M. Benjamin, . Clasie, B. Jacob, . Flanz, M. Hanne et al., Interpolation of tabulated proton Bragg peaks, Phys. Med. Biol. Phys. Med. Biol, vol.5757215721, issue.57, pp.405-4090031, 2012.

C. Golnik, F. Hueso-gonzález, A. Müller, P. Dendooven, W. Enghardt et al., -ray timing measurements, Physics in Medicine and Biology, vol.59, issue.18, pp.5399-5422
DOI : 10.1088/0031-9155/59/18/5399

L. Grevillot, . Bertrand, . Dessy, D. Freud, and . Sarrut, A Monte Carlo pencil beam scanning model for proton treatment plan simulation using GATE/GEANT4. Physics in medicine and biology, pp.5203-5222
URL : https://hal.archives-ouvertes.fr/hal-00630709

L. Grevillot, . Bertrand, . Dessy, D. Freud, and . Sarrut, GATE as a GEANT4-based Monte Carlo platform for the evaluation of proton pencil beam scanning treatment plans, Physics in Medicine and Biology, vol.57, issue.13, pp.4223-4267, 22684098.
DOI : 10.1088/0031-9155/57/13/4223

URL : https://hal.archives-ouvertes.fr/hal-00797063

L. Grevillot, S. Stock, and . Vatnitsky, Evaluation of beam delivery and ripple filter design for non-isocentric proton and carbon ion therapy Physics in medicine and biology, pp.7985-8005, 2015.

P. Gueth, . Dauvergne, J. Freud, . Létang, . Ray et al., Machine learning-based patient specific prompt-gamma dose monitoring in proton therapy, Physics in Medicine and Biology, vol.58, issue.13, pp.4563-77
DOI : 10.1088/0031-9155/58/13/4563

URL : https://hal.archives-ouvertes.fr/hal-00849321

F. Hueso-gonzález, F. Fiedler, C. Golnik, T. Kormoll, G. Pausch et al., Compton Camera and Prompt Gamma Ray Timing: Two Methods for In Vivo Range Assessment in Proton Therapy, Frontiers in Oncology, vol.57, issue.11, pp.1-13, 2016.
DOI : 10.1088/0031-9155/57/11/R99

F. Brent, J. Huisman, . Létang, D. Testa, and . Sarrut, Accelerated Prompt Gamma estimation for clinical Proton Therapy simulations, Physics in Medicine and Biology, vol.61, pp.7725-7743, 2016.

S. Jan, . Santin, . Strul, . Staelens, . Assié et al., GATE: a simulation toolkit for PET and SPECT, URL http://stacks.iop.org, pp.4945430031-9155, 2004.
DOI : 10.1088/0031-9155/49/19/007

URL : https://hal.archives-ouvertes.fr/in2p3-00021834

F. Janssen, . Landry, . Lopes, . Dedes, D. Smeets et al., Factors influencing the accuracy of beam range estimation in proton therapy using prompt gamma emission, Physics in Medicine and Biology, vol.59, issue.15, pp.4427-4468
DOI : 10.1088/0031-9155/59/15/4427

C. Antje, A. Knopf, and . Lomax, In vivo proton range verification: a review Physics in medicine and biology, pp.131-60, 2013.

C. Aafke and . Kraan, Range Verification Methods in Particle Therapy: Underlying Physics and Monte Carlo Modeling, Frontiers in Oncology, vol.5, pp.1-27, 2015.

J. Krimmer, Development of a Compton camera for medical applications based on silicon strip and scintillation detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers , Detectors and Associated Equipment, pp.98-101, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01101334

S. Kurosawa, H. Kubo, K. Ueno, S. Kabuki, S. Iwaki et al., Prompt gamma detection for range verification in proton therapy, Current Applied Physics, vol.12, issue.2, pp.364-368
DOI : 10.1016/j.cap.2011.07.027

R. William and . Leo, Techniques for Nuclear and Particle Physics Experiments, 1994.

H. Hsin-hon-lin, T. Chang, K. Chao, and . Chuang, A comparison of two prompt gamma imaging techniques with collimator-based cameras for range verification in proton therapy, Radiation Physics and Chemistry, pp.1-7, 2016.

G. Llosá, M. Trovato, J. Barrio, A. Etxebeste, E. Muñoz et al., First Images of a Three-Layer Compton Telescope Prototype for Treatment Monitoring in Hadron Therapy, Frontiers in Oncology, vol.56
DOI : 10.1088/0031-9155/56/4/012

C. H. Chul-hee-min, M. Y. Kim, J. Youn, and . Kim, Prompt gamma measurements for locating the dose falloff region in the proton therapy, Applied Physics Letters, vol.89, issue.18, pp.38-41, 2006.

