A. Partir-de-la-définition-d-'hélicité, il est claire que pour la solution de l'´ energie positive, la fonction, ? ? décrit la particule d'hélicité droit, c'est-` a-dire son spin et sa quantité du mouvement sont dans la même direction. De même, la fonction, ? + décrit la particule d'hélicité gauche o` u son spin et sa quantité du mouvement

. Bibliographie, Hardy and I. S. Towner. Calculated corrections to superallowed fermi ? decay : New evaluation of the nuclear-structure-dependent terms, Phys. Rev. C, vol.66, p.35501, 2002.

J. C. Hardy and I. S. Towner, Superallowed 0 + ? 0 + nuclear ? decays : 2014 critical survey, with precise results for V ud and CKM unitarity, Phys. Rev. C, vol.91, 2015.

K. A. Olive, Review of Particle Physics, Chinese Physics C, vol.38, issue.9, p.90001, 2014.
DOI : 10.1088/1674-1137/38/9/090001

URL : https://hal.archives-ouvertes.fr/in2p3-00309035

S. Gardner and C. Zang, Sharpening low-energy, standard model tests via correlation coefficients in neutron ? decay, Phys. Rev. Lett, vol.86, issue.5666, 2001.

T. Namao, New ? + lifetime measurement, Phys. Rev. D, vol.52, issue.4855, 1995.

J. C. Hardy and I. S. Towner, Improved calculation of the isospin-symmetrybreaking corrections to superallowed fermi ? decay, Phys. Rev. C, vol.77, 2008.

E. Fermi, Versuch einer Theorie der ?-Strahlen. I, Zeitschrift f???r Physik, vol.88, issue.3-4, p.161, 1934.
DOI : 10.1007/BF01351864

R. J. Blin-stoyle and S. C. Nair, The fundamentals of ??-decay theory, Advances in Physics, vol.8, issue.60, 1966.
DOI : 10.1103/RevModPhys.36.618

B. R. Holstein, Limit on Fierz interference in nuclear beta decay, Physical Review C, vol.13, issue.2, 1977.
DOI : 10.1103/PhysRevC.13.2517

T. D. Lee and C. N. Yang, Question of parity conservation in weak interactions, Phys. Rev, vol.104, issue.254, 1956.

C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes, and R. P. Hudson, Experimental Test of Parity Conservation in Beta Decay, Physical Review, vol.44, issue.4, p.1413, 1957.
DOI : 10.1080/14786440208520296

M. Goldhaber, L. Grodzins, and A. W. Sunyar, Helicity of Neutrinos, Physical Review, vol.180, issue.3, p.1015, 1958.
DOI : 10.1038/180751a0

R. P. Feynman and M. Gell-mann, Theory of the fermi interaction, Phys. Rev, vol.109, 1958.

G. Puppi, Old and new problems in elementary particles

D. B. Chitwood, MuLan Collaboration) Improved measurement of the positive-muon lifetime and determination of the fermi constant, Phys. Rev. Lett, vol.99, 2007.

N. Cabibbo, Unitary Symmetry and Leptonic Decays, Physical Review Letters, vol.8, issue.12, p.531, 1963.
DOI : 10.1007/BF02785616

J. Beringer, The standard model, Phys. Rev. D, vol.86, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00392471

C. P. Bhalla and M. E. Rose, Decay, Physical Review, vol.42, issue.2, p.774, 1962.
DOI : 10.1080/14786444108561377

M. E. Rose, The effect of the finite size of the nucleus in ??decay, 1951.

I. S. Towner and J. C. Hardy, Parametrization of the statistical rate function for select superallowed transitions, Physical Review C, vol.91, issue.1, 2015.
DOI : 10.1016/0003-4916(78)90158-6

I. S. Towner and J. C. Hardy, and its impact on the unitarity of the Cabibbo???Kobayashi???Maskawa quark-mixing matrix, Reports on Progress in Physics, vol.73, issue.4, p.46301, 2010.
DOI : 10.1088/0034-4885/73/4/046301

J. Damgaard, Corrections to the ft-values of 0+ ??? 0+ superallowed ??-decays, Nuclear Physics A, vol.130, issue.1, pp.233-240, 1969.
DOI : 10.1016/0375-9474(69)90974-9

N. Auerbach, decay in nuclei, Physical Review C, vol.79, issue.3, p.35502, 2009.
DOI : 10.1016/0370-2693(75)90208-7

W. Satula, J. Dobaczewski, W. Nazarewicz, and T. R. Werner, decay in isospin- and angular-momentum-projected nuclear density functional theory, Physical Review C, vol.86, issue.5, p.54316, 2012.
DOI : 10.1016/S0010-4655(00)00121-1

H. Sagawa, N. V. Giai, and T. Suzuki, Effect of isospin mixing on superallowed Fermi ?? decay, Physical Review C, vol.50, issue.5, pp.2163-2170, 1996.
DOI : 10.1103/PhysRevD.50.1173

URL : https://hal.archives-ouvertes.fr/in2p3-00000988

H. Liang, N. V. Gia, and J. Meng, Isospin symmetry-breaking corrections for superallowed ? decay in relativistic RPA approaches, Phys. : Conf. Ser. 205, pp.12028-054316, 2010.

