, Sig:BKGMV2POL2_2.4_4.7_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.3_4.6_Weight=2.0(Sig:BKGMV2POL2_2.4_4.7_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7(Sig:BKGMV2POL2_2.2_4.5(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7(Sig:BKGMV2POL2_2.2_4.5(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7_Weight=2.0(Sig:BKGMV2POL2_2.2_4.5_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7_Weight=2.0(Sig:BKGMV2POL2_2.2_4.5_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7_Weight=2.0(Sig:BKGMV2POL2_2.2_4.5_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7(Sig:BKGMV2POL2_2.3_4.6(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7(Sig:BKGMV2POL2_2.3_4.6(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7_Weight=2.0(Sig:BKGMV2POL2_2.3_4.6_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7_Weight=2.0(Sig:BKGMV2POL2_2.3_4.6_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7_Weight=2.0(Sig:BKGMV2POL2_2.3_4.6_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7(Sig:BKGMV2POL2_2.4_4.7(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7(Sig:BKGMV2POL2_2.4_4.7(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7_Weight=2.0(Sig:BKGMV2POL2_2.4_4.7_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7_Weight=2.0(Sig:BKGMV2POL2_2.4_4.7_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7_Weight=2.0(Sig:BKGMV2POL2_2.4_4.7_Weight=2.0(Sig) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5(Sig:BKGMV2POL2_2.2_4.5(Sig) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5(Sig:BKGMV2POL2_2.2_4.5(Sig) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5_Weight=2.0(Sig:BKGMV2POL2_2.2_4.5_Weight=2.0(Sig) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5_Weight=2.0(Sig:BKGMV2POL2_2.2_4.5_Weight=2.0(Sig) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5_Weight=2.0(Sig:BKGMV2POL2_2.2_4.5_Weight=2.0(Sig) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5(Sig:BKGMV2POL2_2.3_4.6(Sig) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5(Sig:BKGMV2POL2_2.3_4.6(Sig) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5_Weight=2.0(Sig:BKGMV2POL2_2.3_4.6_Weight=2.0(Sig) CB2VWG2_BKGMV2POL4Cheb_2, :BKGMV2POL2_2.4_4.7_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.3_4.6_Weight=2.0(Sig:BKGMV2POL2_2.4_4.7_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.3_4.6_Weight=2.0(Sig:BKGMV2POL2_2.4_4.7_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7(Sig:BKGMV2POL2_2.2_4.5(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7(Sig:BKGMV2POL2_2.2_4.5(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7(Sig:BKGMV2POL2_2.2_4.5(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7_Weight=2.0(Sig:BKGMV2POL2_2.2_4.5_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7_Weight=2.0(Sig:BKGMV2POL2_2.2_4.5_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7_Weight=2.0(Sig:BKGMV2POL2_2.2_4.5_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7(Sig:BKGMV2POL2_2.3_4.6(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7(Sig:BKGMV2POL2_2.3_4.6(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7(Sig:BKGMV2POL2_2.3_4.6(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7_Weight=2.0(Sig:BKGMV2POL2_2.3_4.6_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7_Weight=2.0(Sig:BKGMV2POL2_2.3_4.6_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7_Weight=2.0(Sig:BKGMV2POL2_2.3_4.6_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