .
[6] R. Id Betan et al., Phys. Rev. Lett. 89, 042501 (2002) .
[7] N. Michel et al., J. Phys. G: Nucl. Part. Phys. 36, 013101 (2009) .
[8] S. Quaglioni and P. Navratil, Phys. Rev. Lett. 101, 092501 (2008) .
[9] S. Quaglioni and P. Navratil, Phys. Rev. C 79, 044606 (2009) .
[10] G. Papadimitriou et al., Phys. Rev. C 88, 044318 (2013) .
[11] S. Baroni et al., Phys. Rev. Lett. 110, 022505 (2013) .
[12] S. Baroni et al., Phys. Rev. C87, 034326 (2013) .
[13] D. Lee, Prog. Part. Nucl. 63, 117 (2009) .
[14] E. Epelbaum et al., Phys. Rev. Lett. 106, 192501 (2011) .
[15] E. Epelbaum et al., Phys. Rev. Lett. 109, 252501 (2012) .
[16] J. Dobaczewski, Journal of Physics: Conference Seri€d2, section 9, 092002 (2011) .
[17] K. Bennaceur et al., Phys. Lett. B 488, 75 (2000) .
[18] K. Bennaceur et al., Nucl. Phys. A651, 289 (1999) .
[19] K. Bennaceur et al., Nucl. Phys. A671, 203 (2000) .
[20] R. Chatterjee, J. Oko2owicz and M. P2oszajczak, Nucl. Phys. A764, 528 (2006) .
[21] G. Hagen et al., Phys. Lett. B 656, 169 (2007) .

[22] G. Hagen, T. Papenbrock and M. Hjorth-Jensen, Phys. Rev. Lett.104, 182501 (2010) .

125



BIBLIOGRAPHY

[23] G. Hagen et al., Phys. Rev. Lett.108, 242501 (2012) .

[24] G. Hagen and N. Michel, Phys. Rev. C86, 021602(R) (2012) .

[25] G. Hagen et al., Rep. Prog. Phys77, 096302 (2014) .

[26] J. Rotureau et al., Phys. Rev. Lett. 97, 110603 (2006) .

[27] J. Rotureau et al., Phys. Rev. C79, 014304 (2009) .

[28] O. Legeza et al., Phys. Rev. (@2, 051303 (2015) .

[29] R. Machleidt and D.R. Entem, Phys. Rep.503, 1 (2011) .

[30] S.K. Bogner, R.J. Furnstahl and R.J. Perry, Phys. Rev. C75, 061001 (2007) .
[31] K. Tsukiyama, S.K. Bogner and A. Schwenk, Phys. Rev. Lett.106, 222502 (2011) .
[32] K. Tsukiyama, S.K. Bogner and A. Schwenk, Phys. Rev. C85, 061304 (2012) .
[33] H. Hergert et al., Phys. Rep.621, 165 (2016) .

[34] H.W. Barz, I. Rotter and J. H6hn, Nucl. Phys. A 275, 111 (1977) .

[35] I. Rotter, H.W. Barz and J. H6hn, Nucl. Phys. A 297, 237 (1978) .

[36] R.J. Philpott, Nucl. Phys. A 289, 109 (1977) .

[37] D. Halderson and R.J. Philpott, Nucl. Phys. A 321, 295 (1979) .

[38] I. Rotter, Rep. Prog. Phys. 54, 635 (1991) .

[39] H.W. Barz, I. Rotter and J. H6hn, Phys. Lett. B 37, 4 (1971) .

[40] D. Halderson and R.J. Philpott, Nucl. Phys. A 359, 365 (1981) .

[41] A. Volya and V. Zelevinsky, Phys. Rev. C74, 064314 (2006) .

[42] H. Feshbach, Ann. Phys.5, 357 (1958) .

[43] H. Feshbach, Ann. Phys.19, 287 (1962) .

[44] T. Berggren, Nucl. Phys. A 109, 265 (1968) .

[45] T. Berggren, Phys. Lett. B 73, 389 (1978) .

[46] T. Berggren, Phys. Lett. C 373, 1 (1996) .

[47] I.M. Gel'fand et al., Generalized functions (New York : Academic, 1964).