W. E. Ormand and B. A. Brown, Calculated isospin-mixing corrections to Fermi ??-decays in 1s0d-shell nuclei with emphasis on A = 34, Nuclear Physics A, vol.440, issue.2, pp.274-300, 1985.
DOI : 10.1016/0375-9474(85)90341-0

M. Hjorth, ?. Jensen, T. T. Kuo, and E. Osnes, Realistic effective interactions for nuclear systems, Phys. Rep, vol.261125, 1995.

E. Caurier, G. Martínez-pinedo, F. Nowacki, A. Poves, and A. P. Zuker, The shell model as a unified view of nuclear structure, Reviews of Modern Physics, vol.66, issue.2, 2005.
DOI : 10.1103/PhysRevC.64.021304

A. Poves and A. Zuker, Theoretical spectroscopy and the fp shell, Physics Reports, vol.70, issue.4, p.235, 1981.
DOI : 10.1016/0370-1573(81)90153-8

URL : https://hal.archives-ouvertes.fr/in2p3-00006661

W. E. Ormand and B. A. Brown, Empirical isospin-nonconserving hamiltonians for shell-model calculations, Nuclear Physics A, vol.491, issue.1, 1989.
DOI : 10.1016/0375-9474(89)90203-0

Y. L. Lam, Isospin Symmetry Breaking in sd Shell Nuclei, 2011.
URL : https://hal.archives-ouvertes.fr/tel-00777498

A. Sirlin and A. Ferroglia, Radiative corrections in precision electroweak physics: A historical perspective, Reviews of Modern Physics, vol.12, issue.1, 2013.
DOI : 10.1088/0954-3899/30/4/008

J. C. Hardy and I. S. Towner, decays: A new survey with precision tests of the conserved vector current hypothesis and the standard model, Physical Review C, vol.10, issue.182, p.55502, 2009.
DOI : 10.1016/S0375-9474(98)00180-8

H. Yukawa, On the interaction of elementary particles, PTP, vol.17, p.48

A. Nogga, H. Kamada, and W. Glöckle, Modern nuclear force predictions for the ? particle, Phys. Rev.Lett, vol.85, issue.5, 2000.

M. G. Mayer, On closed shells in nuclei, Phys. Rev, vol.74, issue.235, 1948.

C. , L. Sech, and C. Ngô, Physique nucléaire, des quarks aux applications. Dunod

M. G. Mayer, On closed shells in nuclei, II. Phys. Rev, vol.75, 1949.

J. H. Jensen, O. Haxel, and H. E. Suess, On the " magic numbers " in nuclear structure, Phys. Rev, vol.75, p.1766, 1949.

J. Blomqvist and A. Molinari, Collective 0??? vibrations in even spherical nuclei with tensor forces, Nuclear Physics A, vol.106, issue.3, p.242501, 2009.
DOI : 10.1016/0375-9474(68)90515-0

R. D. Woods and D. S. Saxon, Diffuse Surface Optical Model for Nucleon-Nuclei Scattering, Physical Review, vol.92, issue.2, p.577, 1954.
DOI : 10.1103/PhysRev.92.801

C. Cohen-tannoudji, B. Diu, and F. Laloë, Mécanique quantique, volume II, 1973.

L. R. Elton, Nuclear sizes, 1961.

P. Ring and P. Schuck, The nuclear many-body problem, 1980.

C. B. Dover and N. V. Giai, The nucleon-nucleus potential in the Hartree-Fock approximation with Skyrme's interaction, Nuclear Physics A, vol.190, issue.2, pp.373-400, 1972.
DOI : 10.1016/0375-9474(72)90148-0

A. E. Green and P. C. Sood, Proton Potential Anomaly and Nonlocal Potentials, Physical Review, vol.22, issue.4, p.1147, 1958.
DOI : 10.1016/S0031-8914(56)90056-8

A. M. Lane, ) Mirror State Reactions, Physical Review Letters, vol.7, issue.4, p.171, 1962.
DOI : 10.1103/PhysRevLett.7.250

A. M. Lane, Isobaric spin dependence of the optical potential and quasi-elastic (p, n) reactions, Nuclear Physics, vol.35, pp.676-685, 1962.
DOI : 10.1016/0029-5582(62)90153-0

N. Schwierz, I. Wiedenhöver, and A. Volya, Parameterization of the woodssaxon potential for shell-model calculations

O. Sorlin and M. Porquet, Nuclear magic numbers: New features far from stability, Progress in Particle and Nuclear Physics, vol.61, issue.2, p.602, 2008.
DOI : 10.1016/j.ppnp.2008.05.001

URL : https://hal.archives-ouvertes.fr/in2p3-00280392

D. Jason, T. Holt, A. Otsuka, T. Schwenk, and . Suzuki, Threebody forces and shell structure in calcium isotopes, J. Phys, 2012.