7(Sig:BKGMV2POL2_2.4_4.7(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7(Sig:BKGMV2POL2_2.4_4.7(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7(Sig:BKGMV2POL2_2.4_4.7(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7_Weight=2.0(Sig:BKGMV2POL2_2.4_4.7_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7_Weight=2.0(Sig:BKGMV2POL2_2.4_4.7_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7_Weight=2.0(Sig:BKGMV2POL2_2.4_4.7_Weight=2.0(Sig) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5(Sig:BKGMV2POL2_2.2_4.5(Sig) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5(Sig:BKGMV2POL2_2.2_4.5(Sig) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5(Sig:BKGMV2POL2_2.2_4.5(Sig) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5_Weight=2.0(Sig:BKGMV2POL2_2.2_4.5_Weight=2.0(Sig) CB2VWG2_BKGMV2POL4Cheb_2.2_4

, (Sig) CB2VWG2_BKGMV2POLEXP_2.3_4.6(Sig:BKGMV2POL2_2.2_4.5(Sig) CB2VWG2_BKGMV2POLEXP_2.3_4.6_Weight=2.0(Sig:BKGMV2POL2_2.2_4.5_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.3_4.6_Weight=2.0(Sig:BKGMV2POL2_2.2_4.5_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.3_4.6_Weight=2.0(Sig:BKGMV2POL2_2.2_4.5_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.3_4.6(Sig:BKGMV2POL2_2.3_4.6(Sig) CB2VWG2_BKGMV2POLEXP_2.3_4.6(Sig:BKGMV2POL2_2.3_4.6(Sig) CB2VWG2_BKGMV2POLEXP_2.3_4.6(Sig:BKGMV2POL2_2.3_4.6(Sig) CB2VWG2_BKGMV2POLEXP_2.3_4.6_Weight=2.0(Sig:BKGMV2POL2_2.3_4.6_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.3_4.6_Weight=2.0(Sig:BKGMV2POL2_2.3_4.6_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.3_4.6_Weight=2.0(Sig:BKGMV2POL2_2.3_4.6_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.3_4.6(Sig:BKGMV2POL2_2.4_4.7(Sig) CB2VWG2_BKGMV2POLEXP_2.3_4.6(Sig:BKGMV2POL2_2.4_4.7(Sig) CB2VWG2_BKGMV2POLEXP_2.3_4.6(Sig:BKGMV2POL2_2.4_4.7(Sig) CB2VWG2_BKGMV2POLEXP_2.3_4.6_Weight=2.0(Sig:BKGMV2POL2_2.4_4.7_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.3_4.6_Weight=2.0(Sig:BKGMV2POL2_2.4_4.7_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.3_4.6_Weight=2.0(Sig:BKGMV2POL2_2.4_4.7_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2, :BKGMV2POL2_2.2_4.5_Weight=2.0(Sig) CB2VWG2_BKGMV2POL4Cheb_2.4_4.7_Weight=2.0(Sig:BKGMV2POL2_2.2_4.5_Weight=2.0(Sig) CB2VWG2_BKGMV2POL4Cheb_2.4_4.7_Weight=2.0(Sig:BKGMV2POL2_2.2_4.5_Weight=2.0(Sig) CB2VWG2_BKGMV2POL4Cheb_2.4_4.7(Sig:BKGMV2POL2_2.3_4.6(Sig) CB2VWG2_BKGMV2POL4Cheb_2.4_4.7(Sig:BKGMV2POL2_2.3_4.6(Sig) CB2VWG2_BKGMV2POL4Cheb_2.4_4.7(Sig:BKGMV2POL2_2.3_4.6(Sig) CB2VWG2_BKGMV2POL4Cheb_2.4_4.7_Weight=2.0(Sig:BKGMV2POL2_2.3_4.6_Weight=2.0(Sig) CB2VWG2_BKGMV2POL4Cheb_2.4_4.7_Weight=2.0(Sig:BKGMV2POL2_2.3_4.6_Weight=2.0(Sig) CB2VWG2_BKGMV2POL4Cheb_2.4_4.7_Weight=2.0(Sig:BKGMV2POL2_2.3_4.6_Weight=2.0(Sig) CB2VWG2_BKGMV2POL4Cheb_2.4_4.7(Sig:BKGMV2POL2_2.4_4.7(Sig) CB2VWG2_BKGMV2POL4Cheb_2.4_4.7(Sig:BKGMV2POL2_2.4_4.7(Sig) CB2VWG2_BKGMV2POL4Cheb_2.4_4.7(Sig:BKGMV2POL2_2.4_4.7(Sig) CB2VWG2_BKGMV2POL4Cheb_2.4_4.7_Weight=2.0(Sig:BKGMV2POL2_2.4_4.7_Weight=2.0(Sig) CB2VWG2_BKGMV2POL4Cheb_2.4_4.7_Weight=2.0(Sig:BKGMV2POL2_2.4_4.7_Weight=2.0(Sig) CB2VWG2_BKGMV2POL4Cheb_2.4_4.7_Weight=2.0(Sig:BKGMV2POL2_2.4_4.7_Weight=2.0(Sig) CB2VWG2_BKGMV2POL2_2.2_4.5(Sig:BKGMV2POL2_2.2_4.5(Sig) CB2VWG2_BKGMV2POL2_2.2_4.5(Sig:BKGMV2POL2_2.2_4.5(Sig) CB2VWG2_BKGMV2POL2_2.2_4.5(Sig:BKGMV2POL2_2.2_4.5(Sig) CB2VWG2_BKGMV2POL2_2.2_4.5_Weight=2.0(Sig:BKGMV2POL2_2.2_4.5_Weight=2.0(Sig) CB2VWG2_BKGMV2POL2_2.2_4.5_Weight=2.0(Sig:BKGMV2POL2_2.2_4.5_Weight=2.0(Sig) CB2VWG2_BKGMV2POL2_2.2_4.5(Sig:BKGMV2POL2_2.3_4.6(Sig) CB2VWG2_BKGMV2POL2_2.2_4.5(Sig:BKGMV2POL2_2.3_4.6(Sig) CB2VWG2_BKGMV2POL2_2.2_4.5(Sig:BKGMV2POL2_2.3_4.6(Sig) CB2VWG2_BKGMV2POL2_2.2_4.5_Weight=2.0(Sig:BKGMV2POL2_2.3_4.6_Weight=2.0(Sig) CB2VWG2_BKGMV2POL2_2.2_4.5_Weight=2.0(Sig:BKGMV2POL2_2.3_4.6_Weight=2.0(Sig), vol.4