[48] K. Maurin, Generalized eigenfunction expansions and unitary representations of topological
groups (Warsaw: Polish Scienti ¢ Publishers, 1968).

[49] A. Bohm, M. Gadella and S. Maxson, Computers Math. Applic. 34, 427 (1997) .

126



BIBLIOGRAPHY

[50] G. Ortiz et al., Nucl. Phys. B 707, 421 (2005) .

[51] R.W. Richardson, Phys. Lett. 3, 277 (1963) .

[52] R.W. Richardson and N. Sherman, Nucl. Phys52, 221 (1964) .
[53] W.M. Elsasser, J. Phys. Radium4, 549 (1933) .

[54] W.M. Elsasser, J. Phys. Radium5, 389 (1934) .

[55] W.M. Elsasser, J. Phys. Radium5, 635 (1934) .

[56] E. Gapon and D. lwanenko, Naturwissenschafter?0, 792 (1932) .
[57] H.A. Bethe and R.F. Bacher, Rev. Mod. Phys.8, 82 (1936) .

[58] M. Goeppert-Mayer, Phys. Rev.74, 235 (1948) .

[59] M. Goeppert-Mayer, Phys. Rev.75, 1969 (1949) .

[60] J.H.D. Jensen, O. Haxel and H.E. Suess, Phys. Rev5, 1766 (1949) .
[61] A.M. Lane, Proc. Phys. Soc. A68, 189 (1955) .

[62] D. Kurath, Phys. Rev. 101, 216 (1956) .

[63] D.H. Wilkinson, Proc. Robert A. Welsh Foundation Conf. Chemical Research. I. The Struc-
ture of the Nucleis (p.13, Houston, Texas, 1957).

[64] K.A. Brueckner, Phys. Rev. 96, 508 (1954) .

[65] J.P. Eliott and A.M. Lane, Handbuch der Physik XXXIX (Springer Verlag, Berlin, 1957).
[66] E. Caurier et al., Rev. Mod. Phys. 77, 427 (2005) .

[67] B.A. Brown, Prog. Part. Nucl. Phys. 47, 517 (2001) .

[68] B.R. Barrett, P. Navratil and J.P. Vary, Prog. Part. Nucl. Phys. 69, 131 (2013) .
[69] D.J. Dean and M. Horth-Jensen, Phys. Rev. C69, 054320 (2004) .

[70] R.J. Bartlett and M. Musial, Rev. Mod. Phys. 79, 291 (2007) .

[71] C. Barbieri and W.H. Dickho, Phys. Rev. C 63, 034313 (2001) .

[72] C. Barbieri and W.H. Dickho, Phys. Rev. C 65, 064313 (2002) .

[73] Y. Dewulf, D. van Neck and M. Waroquier, Phys. Rev. C65, 054316 (2002) .
[74] C. Barbieri and W.H. Dickho, Phys. Rev. C 68, 014311 (2003) .

[75] Y. Dewulf et al., Phys. Rev. Lett. 90, 152501 (2003) .

[76] D. van Neck, S. Rombouts and S. Verdonck, Phys. Rev. G2, 054318 (2003) .

127



BIBLIOGRAPHY

[77] C. Barbieri, Phys. Lett. B 643, 268 (2006) .

[78] C. Mahaux and H.A. Weidenmuller, Shell-model approach to nuclear reactions (North-
Holland Pub. Co., 1969).

[79] V.l. Goldanskii, JETP 39, 497 (1960) .

[80] B. Blank and M. P2oszajczak, Rep. Prog. Phys71, 046301 (2008) .
[81] J. Giovinazzo et al., Phys. Rev. Lett.89, 102501 (2002) .

[82] M. Pfiitzner, Phys. J. A 14, 279 (2002) .

[83] R.E. Azuma et al., Phys. Rev. Lett. 43, 1652 (1979) .

[84] Z. Kohley et al., Phys. Rev. Lett. 110, 152501 (2013) .

[85] I. Tanihata, Nucl. Phys. A 478, 795c (1988) .

[86] M.V. Zhukov et al., Phys. Rep. 231, 151 (1993) .