Z. Xu and C. Qi, Shell evolution and its indication on the isospin dependence of the spin???orbit splitting, Physics Letters B, vol.724, issue.4-5, pp.247-252, 2013.
DOI : 10.1016/j.physletb.2013.06.018

P. E. Hodgson, The nuclear optical model, Reports on Progress in Physics, vol.34, issue.2, p.765, 1971.
DOI : 10.1088/0034-4885/34/2/306

L. G. Kris and . Heyde, The nuclear shell model

T. H. Skyrme, The effective nuclear potential, Nuclear Physics, vol.9, issue.4, pp.615-634
DOI : 10.1016/0029-5582(58)90345-6

D. Gogny, Simple separable expansions for calculating matrix elements of two-body local interactions with harmonic oscillator functions, Nuclear Physics A, vol.237, issue.3, pp.399-418, 1975.
DOI : 10.1016/0375-9474(75)90407-8

D. Vautherin and D. M. Brink, Hartree-Fock Calculations with Skyrme's Interaction. I. Spherical Nuclei, Physical Review C, vol.46, issue.3, p.626, 1972.
DOI : 10.1016/0029-5582(63)90631-X

E. Chabanat, R. Bonche, R. Haensel, J. Meyer, and R. Schaeffer, A Skyrme parametrization from subnuclear to neutron star densities, Nuclear Physics A, vol.627, issue.4, pp.710-746, 1997.
DOI : 10.1016/S0375-9474(97)00596-4

URL : https://hal.archives-ouvertes.fr/hal-00164346

M. Beiner, H. Flocard, N. V. Giai, and P. Quentin, Nuclear ground-state properties and self-consistent calculations with the skyrme interaction, Nuclear Physics A, vol.238, issue.1, pp.29-69, 1975.
DOI : 10.1016/0375-9474(75)90338-3

S. Krewald, V. Klemt, J. Speth, and A. Faessler, On the use of Skyrme forces in self-consistent RPA calculations, Nuclear Physics A, vol.281, issue.2, 1977.
DOI : 10.1016/0375-9474(77)90019-7

M. Waroquier, K. Heyde, and G. Wenes, An effective Skyrme-type interaction for nuclear structure calculations : (I). Ground-state properties, Nucl. Phys. A, vol.404, issue.269, 1983.

M. Waroquier, K. Heyde, and G. Wenes, An effective Skyrme-type interaction for nuclear structure calculations, Nuclear Physics A, vol.404, issue.2, pp.298-332, 1983.
DOI : 10.1016/0375-9474(83)90551-1

H. Krivine, J. Treiner, and O. Bohigas, Derivation of a fluid-dynamical lagrangian and electric giant resonances, Nuclear Physics A, vol.336, issue.2, pp.155-184, 1980.
DOI : 10.1016/0375-9474(80)90618-1

URL : https://hal.archives-ouvertes.fr/in2p3-00017304

A. K. Dutta and M. Kohno, Microscopic calculation of the fission barrier of some actinide nuclei with the skyrme-type interaction, Nuclear Physics A, vol.349, issue.3-4, pp.455-465, 1980.
DOI : 10.1016/0375-9474(80)90300-0

F. Tondeur, M. Brack, M. Farine, and J. M. Pearson, Static nuclear properties and the parametrisation of Skyrme forces, Nuclear Physics A, vol.420, issue.2, pp.297-319, 1984.
DOI : 10.1016/0375-9474(84)90444-5

J. Bartel, P. Quentin, M. Brack, C. Guet, and H. Hakansson, Towards a better parametrisation of Skyrme-like effective forces: A critical study of the SkM force, Nuclear Physics A, vol.386, issue.1, pp.79-100, 1982.
DOI : 10.1016/0375-9474(82)90403-1

URL : https://hal.archives-ouvertes.fr/in2p3-00009508

J. M. Gomez and J. Martorell, A study of the dependence of coulomb-energy shifts on the symmetry energy of density-dependent effective interactions, Nuclear Physics A, vol.410, issue.3, pp.475-497, 1983.
DOI : 10.1016/0375-9474(83)90639-5

N. Van-giai and L. N. Savushkin, Coulomb displacement energies in relativistic and non-relativistic self-consistent models, Nucl. Phys. A, vol.549, pp.143-154, 1992.
URL : https://hal.archives-ouvertes.fr/in2p3-00004640

M. Rayet, M. Arnould, F. Tondeur, and G. Paulus, Nuclear forces and the properties of matter at high temperature and density, Astron. Astrophys, vol.116, issue.183, 1982.