M. Moteabbed, H. España, and . Paganetti, Monte Carlo patient study on the comparison of prompt gamma and PET imaging for range verification in proton therapy Physics in medicine and biology, pp.1063-82, 2011.

T. Conka-nurdan, K. Nurdan, .. B. Brill, and . Walenta, Design criteria for a high energy Compton Camera and possible application to targeted cancer therapy, Journal of Instrumentation, vol.1010, issue.07, pp.7018-07018, 2015.

H. Paganetti, Range uncertainties in proton therapy and the role of Monte Carlo simulations, Physics in Medicine and Biology, vol.57, issue.11
DOI : 10.1088/0031-9155/57/11/R99

I. Perali, . Celani, C. Bombelli, . Fiorini, . Camera et al., Prompt gamma imaging of proton pencil beams at clinical dose rate, Physics in Medicine and Biology, vol.59, issue.19, pp.5849-5871, 2014.
DOI : 10.1088/0031-9155/59/19/5849

M. Pinto, . Dauvergne, . Freud, J. Krimmer, . Letang et al., Design optimisation of a TOF-based collimated camera prototype for online hadrontherapy monitoring, Physics in Medicine and Biology, vol.59, issue.24, pp.7653-7674, 2014.
DOI : 10.1088/0031-9155/59/24/7653

URL : https://hal.archives-ouvertes.fr/hal-01115740

M. Pinto, D. Dauvergne, N. Freud, J. Krimmer, J. M. Létang et al., Assessment of Geant4 Prompt-Gamma Emission Yields in the Context of Proton Therapy Monitoring, Frontiers in Oncology, vol.60, issue.12, pp.1-7, 2016.
DOI : 10.1088/0031-9155/60/12/4849

URL : https://hal.archives-ouvertes.fr/hal-01272829

M. Simulations, M. Carlo, P. Gamma-magdalena-rafecas, E. Sterpin-bibliography, U. Amaldi et al., Proton Therapy, Treatment Verification, Clinical Simulations Laboratoire (s) de recherche : Creatis, IPNL Directeur de thèse: David Sarrut, Étienne Testa Président de jury : Composition du jury : Peter Dendooven Present challenges in hadrontherapy techniques. The European Physical Journal Plus, pp.1-15

U. Amaldi and G. Kraft, Radiotherapy with beams of carbon ions, Reports on Progress in Physics, vol.68, issue.8, pp.1861-1882, 2005.
DOI : 10.1088/0034-4885/68/8/R04

N. Arbor, . Dauvergne, J. Dedes, . Létang, C. Parodi et al., Monte Carlo comparison of x-ray and proton CT for range calculations of proton therapy beams, Physics in Medicine and Biology, vol.60, issue.19, pp.75850031-91557585, 2015.
DOI : 10.1088/0031-9155/60/19/7585

URL : https://hal.archives-ouvertes.fr/hal-01205940

M. Benedikt and . Wrulich, MedAustron???Project overview and status, The European Physical Journal Plus, vol.430, issue.278, pp.2011-11069
DOI : 10.1016/S0168-9002(99)00207-7

M. J. Berger, . Estar, and A. Pstar, Computer Programs for Calculating Stopping Powers and Ranges for Electrons, Protons and Helium Ions, National Institute of Standards and Technology, 1995.

K. Aleksandra, E. Biegun, P. C. Seravalli, I. Lopes, M. Rinaldi et al., Time-of-flight neutron rejection to improve prompt gamma imaging for proton range verification: a simulation study, Physics in medicine and biology, vol.57, issue.20, pp.6429-6473

J. David, . Brenner, J. Eric, and . Hall, Secondary neutrons in clinical proton radiotherapy: a charged issue Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology, pp.165-70, 2008.

N. Burridge, A. Amer, T. Marchant, J. Sykes, J. Stratford et al., Online adaptive radiotherapy of the bladder: Small bowel irradiated-volume reduction, International Journal of Radiation Oncology*Biology*Physics, vol.66, issue.3, pp.892-897, 2006.
DOI : 10.1016/j.ijrobp.2006.07.013

J. , D. Chapman, and C. J. Gillespie, The power of radiation biophysics -Let's use it, International Journal of Radiation Oncology Biology Physics, vol.84, issue.2, pp.309-311

M. Benjamin, . Clasie, B. Jacob, . Flanz, M. Hanne et al., Interpolation of tabulated proton Bragg peaks, Phys. Med. Biol. Phys. Med. Biol, vol.57215721, issue.57, pp.405-4090031, 2012.