[87] P.G. Hansen and B. Jonson, EPL (Europhysics Lettersy@, 409 (2013) .
[88] N. Auerbach and V. Zelevinsky, Rep. Prog. Phys.74, 106301 (2011) .
[89] N. Auerbach, J. Phys. Conf. Ser.639, 012010 (2015) .

[90] P. Kleinwéchter and I. Rotter, Phys. Rev. C 32, 1742 (1985) .

[91] J. Oko2owicz, M. Paoszajczak and W. Nazarewicz, Prog. Theor. Phys. Supf96, 230 (2012)

[92] J. Oko%*owicz, W. Nazarewicz and M. P2oszajczak, Fortschr. Phys51, 66 (2013) .

[93] K. Ikeda, N. Takigawa and H. Horiuchi, Prog. Theor. Phys. Suppl. (Extra number) 464,
(1968) .

[94] H. Feshbach, Theoretical nuclear physics : nuclear reactions (Wiley, New York, 1992).
[95] K. Bennaceur et al., J. Phys. G24, 1631 (1998) .

[96] B.A. Loiseau and Y. Nogami, Nucl. Phys. B2, 470 (1967) .

[97] R.B. Wiringa et al., Phys. Rev. C 62, 014001 (2000) .

[98] S.C. Pieper, K. Varga and R.B. Wiringa, Phys. Rev. C66, 044130 (2002) .

[99] E. Epelbaum et al., Phys. Rev. C66, 064001 (2002) .
[100] P. Navrétil and W.E. Ormand, Phys. Rev. C 68, 034305 (2003) .
[101] A.P. Zuker, Phys. Rev. Lett. 90, 042502 (2003) .
[102] T. Otsuka et al., Phys. Rev. Lett. 105, 032501 (2010) .

128



BIBLIOGRAPHY

[103] G. Hagen et al., Phys. Rev. Lett.108, 242501 (2012) .

[104] J. Oko%owicz, M. P2oszajczak and I. Rotter, Phys. Rep374, 271 (2003) .
[105] A.M. Lane and R.G. Thomas, Rev. Mod. Phys.30, 257 (1958) .

[106] A.M. Lane, Nucl. Phys. 35, 676 (1962) .

[107] P. Descouvemont and D. Baye, Rep. Prog. Phys73, 036301 (2010) .

[108] P. Dirac, The principles of quantum mechanics (Oxford : Clarendon, 1958).

[109] J. von Neumann, Foundation of quantum mechanics (Princeton university press, Princeton,
1955).

[110] G. Gamow, Z. Phys.51, 204 (1928) .

[111] R.G. Newton, Scattering theory of waves and particles (Springer-Verlag, New York Heidel-
berg Berlin, second edition, 1982).

[112] H.M. Nussenzveig, Causality and dispersion relations (New York : Academic, 1972).

[113] J.R. Taylor, Scattering theory : The quantum theory on nonrelativistic collisions (John
Wiley and Sons, Inc., New York, 1972).

[114] W. Domcke, J. Phys. B : At. Mol. Phys. 14, 4889 (2009) .

[115] V.I. Kukulin, Theory of resonances : Principles and applications (John Wiley and Sons,
Inc., New York, 1989).

[116] W.D. Heiss and R.G. Nazmitdinov, Eur. Phys. J. D. 63, 369 (2011) .

[117] A.B. Migdal, A.M. Perelov and V.S. Popov, Sov. J. Nucl. Phys.14, 488 (1972) .
[118] H.M. Nussenzveig, Nucl. Phys11, 499 (1959) .

[119] R. Zavin and N. Moiseyev, J. Phys. A : Math. Gen.37, 4619 (2004) .

[120] Z. Ya, Zh. Eksp. Theor. Fiz. 39, 776 (1960) .

[121] N. Michel, W. Nazarewicz and M. P2oszajczak, Phys. Rev. G0, 064313 (2004) .
[122] N. Michel, J. Math. Phys. 49, 022108 (2008) .

[123] T. Vertse et al., Acta. Phys. Hung. 65, 305 (1989) .

[124] R.l. Betan et al., Phys. Lett. B 584, 48 (2004) .

[125] N. Michel et al., Phys. Rev. C74, 054305 (2006) .

[126] R.l. Betan et al., Phys. Rev. C72, 054322 (2005) .