J. Dobaczewski, H. Flocard, and J. Treiner, Hartree-Fock-Bogolyubov description of nuclei near the neutron-drip line, Nuclear Physics A, vol.422, issue.1, 1984.
DOI : 10.1016/0375-9474(84)90433-0

URL : https://hal.archives-ouvertes.fr/in2p3-00017408

R. Smola´nczuksmola´nczuk and J. Dobaczewski, Particle-drip lines from the Hartree-Fock-Bogoliubov theory with Skyrme interaction, Physical Review C, vol.208, issue.5, p.2166
DOI : 10.1016/0370-1573(91)90070-3

N. V. Giai and H. Sagawa, Monopole and dipole compression modes in nuclei, Nucl. Phys. A, vol.371, issue.1, 1981.

B. D. Chang, Spin saturation and the Skyrme interaction, Physics Letters B, vol.56, issue.3, 1975.
DOI : 10.1016/0370-2693(75)90375-5

J. Friedrich and P. Reinhard, Skyrme-force parametrization: Least-squares fit to nuclear ground-state properties, Physical Review C, vol.8, issue.1, 1986.
DOI : 10.1007/978-1-4757-4398-2_3

H. Fiedeldey, The equivalent local potential and the Perey effect, Nuclear Physics, vol.77, issue.1, pp.149-156, 1966.
DOI : 10.1016/0029-5582(66)90682-1

D. M. Brink and E. Boeker, Effective interactions for Hartree-Fock calculations, Nuclear Physics A, vol.91, issue.1, pp.1-16, 1967.
DOI : 10.1016/0375-9474(67)90446-0

J. Dechargé and D. Gogny, Hartree-Fock-Bogolyubov calculations with the D1 effective interaction on spherical nuclei, Phys. Rev. C, vol.21, issue.4, 1980.

J. F. Berger, M. Girod, and D. Gogny, Time-dependent quantum collective dynamics applied to nuclear fission, Computer Physics Communications, vol.63, issue.1-3, pp.365-374, 1991.
DOI : 10.1016/0010-4655(91)90263-K

F. Chappert, M. Girod, and S. Hilaire, Towards a new Gogny force parameterization: Impact of the neutron matter equation of state, Physics Letters B, vol.668, issue.5, pp.420-424, 2008.
DOI : 10.1016/j.physletb.2008.09.017

S. Goriely, S. Hilaire, M. Girod, and S. Péru, First Gogny-Hartree-Fock-Bogoliubov Nuclear Mass Model, Physical Review Letters, vol.102, issue.24, 2009.
DOI : 10.1103/PhysRevLett.99.032502

A. De, S. , and I. Talmi, Nuclear shell theory

J. Suhonen, From nucleons to nucleus, concepts of microscopic nuclear theory

J. Meyer, Interactions effectives, th??ories de champ moyen, masses et rayons nucl??aires, Annales de Physique, vol.28, issue.3, 2003.
DOI : 10.1051/anphys:2003006

P. Navrátil, J. P. Vary, and B. R. Barrett, Properties of 12 C in the ab initio nuclear shell model, Phys. Rev. Lett, vol.84, issue.5728, 2002.

E. Caurier, G. Martínez-pinedo, F. Nowacki, A. Poves, and A. P. Zuker, The shell model as a unified view of nuclear structure, Reviews of Modern Physics, vol.66, issue.2, 2005.
DOI : 10.1103/PhysRevC.64.021304

B. A. Brown and W. D. Rae, The Shell-Model Code NuShellX@MSU, Nuclear Data Sheets, vol.120, pp.115-118, 2014.
DOI : 10.1016/j.nds.2014.07.022

R. R. Whitehead, A. Watt, B. J. Cole, and I. Morrison, Computational Methods for Shell-Model Calculations, Adv. Nucl. Phys, vol.9, issue.123, 1977.
DOI : 10.1007/978-1-4615-8234-2_2

B. A. Brown, Lecture notes in nuclear structure physics

E. Caurier and F. Nowacki, Shell model and nuclear structure for from stability, Acta Phys. Pol. B, vol.30, p.705, 1999.
DOI : 10.1016/j.ppnp.2006.12.012

D. Zwarts, RITSSCHIL, a new program for shell-model calculations, Computer Physics Communications, vol.38, issue.3, p.365, 1985.
DOI : 10.1016/0010-4655(85)90105-5

A. Novoselsky and M. Vallì-eres, The drexel university shell model (DUSM) code. Nucl, 1993.

E. Caurier, G. Martinez, ?. Pinedo, F. Nowacki, A. Poves et al., Full 0? shell model calculation of the binding energies of the 1f 7/2 nuclei, Phys. Rev. C, vol.59, 1999.
URL : https://hal.archives-ouvertes.fr/in2p3-00023861

C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, Journal of Research of the National Bureau of Standards, vol.45, issue.4, pp.225-280, 1950.
DOI : 10.6028/jres.045.026

M. Hjorth-jensen, Computational physics, lecture notes fall, 2015.

L. Coraggioa, A. Covelloa, A. Garganoa, N. Itacoa, and T. T. Kuo, Shellmodel calculations and realistic effective interactions, 2009.