G. Coutrakon, J. Cortese, J. Ghebremedhin, J. Hubbard, P. Johanning et al., Microdosimetry spectra of the Loma Linda proton beam and relative biological effectiveness comparisons, Medical Physics, vol.35, issue.9, p.1499, 1997.
DOI : 10.1002/1097-0142(197506)35:6<1664::AID-CNCR2820350628>3.0.CO;2-#

M. Cunha, C. Monini, M. Testa, and . Beuve, NanOx, a new model to predict cell survival in the context of particle therapy, Physics in Medicine and Biology, vol.62, issue.4, pp.1248-1268, 2017.
DOI : 10.1088/1361-6560/aa54c9

URL : https://hal.archives-ouvertes.fr/hal-01446509

G. Dedes, . Pinto, . Dauvergne, . Freud, J. Krimmer et al., Assessment and improvements of Geant4 hadronic models in the context of prompt-gamma hadrontherapy monitoring, Physics in Medicine and Biology, vol.59, issue.7, pp.1747-72, 2014.
DOI : 10.1088/0031-9155/59/7/1747

URL : https://hal.archives-ouvertes.fr/hal-00967197

P. Dendooven, H. J. Buitenhuis, P. Diblen, A. Heeres, . Biegun et al., Short-lived positron emitters in beam-on PET imaging during proton therapy, Physics in Medicine and Biology, vol.6060238923, issue.23, pp.8923-8947, 2015.

M. Durante and H. Paganetti, Nuclear physics in particle therapy: a review, Reports on Progress in Physics, vol.79, issue.9, pp.1-59, 2016.
DOI : 10.1088/0034-4885/79/9/096702

W. El-kanawati, J. Létang, . Dauvergne, . Pinto, . Sarrut et al., Monte Carlo simulation of prompt ?-ray emission in proton therapy using a specific track length estimator, Physics in Medicine and Biology, vol.6060208067, issue.20, pp.8067-8086, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01207342

W. Enghardt, P. Crespo, F. Fiedler, R. Hinz, K. Parodi et al., Charged hadron tumour therapy monitoring by means of PET. Nuclear Instruments and Methods in Physics Research , Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, pp.284-288, 2004.

S. España and H. Paganetti, The impact of uncertainties in the CT conversion algorithm when predicting proton beam ranges in patients from dose and PET-activity distributions, Physics in Medicine and Biology, vol.55, issue.24, pp.7557-7571, 2010.
DOI : 10.1088/0031-9155/55/24/011

P. Fossati, S. Molinelli, N. Matsufuji, M. Ciocca, A. Mirandola et al., Dose prescription in carbon ion radiotherapy: a planning study to compare NIRS and LEM approaches with a clinically-oriented strategy, Physics in Medicine and Biology, vol.57, issue.22, pp.7543-7554, 2012.
DOI : 10.1088/0031-9155/57/22/7543

N. Freud, F. Roellinghoff, M. Testa, J. Pinto, and . Smeets, Apparatus for particle therapy verification comprising a collimator with multiple openings, 2015. URL https

H. Fuchs, M. Alber, T. Schreiner, and D. Georg, Implementation of spot scanning dose optimization and dose calculation for helium ions in Hyperion, Medical Physics, vol.58, issue.Suppl. 1, pp.5157-5166, 2015.
DOI : 10.1088/0031-9155/58/8/2471

C. Golnik, F. Hueso-gonzález, A. Müller, P. Dendooven, W. Enghardt et al., -ray timing measurements, Physics in Medicine and Biology, vol.59, issue.18, pp.5399-5422
DOI : 10.1088/0031-9155/59/18/5399

G. Goodman, . Skarsgard, . Thompson, . Harrison, C. Lam et al., Pion therapy at TRIUMF. Treatment results for astrocytoma grades 3 and 4: a pilot study, Radiotherapy and Oncology, vol.17, issue.1, pp.21-28, 1990.
DOI : 10.1016/0167-8140(90)90045-X

L. Grevillot, S. Stock, and . Vatnitsky, Evaluation of beam delivery and ripple filter design for nonisocentric proton and carbon ion therapy Physics in medicine and biology, pp.7985-8005, 2015.

P. Gueth, . Dauvergne, J. Freud, . Létang, . Ray et al., Machine learning-based patient specific prompt-gamma dose monitoring in proton therapy, Physics in Medicine and Biology, vol.58, issue.13, pp.4563-77
DOI : 10.1088/0031-9155/58/13/4563

URL : https://hal.archives-ouvertes.fr/hal-00849321

K. Gunzert-marx, H. Iwase, R. Schardt, and . Simon, Secondary beam fragments produced by 200 MeV/u 12C ions in water and their dose contributions in carbon ion radiotherapy, New Journal of Physics, vol.10, issue.7

K. Hanson, J. Bradbury, T. Cannon, D. Hutson, R. J. Laubacher et al., Computed tomography using proton energy loss, Physics in Medicine and Biology, vol.26, issue.6, pp.965-83, 1981.
DOI : 10.1088/0031-9155/26/6/001