[127] A. Birgers and J.M. Rost, J. Phys. B: At. Mol. Opt. Phys. 29, 3825 (1996) .

129



BIBLIOGRAPHY

[128] N. Hokkyo, Prog. Theor. Phys.33, 1116 (1965) .
[129] W.J. Romo, Nucl. Phys. A116, 617 (1968) .
[130] G. Garcia-Calderon and R. Peierls, Nucl. Phys. A265, 443 (1976) .

[131] B. Gyarmati, Int. Workshop on many-body open quantum systems : From atomic nuclei to
guantum dots, (2007) .

[132] W.P. Reinhardt, Ann. Rev. Phys. Chem. 33, 233 (1982) .

[133] J. Aguilar and J.M. Combes, Commun. Math. Phys.22, 269 (1971) .

[134] E. Balslev and J.M. Combes, Commun. Math. Phys22, 280 (1971) .

[135] B. Simon, Commun. Math. Phys.27, 1 (1972) .

[136] D. Babbitt and E. Balslev, J. Func. Anal. 18, 1 (1975) .

[137] B. Gyarmati and T. Vertse, Nucl. Phys. A 160, 523 (1971) .

[138] B. Simon, Phys. Lett. A 71, 211 (1979) .

[139] D.D. Lawson, Theory of the nuclear shell model (Clarendon Press, 1980).

[140] Y. Suzuki and K. Ikeda, Phys. Rev. C38, 410 (1988) .

[141] C. Lanczos, Journal of Research of the National Bureau of Standard$5, 255 (1950) .
[142] N. Michel et al., Phys. Rev. C67, 054311 (2003) .

[143] E.R. Davidson, J. Comput. Phys.17, 87 (1975) .

[144] R.l. Betan et al., Phys. Rev. C67, 014322 (2003) .

[145] N. Michel et al., Revista Mexicana De Fisica50, 2 SUPPL. 74 (2004) .

[146] N. Michel, W. Nazarewicz and M. P2oszajczak, Nucl. Phys. A794, 29 (2007) .

[147] N. Michel, W. Nazarewicz and M. P2oszajczak, Phys. Rev. @5, 031301(R) (2007) .
[148] J. Oko®owicz et al., Phys. Rev. C85, 064320 (2012) .

[149] G. Papadimitriou et al., Phys. Rev. C 84, 051304(R) (2011) .

[150] R.l. Betan et al., Phys. Lett. B 584, 48 (2004) .

[151] H. Masui et al., Phys. Rev. C89, 044317 (2014) .

[152] K. Suzuki and S.Y. Lee, Prog. Theor. Phys64, 2091 (1980) .

[153] G. Hagen, M. Hjorth-Jensen and J.S. Vaagen, Phys. Rev. @1, 044314 (2005) .
[154] G. Hagen, M. Hjorth-Jensen and J.S. Vaagen, J. Phys. G: Nucl. Part. Phys31, S1337 (2005)

130



BIBLIOGRAPHY

[155] G. Hagen, M. Hjorth-Jensen and N. Michel, Phys. Rev. C73, 064307 (2003) .
[156] E. Epelbaum, Prog. Part. Nucl. Phys.57, 654 (2006) .

[157] K. Fossez and J. Rotureau, private communication .

[158] N. Michel, G. Papadimitriou and M. P2oszajczak, private communication .
[159] G. Racah, Phys. Rev.63, 367 (1943) .

[160] J. Bardeen, L.N. Cooper and J.R. Schrie er, Phys. Rev.108, 1175 (1957) .
[161] D.J. Dean and M. Hjorth-Jensen, Rev. Mod. Phys.75, 607 (2003) .

[162] M. Heritier, Nature (London) 414, 6859 (2001) .

[163] G. Sierra et al., Phys. Rev B61, 11890 (2000) .

[164] J. von Delft and D.C. Ralph, Phys. Rep.345, 61 (2001) .

[165] J. Dukelsky and P. Schuck, Phys. Rev. Lett.86, 4207 (2001) .

[166] J. Dukelsky and S. Pittel, Phys. Rev. Lett. 86, 4791 (2001) .