K. A. Brueckner, Two-Body Forces and Nuclear Saturation. III. Details of the Structure of the Nucleus, Physical Review, vol.19, issue.5, p.1353, 1955.
DOI : 10.1103/RevModPhys.19.239

S. Bogner, T. T. Kuo, L. Coraggio, A. Covello, and N. Itaco, Low momentum nucleon-nucleon potential and shell model effective interactions, Physical Review C, vol.560, issue.5, p.51301, 2002.
DOI : 10.1016/0375-9474(93)90037-X

C. Bloch and J. Horowitz, Sur la d??termination des premiers ??tats d'un syst??me de fermions dans le cas d??g??n??r??, Nuclear Physics, vol.8, pp.91-105, 1958.
DOI : 10.1016/0029-5582(58)90136-6

K. Suzuki and S. Y. Lee, Convergent theory for effective interaction in nuclei. prog. theor. phys, 1980.

A. Poves and A. P. Zuker, Theoretical spectroscopy and the fp shell, Physics Reports, vol.70, issue.4, pp.235-314, 1981.
DOI : 10.1016/0370-1573(81)90153-8

URL : https://hal.archives-ouvertes.fr/in2p3-00006661

T. T. Kuo and G. E. Brown, Structure of finite nuclei and the free nucleon-nucleon interaction, Nuclear Physics, vol.85, issue.1, p.40, 1966.
DOI : 10.1016/0029-5582(66)90131-3

T. Hamada and I. D. Johnston, A potential model representation of two-nucleon data below 315 MeV, Nuclear Physics, vol.34, issue.2, p.382, 1961.
DOI : 10.1016/0029-5582(62)90228-6

G. Martínez-pinedo, A. P. Zuker, A. Poves, and E. Caurier, Full pf shell study of A = 47 and A = 49 nuclei, Phys. Rev. C, vol.55, issue.187, 1997.

S. Cohen and D. Kurath, Effective interactions for the 1p shell, Nuclear Physics, vol.73, issue.1, 1965.
DOI : 10.1016/0029-5582(65)90148-3

B. A. Brown and B. H. , Status of the Nuclear Shell Model, Annual Review of Nuclear and Particle Science, vol.38, issue.1, 1988.
DOI : 10.1146/annurev.ns.38.120188.000333

B. A. Brown and W. A. Richter, shell, Physical Review C, vol.74, issue.3, p.34315, 2006.
DOI : 10.1016/0375-9474(88)90391-0

URL : https://hal.archives-ouvertes.fr/in2p3-00016817

M. Honma, T. Otsuka, B. A. Brown, and T. Mizusaki, Effective interaction for pf -shell nuclei, Phys. Rev. C, vol.65, 2002.
DOI : 10.1103/physrevc.65.061301

URL : http://arxiv.org/pdf/nucl-th/0205033

M. Honma, T. Otsuka, T. Mizusaki, and M. Hjorth-jensen, -shell nuclei, Physical Review C, vol.33, issue.6, p.64323, 2009.
DOI : 10.1103/PhysRevC.38.278

J. P. Elliott and T. H. French, Centre-Of-Mass Effects in the Nuclear Shell-Model, Proc. Roy. Soc. A 232, p.561, 1955.
DOI : 10.1098/rspa.1955.0239

H. J. Lipkin, Center-of-Mass Motion in the Nuclear Shell Model, Physical Review, vol.108, issue.6, p.1395, 1958.
DOI : 10.1103/PhysRev.108.482

E. Baranger and C. W. Lee, Spurious states arising from the centre-of-mass motion of a nucleus, Nuclear Physics, vol.22, issue.1, 1961.
DOI : 10.1016/0029-5582(61)90371-6

M. A. Nagarajan, Separability of Center-of-Mass Motion in the Nuclear Shell Model, Physical Review, vol.22, issue.1B, p.34, 1964.
DOI : 10.1016/0029-5582(61)90371-6

D. H. Gloeckner and R. D. Lawson, Spurious center-of-mass motion, Physics Letters B, vol.53, issue.4, p.313, 1974.
DOI : 10.1016/0370-2693(74)90390-6

F. Nowacki and A. Pove, New effective interaction for 0? shell-model calculations in the sd ? pf valence space, Phys. Rev. C, vol.79, 2009.