J. Hartman, C. Kontaxis, G. Bol, S. Frank, J. J. Lagendijk et al., Dosimetric feasibility of intensity modulated proton therapy in a transverse magnetic field of 1.5 T, Physics in Medicine and Biology, vol.60, issue.15, pp.5955-5969, 2015.
DOI : 10.1088/0031-9155/60/15/5955

K. Haume, S. Rosa, S. Grellet, M. Smialek, K. Butterworth et al., Gold nanoparticles for cancer radiotherapy: a review, Cancer Nanotechnology, vol.3, issue.4, 2016.
DOI : 10.3402/nano.v3i0.18496

P. Henriquet, . Testa, . Chevallier, . Dauvergne, . Dedes et al., Interaction vertex imaging (IVI) for carbon ion therapy monitoring: a feasibility study, Physics in Medicine and Biology, vol.57, issue.14, pp.4655-69, 22750688.
DOI : 10.1088/0031-9155/57/14/4655

URL : https://hal.archives-ouvertes.fr/hal-01118823

J. Hopfgartner, Light Ion beam therapy, 2008.

N. Hudobivnik, F. Schwarz, T. Johnson, L. Agolli, G. Dedes et al., Comparison of proton therapy treatment planning for head tumors with a pencil beam algorithm on dual and single energy CT images, Medical Physics, vol.41, issue.1, pp.495-504, 2016.
DOI : 10.1118/1.4875976

F. Hueso-gonzález, F. Fiedler, C. Golnik, T. Kormoll, G. Pausch et al., Compton Camera and Prompt Gamma Ray Timing: Two Methods for In Vivo Range Assessment in Proton Therapy, Frontiers in Oncology, vol.57, issue.11, pp.1-13, 2016.
DOI : 10.1088/0031-9155/57/11/R99

F. Brent, J. Huisman, . Létang, D. Testa, and . Sarrut, Accelerated Prompt Gamma estimation for clinical Proton Therapy simulations, Physics in Medicine and Biology, vol.61, pp.7725-7743, 2016.

T. Inaniwa and N. Kanematsu, A trichrome beam model for biological dose calculation in scanned carbon-ion radiotherapy treatment planning Physics in medicine and biology, pp.437-451, 2014.

F. Janssen, . Landry, . Lopes, . Dedes, D. Smeets et al., Factors influencing the accuracy of beam range estimation in proton therapy using prompt gamma emission, Physics in Medicine and Biology, vol.59, issue.15, pp.4427-4468
DOI : 10.1088/0031-9155/59/15/4427

M. Jermann, Particle Therapy Statistics in 2014, International Journal of Particle Therapy, vol.2, issue.1, pp.50-54, 2015.
DOI : 10.14338/IJPT-15-00013

M. Karube, N. Yamamoto, M. Nakajima, H. Yamashita, K. Nakagawa et al., Single-Fraction Carbon-Ion Radiation Therapy for Patients 80??Years of Age and Older With Stage I??Non-Small Cell Lung Cancer, International Journal of Radiation Oncology*Biology*Physics, vol.95, issue.1, pp.542-548
DOI : 10.1016/j.ijrobp.2015.11.034

H. Soo-mee-kim, J. H. Seo, C. H. Park, C. Kim, S. Sik-lee et al., Resolution recovery reconstruction for a Compton camera, Physics in Medicine and Biology, vol.58, issue.9

Y. Kim, C. Yoon, and W. Lee, Monitoring 3D dose distributions in proton therapy by reconstruction using an iterative method, Applied Radiation and Isotopes, vol.114, pp.33-39
DOI : 10.1016/j.apradiso.2016.05.005

C. Antje, A. Knopf, and . Lomax, In vivo proton range verification: a review Physics in medicine and biology, pp.131-60, 2013.

A. M. Koehler, Proton Radiography, Science, vol.160, issue.3825, pp.303-307, 1968.
DOI : 10.1126/science.160.3825.303

G. Kraft, Tumor therapy with heavy charged particles, Progress in Particle and Nuclear Physics, 2000.

N. Krah, I. Testa, and . Rinaldi, Improved patient-specific optimization of the stopping power calibration for proton therapy planning using a single optimized proton radiography, ICTR-PHE 2016
DOI : 10.1016/S0167-8140(16)30127-X

URL : https://hal.archives-ouvertes.fr/hal-01276427

M. Krämer, E. Scifoni, C. Schuy, M. Rovituso, W. Tinganelli et al., Helium ions for radiotherapy? Physical and biological verifications of a novel treatment modality, Medical Physics, vol.42, issue.4, pp.1995-2004, 2016.
DOI : 10.1118/1.4905374

J. Krimmer, Development of a Compton camera for medical applications based on silicon strip and scintillation detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators , Spectrometers, Detectors and Associated Equipment, pp.98-101, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01101334