[167] J. Dukelsky, C. Esebbag and S. Pittel, Phys. Rev. Lett.88, 062501 (2002) .
[168] M. Hasegawa and K. Kaneko, Phys. Rev. (G7, 024304 (2003) .

[169] M. Gaudin, J. Physique 37, 1087 (1976) .

[170] J. Dukelsky, C. Esebbag and P. Schuck, Phys. Rev. Lett87, 066403 (2001) .
[171] J. Dukelsky et al., Phys. Rev C84, 061301 (2011) .

[172] J. Dukelsky et al., Phys. Rev. Lett96, 072503 (2006) .

[173] S. Lerma H. et al., Phys. Rev. Lett.99, 032501 (2007) .

[174] R. Id Betan, Phys. Rev. C85, 064309 (2012) .

[175] C.N. Yang, Phys. Rev. Lett. 19, 1312 (1967) .

[176] C.N. Yang, Phys. Rev.168, 1920 (1968) .

[177] R.J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic Press, London,
1982).

[178] W. Heisenberg, Z. Phys49, 619 (1928) .

[179] H.A. Bethe, Z. Phys.71, 205 (1931) .

[180] J.M. Luttinger, J. Math. Phys. 15, 609 (1963) .
[181] S. Tomonaga, Prog. Theor. Physbh, 544 (1950) .

131



BIBLIOGRAPHY

[182] F. Calogero, J. Math. Phys.10, 2191 (1962) .

[183] B. Sutherland, J. Math. Phys. 12, 246 (1971) .

[184] J.P. Elliott, Proc. Roy. Soc. (London) A 245, 128 (1958) .

[185] F. lachello and A. Arima, The Interaction Boson Model (Cambridge University Press, 1980).

[186] M. Gaudin, Etats propres et valeurs propres de I'Hamiltonien d'appariement (Les Editions
de Physique, 1995).

[187] M.C. Cambiaggio, A.M.F. Rivas and M. Saraceno, Nucl. Phys. A624, 157 (1997) .
[188] J. Dukelsky, J. Oko?owicz and M. P2oszajczak, J. Stat. Mech. LO7001 (2009) .
[189] S.M.A. Rombouts, J. Dukelsky and G. Ortiz, Phys. Rev. B82, 224510 (2010) .
[190] S.M.A. Rombouts, D.V. Neck and J. Dukelsky, Phys. Rev. C69, 061303(R) (2004) .
[191] R.W. Richardson, J. Math. Phys. 6, 1034 (1965) .

[192] R.W. Richardson, Phys. Rev.141, 949 (1966) .

[193] J. Dukelsky et al., arXiv:0206016v2 [nucl-th] .

[194] P.W. Anderson, J. Phys. Chem. Solidsl1, 28 (1959) .

[195] D.C. Ralph, C.T. Black and M. Tinkham, Phys. Rev. Lett. 74, 3241 (1995) .
[196] C.T. Black, D.C. Ralph and M. Tinkham, Phys. Rev. Lett. 76, 688 (1996) .
[197] I. Giaever and H.R. Zeller, Phys. Rev. Lett.20, 1504 (1968) .

[198] J. von Delft et al., Phys. Rev. Lett. 77, 3189 (1996) .

[199] F. Braun and J. von Delft, Phys. Rev. Lett. 81, 4712 (1998) .

[200] A. Mastellone, G. Falci and R. Fazio, Phys. Rev. Lett.80, 4542 (1998) .

[201] S.D. Berger and B.l. Halperin, Phys. Rev. B58, 5213 (1998) .

[202] J. Dukelsky and G. Sierra, Phys. Rev. Lett.83, 172 (1999) .

[203] F. Braun and J. von Delft, Phys. Rev. B 59, 9527 (1999) .

[204] K.A. Matveev and A.l. Larkin, Phys. Rev. Lett. 78, 3749 (1997) .

[205] A.M. Mukhamedzhanov et al., Phys. Rev. C84, 024616 (2011) .

[206] H.A. Bethe, Phys. Rev.57, 1125 (1940) .

[207] S. Fernbach, R. Serber and R.B. Taylor, Phys. Rev75, 1352 (1949) .

[208] S. Pasternack and H.S. Snyder, Phys. Re\80, 921 (1950) .