D. H. Wilkinson, Isospin in nuclear physics, 1969.

A. Frank, J. Jolie, and P. V. Lsacker, Symmetries in atomic nuclei, from lsospin to supersymmetry

I. S. Towner and J. C. Hardy, Superallowed 0+ ??? 0+ nuclear ??-decays, Nuclear Physics A, vol.205, issue.1, p.33, 1973.
DOI : 10.1016/0375-9474(73)90118-8

M. Maccormick and G. Audi, Evaluated experimental isobaric analogue states from <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:mi>T</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy="false">/</mml:mo><mml:mn>2</mml:mn></mml:math> to <mml:math altimg="si2.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:mi>T</mml:mi><mml:mo>=</mml:mo><mml:mn>3</mml:mn></mml:math> and associated IMME coefficients, Nuclear Physics A, vol.925, pp.61-95, 2014.
DOI : 10.1016/j.nuclphysa.2014.01.007

G. A. Miller and A. Schwenk, decay: Formalism and schematic models, Physical Review C, vol.78, issue.3, p.35501, 2008.
DOI : 10.1016/0370-2693(94)01634-O

W. E. Ormand and B. A. Brown, Corrections to the fermi matrix element for superallowed ? decay, Phys. Rev. Lett, vol.62, issue.8, 1989.

W. E. Ormand and B. A. Brown, -shell Fermi transitions, Physical Review C, vol.157, issue.5, 1995.
DOI : 10.1016/0370-1573(88)90047-6

A. Poves, J. Sánchez-solano, E. Caurier, and F. Nowacki, Shell model study of the isobaric chains A=50, A=51 and A=52, Nuclear Physics A, vol.694, issue.1-2, 2001.
DOI : 10.1016/S0375-9474(01)00967-8

URL : https://hal.archives-ouvertes.fr/in2p3-00010526

I. Angeli and K. P. Marinova, Table of experimental nuclear ground state charge radii : An update. Atomic Data and Nuclear Data Tables 99, pp.69-95, 2013.

W. Bertozzi, J. Friar, J. Heisenberg, and J. W. Negele, Contributions of neutrons to elastic electron scattering from nuclei, Physics Letters B, vol.41, issue.4, p.408, 1972.
DOI : 10.1016/0370-2693(72)90662-4

M. Nishimura and D. W. Sprung, Electromagnetic spin-orbit contribution to the c6 transition in 50 Ti(e, e ), 1987.

G. Audi, The AME2012 atomic mass evaluation (II). tables, graphs and references, CPC(HEP & NP), vol.36, issue.12, pp.1603-2014, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00814242

W. A. Richter and M. G. Van-der-merwe, New effective interactions for the 0f 1p shell, Nucl. Phys. A, vol.532, issue.325, 1991.

E. Chabanat, R. Bonche, R. Haensel, J. Meyer, and R. Schaeffer, A Skyrme parametrization from subnuclear to neutron star densities Part II. Nuclei far from stabilities, Nuclear Physics A, vol.635, issue.1-2, pp.231-256, 1998.
DOI : 10.1016/S0375-9474(98)00180-8

URL : https://hal.archives-ouvertes.fr/hal-00164346

M. Bender, P. H. Heenen, and P. G. Reinhard, Self-consistent mean-field models for nuclear structure, Reviews of Modern Physics, vol.42, issue.1, 2003.
DOI : 10.1103/PhysRevC.42.1416

C. Titin-schnaider, . Ph, and . Quentin, Coulomb exchange contribution in nuclear Hartree-Fock calculations, Physics Letters B, vol.49, issue.5, 1974.
DOI : 10.1016/0370-2693(74)90617-0

J. Skalski, Self-consistent calculations of the exact Coulomb exchange effects in spherical nuclei, Physical Review C, vol.53, issue.2, p.24312, 2001.
DOI : 10.1103/PhysRevC.53.740

]. T. Koopmans, ??ber die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms, Physica, vol.1, issue.1-6, pp.104-113, 1934.
DOI : 10.1016/S0031-8914(34)90011-2

J. W. Negele, Structure of Finite Nuclei in the Local-Density Approximation, Physical Review C, vol.29, issue.4, p.1260, 1970.
DOI : 10.1016/0029-5582(62)91025-8

N. M. Hugenholtz and L. Van-hovee, A theorem on the single particle energy in a Fermi gas with interaction, Physica, vol.24, issue.1-5, pp.363-376, 1958.
DOI : 10.1016/S0031-8914(58)95281-9

R. L. Becker, Empirical validity of phenomenological renormalized nuclear Brueckner-Hartree-Fock theory, Physics Letters B, vol.32, issue.4, pp.263-266, 1970.
DOI : 10.1016/0370-2693(70)90523-X

J. W. Negele, The mean-field theory of nuclear structure and dynamics, Reviews of Modern Physics, vol.34, issue.4, p.913, 1982.
DOI : 10.1103/PhysRevA.16.1451