J. J. Lagendijk, M. Van-vulpen, and B. W. Raaymakers, The development of the MRI linac system for online MRI-guided radiotherapy: a clinical update, Journal of Internal Medicine, vol.12, issue.2, pp.1-6, 2016.
DOI : 10.1186/1745-6215-12-255

R. William and . Leo, Techniques for Nuclear and Particle Physics Experiments, 1994.

Y. Liang, Q. Fu, X. Wang, F. Liu, G. Yang et al., Relative biological effectiveness for photons: implication of complex DNA double-strand breaks as critical lesions, Physics in Medicine and Biology, vol.62, issue.6, p.2017
DOI : 10.1088/1361-6560/aa56ed

H. Hsin-hon-lin, T. Chang, K. Chao, and . Chuang, A comparison of two prompt gamma imaging techniques with collimator-based cameras for range verification in proton therapy, Radiation Physics and Chemistry, pp.1-7, 2016.

G. Llosá, M. Trovato, J. Barrio, A. Etxebeste, E. Muñoz et al., First Images of a Three-Layer Compton Telescope Prototype for Treatment Monitoring in Hadron Therapy, Frontiers in Oncology, vol.56
DOI : 10.1088/0031-9155/56/4/012

S. Jay, M. Loeffler, and . Durante, Charged particle therapy?optimization, challenges and future directions, Nature reviews. Clinical oncology, vol.10, issue.7, pp.411-424, 2013.

P. Cambraia-lopes, E. Clementel, P. Crespo, S. H. Huizenga, G. Janssens et al., Time-resolved imaging of prompt-gamma rays for proton range verification using a knife-edge slit camera based on digital photon counters, Physics in Medicine and Biology, vol.60, issue.15, pp.31-9155
DOI : 10.1088/0031-9155/60/15/6063

P. Mayles, J. C. Nahum, N. Rosenwald, and . Papanikolaou, Handbook of Radiotherapy Physics: Theory and Practice, 2008.
DOI : 10.1201/9781420012026

S. Mcgowan, S. J. Albertini, . Thomas, and . Lomax, Defining robustness protocols: a method to include and evaluate robustness in clinical plans Physics in medicine and biology, pp.2671-84, 2015.

H. R. Chul-hee-min, C. H. Lee, S. Kim, and . Lee, Development of array-type prompt gamma measurement system for in vivo range verification in proton therapy, Medical physics, vol.39, issue.4, pp.2100-2107, 2012.

S. Molinelli, G. Magro, A. Mairani, N. Matsufuji, N. Kanematsu et al., Dose prescription in carbon ion radiotherapy: How to compare two different RBE-weighted dose calculation systems, Radiotherapy and Oncology, vol.120, issue.2
DOI : 10.1016/j.radonc.2016.05.031

M. Moteabbed, H. España, and . Paganetti, Monte Carlo patient study on the comparison of prompt gamma and PET imaging for range verification in proton therapy Physics in medicine and biology, pp.1063-82, 2011.

P. Ortega, I. Torres-espallardo, F. Cerutti, J. Ferrari, C. Gillam et al., Noise evaluation of Compton camera imaging for proton therapy, Physics in Medicine and Biology, vol.60, issue.5, pp.1845-63, 1845.
DOI : 10.1088/0031-9155/60/5/1845

H. Paganetti, Range uncertainties in proton therapy and the role of Monte Carlo simulations, Physics in Medicine and Biology, vol.57, issue.11, pp.99-117, 2012.
DOI : 10.1088/0031-9155/57/11/R99

H. Paganetti, Proton Beam Therapy, 2016.

H. Paganetti, A. Niemierko, M. Ancukiewicz, E. Leo, M. Gerweck et al., Relative biological effectiveness (RBE) values for proton beam therapy, International Journal of Radiation Oncology*Biology*Physics, vol.53, issue.2, pp.407-421, 2002.
DOI : 10.1016/S0360-3016(02)02754-2

S. Park, W. Plishker, H. Quon, J. Wong, R. Shekhar et al., Deformable registration of CT and cone-beam CT with local intensity matching, Physics in Medicine and Biology, vol.62, issue.3, pp.927-947, 2017.
DOI : 10.1088/1361-6560/aa4f6d

K. Parodi, F. Pönisch, and W. Enghardt, Experimental study on the feasibility of in-beam PET for accurate monitoring of proton therapy, IEEE Transactions on Nuclear Science, vol.52, issue.3, pp.778-786, 2005.
DOI : 10.1109/TNS.2005.850950

I. Perali, . Celani, C. Bombelli, . Fiorini, . Camera et al., Prompt gamma imaging of proton pencil beams at clinical dose rate, Physics in Medicine and Biology, vol.59, issue.19, pp.5849-5871, 2014.
DOI : 10.1088/0031-9155/59/19/5849