132



BIBLIOGRAPHY

[209] H. Feshbach, Ann. Phys. (N.Y.)5, 537 (1958) .

[210] G.E. Brown, Rev. Mod. Phys.31, 893 (1959) .

[211] A. Agodi and E. Eberle, Nuovo. Cimento18, 718 (1960) .

[212] C. Mahaux and R. Sartor, Adv. Nucl. Phys. 20, 1 (1991) .

[213] W.H. Dickho, EPJ Web of Conferences 122, 09003 (2016) .

[214] G. Breit, Phys. Rev. 69, 472 (1946) .

[215] R.G. Newton, Ann. Phys. 4, 29 (1958) .

[216] E. Rost, Phys. Rev.154, 4 (1967) .

[217] N. Bohr, Nature 137, 344 (1936) .

[218] P.L. Kapure and R.E. Peierls, Proc. Roy. Soc. (London) A166, 277 (1938) .
[219] E.P. Wigner and L. Eisenbund, Phys. Rev.72, 29 (1947) .

[220] J. Humblet and L. Rosenfeld, Nucl. Phys.26, 529 (1961) .

[221] H. Feshbach, Ann. Phys.43, 410 (1967) .

[222] M.L. Goldberger and K.M. Watson, Collision theory (Wiley, New York, 1964).
[223] N. Austern, Direct nuclear reaction theories (Wiley, New York, 1970).

[224] J. Rotureau, J. Oko?owicz and M. P2oszajczak, Nucl. Phys. /67, 13 (2006) .
[225] J.B. Faes and M. P2oszajczak, Nucl. Phys. /800, 21 (2008) .

[226] Y. Jaganathen, Thése de doctorat, Université de Caen (2012) .

[227] Y. Jaganathen, N. Michel and M. P3oszajczak, Phys. Rev. B9, 034624 (2014) .
[228] F.D. Grancey et al., Phys. Letters. B758, 26 (2016) .

[229] K. Fossez et al., Phys. Rev. (31, 034609 (2015) .

[230] G.X. Dong et al., arXiv:1601.06660v1 [nucl-th] .

[231] P. Frobrich and R. Lipperheide, Theory of nuclear reactions (Clarendon press, Oxford, 1996).
[232] J.A. Wheeler, Phys. Rev.52, 1107 (1937) .

[233] Y.C. Tang, M.L. Mere and D.R. Thompson, Phys. Rev.47, 167 (1978) .

[234] E.H. Moore, Bull. AMS. 26, 394 (1920) .

[235] R. Penrose, Proceedings of the Cambridge Philosophical Sociebl, 406 (1955) .

133



BIBLIOGRAPHY

[236] P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer-Verlag (New York),
1980).

[237] J. Suhonen, From Nucleons to Nucleus, Concepts of Microscopic Nuclear Theory (Springer,
2007).

[238] H. Furutani, H. Horiuchi and R. Tamagaki, Prog. Theor. Phys. 60, 307 (1978) ; ibid. 62,
981 (1979) .

[239] J.F. Dicello et al., Phys. Rev. C4, 1130 (1971) .

[240] D. Winterhalter, Zeitschrift fir Physik 200, 487 (1971) .

[241] M. Hjorth-Jensen, private communication .

[242] I. Fodor, |. Szentpétery and J. Zimanyi, Nucl. Phys. 73, 155 (1965) .
[243] G.J. KeKelis et al., Phys. Rev. C17, 1929 (1978) .

[244] W. Benenson et al., Phys. Rev. ClL7, 1939 (1978) .

[245] W. Peters et al., Phys. Rev. C68, 034607 (2003) .

[246] A. Lepine-Szily et al., Nucl. Phys. A722, 512¢ (2003) .

[247] A. Lepine-Szily et al., Nucl. Phys. A734, 331 (2004) .

[248] V.Z. Goldberg et al., Phys. Rev. C69, 031302(R) (2004) .

[249] F.Q. Guo et al., Phys. Rev. C72, 034312(R) (2005) .

[250] H.T. Fortune, Phys. Rev. C 74, 054310 (2006) .

[251] D. Baye et al., Phys. Rev. C72, 024309 (2005) .