Y. Y. Cheng, M. Bao, Y. M. Zhao, and A. Arima, Wigner energy and nuclear mass relations, Physical Review C, vol.91, issue.2, p.24313, 2015.
DOI : 10.1103/PhysRevC.80.064323

I. S. Towner and J. C. Hardy, decay, Physical Review C, vol.82, issue.6, p.65501, 2010.
DOI : 10.1016/0370-1573(83)90008-X

URL : https://hal.archives-ouvertes.fr/jpa-00224098

B. A. Brown, W. A. Richter, and R. Lindsay, Displacement energies with the Skyrme Hartree???Fock method, Physics Letters B, vol.483, issue.1-3, pp.49-54, 2000.
DOI : 10.1016/S0370-2693(00)00589-X

P. Baczyk, J. Dobaczewski, M. Konieczka, and W. Satula, Strong-interaction Isospin-symmetry Breaking Within the Density Functional Theory, Acta Physica Polonica B Proceedings Supplement, vol.8, issue.3, p.539, 2015.
DOI : 10.5506/APhysPolBSupp.8.539

E. Caurier, Shell model and nuclear structure, Progress in Particle and Nuclear Physics, vol.59, issue.1, p.226, 2007.
DOI : 10.1016/j.ppnp.2006.12.012

URL : https://hal.archives-ouvertes.fr/in2p3-00150830

M. Beiner, H. Flocard, N. V. Giai, and P. Quentin, Nuclear ground-state properties and self-consistent calculations with the skyrme interaction, Nuclear Physics A, vol.238, issue.1, pp.29-69, 1975.
DOI : 10.1016/0375-9474(75)90338-3

T. H. Skyrme, The effective nuclear potential, Nuclear Physics, vol.9, issue.4, pp.615-634, 1959.
DOI : 10.1016/0029-5582(58)90345-6

N. Severijns, M. Beck, and O. Naviliat-cuncic, Tests of the standard electroweak model in nuclear beta decay, Reviews of Modern Physics, vol.110, issue.3, p.991, 2006.
DOI : 10.1016/S0370-2693(99)00345-7

URL : https://hal.archives-ouvertes.fr/in2p3-00103743

B. R. Martin, An introduction to nuclear and particles physics, p.410, 2006.

A. Arima and F. Iachello, Collective nuclear states as representations of a SU (6) group, Phys. Rev. Lett, vol.35, 1069.

H. Abele, The neutron alphabet: Exploring the properties of fundamental interactions, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.611, issue.2-3, pp.193-197, 2009.
DOI : 10.1016/j.nima.2009.07.100

W. Greiner and B. Müller, Gauge theory ofweak interactions
DOI : 10.1007/978-3-662-03323-4

J. and L. Bloas, Mélange d'isospin et désintégration ?, 2011.

]. K. Bennaceur and J. Dobaczewski, Coordinate-space solution of the
URL : https://hal.archives-ouvertes.fr/in2p3-00023514

K. T. Davies, R. , and L. Becker, Center-of-mass corrections in nuclear self-consistent field theories, Nuclear Physics A, vol.176, issue.1, 1971.
DOI : 10.1016/0375-9474(71)90727-5

N. A. Smirnova and C. Volpe, On the asymmetry of Gamow???Teller ??-decay rates in mirror nuclei in relation with second-class currents, Nuclear Physics A, vol.714, issue.3-4, p.441, 2003.
DOI : 10.1016/S0375-9474(02)01392-1

URL : https://hal.archives-ouvertes.fr/in2p3-00012546

R. Machleidt, The Meson Theory of Nuclear Forces and Nuclear Structure, Adv. Nucl. Phys, vol.19, p.189, 1989.
DOI : 10.1007/978-1-4613-9907-0_2

J. W. Negele, The mean-field theory of nuclear structure and dynamics, Reviews of Modern Physics, vol.34, issue.4, p.913, 1982.
DOI : 10.1103/PhysRevA.16.1451

P. Klüpfel, P. G. Reinhard, T. J. Bürvenich, and J. A. Maruhn, Variations on a theme by Skyrme: A systematic study of adjustments of model parameters, Physical Review C, vol.19, issue.3, p.34310, 2009.
DOI : 10.1007/PL00013645

L. Sheldon and . Glashow, Partial-symmetries of weak interactions, Nucl.Phys, vol.22, pp.579-588, 1961.

F. J. Hasert, Observation of neutrino-like interactions without muon or electron in the gargamelle neutrino experiment, Physics Letters B, vol.46, issue.1, p.138, 1973.
DOI : 10.1016/0370-2693(73)90499-1

M. Herrero, The standard model. arXiv :hep-ph, 9812242.

B. Anissa, Test du Modèle StandardàStandardà bassé energie : -Mesure précise des rapports d'embranchement de 62 Ga -Mesure précise de la durée de vie de 38 Ca, 2008.