M. Pinto, . Dauvergne, . Freud, J. Krimmer, . Letang et al., Design optimisation of a TOF-based collimated camera prototype for online hadrontherapy monitoring, Physics in Medicine and Biology, vol.59, issue.24, pp.7653-7674, 2014.
DOI : 10.1088/0031-9155/59/24/7653

URL : https://hal.archives-ouvertes.fr/hal-01115740

M. Pinto, . Bajard, . Brons, . Chevallier, . Dauvergne et al., Absolute prompt-gamma yield measurements for ion beam therapy monitoring, Physics in Medicine and Biology, vol.60, issue.2, pp.565-594, 2015.
DOI : 10.1088/0031-9155/60/2/565

URL : https://hal.archives-ouvertes.fr/hal-01115766

M. Pinto, D. Dauvergne, N. Freud, J. Krimmer, J. M. Létang et al., Assessment of Geant4 Prompt-Gamma Emission Yields in the Context of Proton Therapy Monitoring, Frontiers in Oncology, vol.60, issue.12, 2016.
DOI : 10.1088/0031-9155/60/12/4849

URL : https://hal.archives-ouvertes.fr/hal-01272829

E. B. Podgorsak and K. Kainz, Radiation Oncology Physics: A Handbook for Teachers and Students, Medical Physics, vol.33, issue.6, 1920.

C. Jerimy, S. Polf, . Avery, S. Dennis, S. Mackin et al., Imaging of prompt gamma rays emitted during delivery of clinical proton beams with a Compton camera: feasibility studies for range verification, Phys Med Biol, vol.606018708560, issue.18, pp.7085-70990031, 2015.

J. P. Pouget and S. J. Mather, General aspects of the cellular response to low- and high-LET radiation, European Journal of Nuclear Medicine, vol.28, issue.4, pp.541-561, 2001.
DOI : 10.1007/s002590100484

M. Priegnitz, . Helmbrecht, I. Janssens, and . Perali, Measurement of prompt gamma profiles in inhomogeneous targets with a slit camera, Physics in Medicine and Biology, vol.484960124849604849, issue.12, pp.48490031-9155, 2015.

C. Quiñones, J. Létang, and S. Rit, Filtered back-projection reconstruction for attenuation proton CT along most likely paths, Physics in Medicine and Biology, vol.61, issue.9, pp.3258-3278, 2016.
DOI : 10.1088/0031-9155/61/9/3258

P. Retif, S. Pinel, M. Toussaint, C. Frochot, R. Chouikrat et al., Nanoparticles for Radiation Therapy Enhancement: the Key Parameters, Theranostics, vol.5, issue.9, pp.1030-1044
DOI : 10.7150/thno.11642

URL : https://hal.archives-ouvertes.fr/hal-01174788

M. Richard, M. Chevallier, D. Dauvergne, N. Freud, P. Henriquet et al., Design Guidelines for a Double Scattering Compton Camera for Prompt-$\gamma$ Imaging During Ion Beam Therapy: A Monte Carlo Simulation Study, IEEE Transactions on Nuclear Science, vol.58, issue.1, pp.87-94, 2010.
DOI : 10.1109/TNS.2010.2076303

URL : https://hal.archives-ouvertes.fr/in2p3-00527432

M. H. Richard, M. Dahoumane, D. Dauvergne, M. De-rydt, G. Dedes et al., Design Study of the Absorber Detector of a Compton Camera for On-Line Control in Ion Beam Therapy, IEEE Transactions on Nuclear Science, vol.59, issue.5, pp.1850-1855, 2012.
DOI : 10.1109/TNS.2012.2206053

URL : https://hal.archives-ouvertes.fr/hal-00796857

C. Richter, G. Pausch, S. Barczyk, M. Priegnitz, I. Keitz et al., First clinical application of a prompt gamma based in vivo proton range verification system, Radiotherapy and Oncology, vol.118, issue.2, pp.232-237, 2016.
DOI : 10.1016/j.radonc.2016.01.004

E. Rietzel, D. Schardt, and T. Haberer, Range accuracy in carbon ion treatment planning based on CT-calibration with real tissue samples, Radiation Oncology, vol.2, issue.1, p.14, 2007.
DOI : 10.1186/1748-717X-2-14

C. Robert, . Dedes, T. Battistoni, . Böhlen, . Buvat et al., Distributions of secondary particles in proton and carbon-ion therapy: a comparison between GATE/Geant4 and FLUKA Monte Carlo codes, Physics in Medicine and Biology, vol.58, issue.9, pp.2879-99, 2013.
DOI : 10.1088/0031-9155/58/9/2879

URL : https://hal.archives-ouvertes.fr/in2p3-00822629

F. Roehlinghoff, Design and Implementation of a Prompt-Gamma Camera for Real-Time Monitoring of Ion Beam Therapy, 2014.

F. Roellinghoff, M. H. Richard, M. Chevallier, J. Constanzo, D. Dauvergne et al., Design of a Compton camera for 3D prompt-? imaging during ion beam therapy. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, pp.20-23
URL : https://hal.archives-ouvertes.fr/in2p3-00559943