[252] A.M. Mukhamedzhanov et al., Phys. Rev. C81, 054314 (2010) .
[253] H.T. Fortune and R. Sherr, Phys. Rev. C72, 024319 (2005) .
[254] L.V. Grigorenko, T.A. Golubkova and M.V. Zhukov, Phys. Rev. C 91, 024325 (2005) .
[255] H.T. Fortune, Phys. Rev. C 83, 024311 (2011) .

[256] L. Canton et al., Phys. Rev. Lett. 96, 072502 (2006) .

[257] H.T. Fortune and R. Sherr, Phys. Rev. Lett. 99, 089201 (2007) .
[258] I. Mukha et al., Phys. Rev. C79, 031301 (2009) .

[259] F.D. Grancey, Thése de doctorat, Université de Caen (2009) .
[260] M. Assié et al., Phys. Lett. B 712, 198 (2012) .

[261] E. Berthoumieux et al., Nucl. Instr. and Meth. B, 55, 136 (1998) .

134






Titre : Réactions nucléaires dans le modele en couches de Gamow et solutions de I'Hamiltonien
d'appariement basées sur le modeéle rationnel de Gaudin

Au voisinage de la limite de stabilité, ou a haute énergie d'excitation, I'in uence du continuum
devient de plus en plus importante, modi ant ainsi la structure des états faiblement liés. Dans
cette région, les noyaux sont des systéemes quantiques ouverts qui peuvent étre décrits correctement
avec leGamow Shell Model(GSM) o rant une description uni ée des états liés, des résonances et
des états de di usion.

La compréhension de propriétés nucléaires induites par certaines symétries du systéme a
plusieurs corps, peut étre approfondie en considérant des modéles exactement solubles. Dans
la premiére partie, nous avons généralisé I'Hamiltonien d'appariement basé sur le modéle rationel
de Gaudin aux états du continuum, et dérivé la solution algébrique qui généralise la solution ex-
acte de Richardson initialement introduite pour les systémes liés. Ces équations de Richardson
généralisées ont ensuite été appliquées a I'étude des spectres et des énergies de liaison dans une
chaine d'isotopes de carbone.

Dans la deuxiéme partie, nous avons formulé une théorie des réactions basée sur le GSM. Dans
ce but, le GSM est formulé dans une base de canaux de réaction pour les projectiles a plusieurs
nucléons. Cette théorie des réactions prend en compte I'antisymétrisation des fonctions d'onde de
cible et de projectile, ainsi que la fonction d'onde du systéeme composé. Les applications de cette
théorie sont présentées pour la réactiod*O(p,p’) 140, ol le systéme composé®F est un émetteur
de proton, et pour la réaction *°Ca(d,d)*°Ca.

Mots-clés :  Structure nucléaire, réactions nucleaire, Gamow shell model, Hamiltonien d'appariement,
réactions directes, sections e caces.

Title : Nuclear reactions in the Gamow shell model and solutions of the pairing Hamiltonian
based on the rational Gaudin model

Moving towards drip lines, or higher in excitation energy, the continuum coupling becomes
gradually more important, changing the nature of weakly bound states. In this regime, atomic
nuclei are open quantum systems which can be conveniently described using the Gamow shell
model (GSM) which o ers a fully symmetric treatment of bound, resonance and scattering states.

The understanding of speci ¢ nuclear properties is often improved by considering exactly solv-
able models, motivated by a symmetry of the many-body system. In the rst part , we have
generalized the rational Gaudin pairing model to include the continuous part of the single-particle
spectrum, and then derived a reliable algebraic solution which generalizes the exact Richardson
solution for bound states. These generalized Richardson solutions have been applied for the de-
scription of binding energies and spectra in the long chain of carbon isotopes.

In the second part, we have formulated the reaction theory rooted in GSM. For that the
GSM is expressed in the basis of reaction channels and generalized for multi-nucleon projectiles.
This reaction theory respects the antisymmetrization of target and projectile wave functions, as
well as the wave function of the combined system. The application of this theory have been
presented for the reaction*O(p,p") 1O, where the combined system'°F is a proton emitter, and
for 4°Ca(d,d)*°Ca.

Keywords : Nuclear structure, nuclear reactions, Gamow shell model, pairing Hamiltonian,
direct reactions, cross sections.