S. E. Koonin, D. J. Dean, and K. Langanke, Shell model monte carlo methods, Phys. Rep, vol.278, issue.1, 1997.

T. Otsuka, T. Mizusaki, and M. Honma, Monte Carlo shell-model calculations, Journal of Physics G: Nuclear and Particle Physics, vol.25, issue.4, 1999.
DOI : 10.1088/0954-3899/25/4/023

G. A. Miller and A. Schwenk, decay: Radial excitations, Physical Review C, vol.80, issue.6, p.64319, 2009.
DOI : 10.1103/PhysRevC.77.065503

J. B. French and M. H. Macfarlane, Isobaric-spin splitting of single-particle resonances, Nuclear Physics, vol.26, issue.1, 1961.
DOI : 10.1016/0029-5582(61)90128-6

URL : https://dspace.library.uu.nl/bitstream/1874/18299/1/french_61_isobaricspin.pdf

J. Chadwick, Possible Existence of a Neutron, Nature, vol.129, issue.3252, pp.312-312, 1932.
DOI : 10.1038/129312a0

]. W. Heisenberg, ??ber den Bau der Atomkerne. I, Z. Phys, vol.77, pp.1-11, 1932.
DOI : 10.1007/978-3-642-70078-1_10

C. Ordóñez, L. Ray, and U. Van-kolck, Two-nucleon potential from chiral lagrangians, Phys. Rev. C, vol.53, 1996.

T. T. Kuo, S. Y. Lee, and K. F. Ratcliff, A folded-diagram expansion of the model-space effective hamiltonian, Nuclear Physics A, vol.176, issue.1, p.65, 1971.
DOI : 10.1016/0375-9474(71)90731-7

L. Coraggio, A. Covello, A. Gargano, N. Itaco, and T. T. Kuo, Bonn potential and shell-model calculations for 206, Pb. Phys. Rev. C, vol.205, issue.3346, 1998.
DOI : 10.1103/physrevc.58.3346

URL : http://arxiv.org/pdf/nucl-th/9807079

W. M. Macdonald, Coulomb Corrections to the Fermi Nuclear Matrix Element, Physical Review, vol.107, issue.6, p.1420, 1958.
DOI : 10.1103/PhysRev.107.781

M. Dufour and A. P. Zuker, Realistic collective nuclear Hamiltonian, Physical Review C, vol.46, issue.4, p.1641, 1996.
DOI : 10.1103/PhysRevC.46.R1573

URL : https://hal.archives-ouvertes.fr/in2p3-00005614

B. Brown, B. Richter, and . Wildenthal, Spin-tensor analysis of a new empirical shell-model interaction for the 1s-0d shell nuclei, Journal of Physics G: Nuclear Physics, vol.11, issue.11, pp.1191-1192, 1985.
DOI : 10.1088/0305-4616/11/11/005

S. Gales and N. V. Giai, Symétrie d'isospin et structure nucléaire Ecole Joliot Curie " Symétries et physique nucléaire du 15- 19 septembre 1986 : 5` eme session, Maubuisson, p.644027, 1986.

R. Machleidt, Evaluated experimental isobaric analogue states from t = 1/2 to t = 3 and associated IMME coefficients, Adv. Nucl. Phys, vol.19, pp.189-224, 1989.

B. Schaeffer, Electromagnetic Theory of the Binding Energy of the Hydrogen Isotopes, Journal of Fusion Energy, vol.41, issue.2, pp.377-381, 2011.
DOI : 10.1051/epn/2010204

R. J. Furnstahl and H. W. Hammer, Are occupation numbers observable?, Physics Letters B, vol.531, issue.3-4, pp.203-208, 2002.
DOI : 10.1016/S0370-2693(01)01504-0

URL : https://doi.org/10.1016/s0370-2693(01)01504-0

L. Lapikás, Quasi-elastic electron scattering off nuclei, Nuclear Physics A, vol.553, pp.297-308, 1993.
DOI : 10.1016/0375-9474(93)90630-G

J. B. French and M. H. Macfarlane, Isobaric-spin splitting of single-particle resonances, Nuclear Physics, vol.26, issue.1, pp.168-176, 1961.
DOI : 10.1016/0029-5582(61)90128-6

E. Caurier, A. P. Zuker, A. Poves, and G. Martínez-pinedo, Full pf shell model study of A = 48 nuclei, Phys. Rev. C, vol.50, issue.225, 1994.
URL : https://hal.archives-ouvertes.fr/in2p3-00015648

J. , L. Bloas, M. Koh, P. Quentin, L. Bonneau et al., Exact coulomb exchange calculations in the skyrme-hartree-fock-bcs framework and tests of the slater approximation, Phys. Rev. C, vol.84, 2011.
URL : https://hal.archives-ouvertes.fr/in2p3-00621283