F. Roellinghoff, . Benilov, . Dauvergne, . Dedes, . Freud et al., Real-time proton beam range monitoring by means of prompt-gamma detection with a collimated camera, Physics in Medicine and Biology, vol.59, issue.5, pp.1327-1365
DOI : 10.1088/0031-9155/59/5/1327

URL : https://hal.archives-ouvertes.fr/hal-00967209

H. H. Rossi, Specification of Radiation Quality, Radiation Research, vol.10, issue.5
DOI : 10.2307/3570787

S. Rossi, The status of CNAO. The European Physical Journal Plus, pp.2011-11078

A. Roel, . Rozendaal, J. Ben, O. Mijnheer, A. Hamming-vrieze et al., Impact of daily anatomical changes on EPID-based in vivo dosimetry of VMAT treatments of head-andneck cancer, RADIOTHERAPY AND ONCOLOGY, 2015.

H. Ryu, E. Song, J. Lee, and J. Kim, Density and spatial resolutions of proton radiography using a range modulation technique Physics in medicine and biology, pp.5461-5469, 2008.

D. Sarrut, M. Bardiès, N. Boussion, N. Freud, S. Jan et al., A review of the use and potential of the GATE Monte Carlo simulation code for radiation therapy and dosimetry applications, Medical Physics, vol.55, issue.6Part1
DOI : 10.1088/0031-9155/55/19/014

URL : https://hal.archives-ouvertes.fr/hal-01015819

D. Schardt and T. Elsässer, Heavy-ion tumor therapy: Physical and radiobiological benefits, Reviews of Modern Physics, vol.14, issue.1, pp.383-425, 2010.
DOI : 10.3109/02841869709001328

U. Schneider, E. Pedroni, and A. Lomax, The calibration of CT Hounsfield units for radiotherapy treatment planning Physics in medicine and biology, pp.111-135, 1996.

A. Schumann, . Priegnitz, . Schoene, . Enghardt, F. Rohling et al., From prompt gamma distribution to dose: a novel approach combining an evolutionary algorithm and filtering based on Gaussian-powerlaw convolutions, Physics in Medicine and Biology, vol.61, issue.19, pp.69190031-915561, 2016.
DOI : 10.1088/0031-9155/61/19/6919

S. M. Seltzer, D. T. Bartlett, D. T. Burns, G. Dietze, H. Menzel et al., Fundamental Quantities And Units For Ionizing Radiation (Revised) ICRU-report No 85, Journal of the ICRU, vol.11, issue.1, pp.1-35, 2011.

E. Sheldon and D. M. Van-patter, Compound Inelastic Nucleon and Gamma-Ray Angular Distributions for Even- and Odd-Mass Nuclei, Reviews of Modern Physics, vol.9, issue.1, pp.143-186
DOI : 10.1103/RevModPhys.9.69

X. Shi, X. Meng, X. Sun, L. Xing, and J. Yu, PET/CT imaging-guided dose painting in radiation therapy, Cancer Letters, vol.355, issue.2, pp.169-175
DOI : 10.1016/j.canlet.2014.07.042

J. P. Seuntjens-shortt, W. Strydom, and K. R. Chapter, Dosimetric Principles , Quantities and Units, Radiation Oncology Physics handbook -IAEA, pp.1-66, 2006.

J. Smeets, . Roellinghoff, . Prieels, . Stichelbaut, . Benilov et al., Prompt gamma imaging with a slit camera for real-time range control in proton therapy, Physics in Medicine and Biology, vol.57, issue.11, pp.3371-405
DOI : 10.1088/0031-9155/57/11/3371

URL : https://hal.archives-ouvertes.fr/in2p3-00709222

J. Smeets, D. Prieels, E. Hotoiu, and E. Sterpin, Sensitivity study of prompt gamma imaging of scanned 2 beam proton therapy in heterogeneous anatomies, RADIO- THERAPY AND ONCOLOGY, pp.1-6

P. Solevi, E. Muñoz, C. Solaz, M. Trovato, P. Dendooven et al., Performance of MACACO Compton telescope for ion-beam therapy monitoring: first test with proton beams, Physics in Medicine and Biology, vol.61, issue.14, pp.615149-5165, 2016.
DOI : 10.1088/0031-9155/61/14/5149

G. Sportelli, . Belcari, . Camarlinghi, . Cirrone, . Cuttone et al., First full-beam PET acquisitions in proton therapy with a modular dual-head dedicated system, Physics in Medicine and Biology, vol.59, issue.1, pp.43-60
DOI : 10.1088/0031-9155/59/1/43

E. Sterpin, . Janssens, F. Smeets, . Vander-stappen, M. Prieels et al., Analytical computation of prompt gamma ray emission and detection for proton range verification, Physics in Medicine and Biology, vol.60, issue.12, pp.4915-4946, 2015.
DOI : 10.1088/0031-9155/60/12/4915

M. Testa, M. Joost, M. Verburg, H. Rose, S. Min et al., Proton radiography and proton computed tomography based on time-resolved dose measurements, Physics in Medicine and Biology, vol.58, issue.22, pp.8215-8233
DOI : 10.1088/0031-9155/58/22/8215

F. Tommasino and M. Durante, Proton Radiobiology, Cancers, vol.33, issue.4, pp.353-381, 2015.
DOI : 10.1118/1.598063

URL : http://www.mdpi.com/2072-6694/7/1/353/pdf

S. M. Valle, G. Battistoni, V. Patera, D. Pinci, A. Sarti et al., The MONDO project: A secondary neutron tracker detector for particle therapy. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, pp.322-325

L. Wouter-van-elmpt, S. Mcdermott, M. Nijsten, P. Wendling, B. Lambin et al., A literature review of electronic portal imaging for radiotherapy dosimetry, Radiotherapy and Oncology, vol.88, issue.3, pp.289-309, 2008.
DOI : 10.1016/j.radonc.2008.07.008

C. Veiga, J. Alshaikhi, R. Amos, A. M. Lourenço, M. Modat et al., Cone-Beam Computed Tomography and Deformable Registration-Based ???Dose of the Day??? Calculations for Adaptive Proton Therapy, International Journal of Particle Therapy, vol.2, issue.2, pp.404-414
DOI : 10.14338/IJPT-14-00024.1

J. Verburg, T. Bortfeld, and . Tu-fg-brb-, TU-FG-BRB-06: A Prompt Gamma-Ray Spectroscopy System for Clinical Studies of in Vivo Proton Range Verification, Medical Physics, vol.43, issue.6Part35, pp.3757-3757
DOI : 10.1118/1.4957546

J. M. Verburg, C. Grassberger, S. Dowdell, J. Schuemann, J. Seco et al., Automated Monte Carlo Simulation of Proton Therapy Treatment Plans. Technology in Cancer Research and Treatment, 2015.

M. Joost and . Verburg, Reducing range uncertainty in proton therapy, 2015.

M. Joost, J. Verburg, and . Seco, Proton range verification through prompt gamma-ray spectroscopy, Physics in Medicine and Biology, vol.59, issue.23, pp.7089-7106, 2014.

M. Joost, H. A. Verburg, J. Shih, and . Seco, Simulation of prompt gamma-ray emission during proton radiotherapy, Physics in Medicine and Biology, vol.5757175459, issue.17, pp.5459-5472, 2012.

G. Vilches-freixas, J. M. Létang, N. Ducros, and S. Rit, Dual-energy CT spectra optimization for proton treatment planning, Proc. 4th Intl. Mtg. on image formation in X-ray CT, pp.585-588, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01437430

R. R. Wilson, Radiological Use of Fast Protons, Radiology, vol.47, issue.5, p.487, 1946.
DOI : 10.1148/47.5.487

L. Wisser, Pion treatment of prostate carcinoma at Paul Scherrer Institute (formerly Swiss Institute for Nuclear Research (SIN)) from 1983 to 1992 Cancer radiothérapie : journal de la Société française de radiothérapie oncologique, pp.88-94, 2004.

A. Wozny, G. Alphonse, P. Battiston-montagne, S. Simonet, D. Poncet et al., Influence of Dose Rate on the Cellular Response to Low-and High- LET Radiations, Frontiers in Oncology, vol.6, pp.1-7
URL : https://hal.archives-ouvertes.fr/hal-01376232

D. Yan and . Radiotherapy, Adaptive Radiotherapy: Merging Principle Into Clinical Practice, Seminars in Radiation Oncology, vol.20, issue.2, pp.79-83, 2010.
DOI : 10.1016/j.semradonc.2009.11.001

M. Yang, . Virshup, X. Clayton, . Zhu, L. Mohan et al., Theoretical variance analysis of single- and dual-energy computed tomography methods for calculating proton stopping power ratios of biological tissues, Physics in Medicine and Biology, vol.55, issue.5, pp.1343-1362, 2010.
DOI : 10.1088/0031-9155/55/5/006

P. S. Yarmolenko, E. Jung-moon, C. Landon, A. Manzoor, D. W. Hochman et al., Thresholds for thermal damage to normal tissues: An update, International Journal of Hyperthermia, vol.1107, issue.2, pp.320-343
DOI : 10.1016/j.brainres.2006.05.095

S. F. Stephen, H. J. Yip, and . Aerts, Applications and limitations of radiomics, Physics in medicine and biology, issue.13, pp.61-150