, CB2VWG2_BKGMV2POL2_2.2_4.5(Sig:BKGMV2POL2_2.2_4.5(Sig) CB2VWG2_BKGMV2POL2_2.2_4.5_Weight=2.0(Sig:BKGMV2POL2_2.2_4.5_Weight=2.0(Sig) CB2VWG2_BKGMV2POL2_2.2_4.5(Sig:BKGMV2POL2_2.3_4.6(Sig) CB2VWG2_BKGMV2POL2_2.2_4.5_Weight=2.0(Sig:BKGMV2POL2_2.3_4.6_Weight=2.0(Sig) CB2VWG2_BKGMV2POL2_2.2_4.5(Sig:BKGMV2POL2_2.4_4.7(Sig) CB2VWG2_BKGMV2POL2_2.2_4.5_Weight=2.0(Sig:BKGMV2POL2_2.4_4.7_Weight=2.0(Sig) CB2VWG2_BKGMV2POL2_2.3_4.6(Sig:BKGMV2POL2_2.2_4.5(Sig) CB2VWG2_BKGMV2POL2_2.3_4.6_Weight=2.0(Sig:BKGMV2POL2_2.2_4.5_Weight=2.0(Sig) CB2VWG2_BKGMV2POL2_2.3_4.6(Sig:BKGMV2POL2_2.3_4.6(Sig)

, Sig:2.2_4.5_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5(Sig:2.4_4.7_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5_Weight=2.0(Sig:2.2_4.5_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5_Weight=2.0(Sig:2.3_4.6_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5_Weight=2.0(Sig:2.4_4.7_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.3_4.6(Sig:2.2_4.5_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.3_4.6(Sig:2.4_4.7_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.3_4.6_Weight=2.0(Sig:2.2_4.5_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.3_4.6_Weight=2.0(Sig:2.3_4.6_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.3_4.6_Weight=2.0(Sig:2.4_4.7_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.4_4.7(Sig:2.2_4.5_SP1.1), :2.4_4.7_Weight=2.0_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.3_4.6(Sig:2.2_4.5_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.3_4.6_Weight=2.0(Sig:2.2_4.5_Weight=2.0_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.3_4.6_Weight=2.0(Sig:2.3_4.6_Weight=2.0_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.3_4.6_Weight=2.0(Sig:2.4_4.7_Weight=2.0_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.4_4.7(Sig:2.2_4.5_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.4_4.7_Weight=2.0(Sig:2.2_4.5_Weight=2.0_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.4_4.7_Weight=2.0(Sig:2.3_4.6_Weight=2.0_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.4_4.7_Weight=2.0(Sig:2.4_4.7_Weight=2.0_SP1.1) CB2POL2POL3_BKGMV2POL4Cheb_2.2_4.5(Sig:2.2_4.5_SP1.1) CB2POL2POL3_BKGMV2POL4Cheb_2.2_4.5_Weight=2.0

, Sig:2.2_4.5_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5(Sig:2.3_4.6_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5(Sig:2.4_4.7_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5_Weight=2.0(Sig:2.2_4.5_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5_Weight=2.0(Sig:2.3_4.6_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5_Weight=2.0(Sig:2.4_4.7_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.3_4.6(Sig:2.2_4.5_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.3_4.6(Sig:2.3_4.6_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.3_4.6(Sig:2.4_4.7_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.3_4.6_Weight=2.0(Sig:2.2_4.5_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.3_4.6_Weight=2.0(Sig:2.3_4.6_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.3_4.6_Weight=2.0(Sig:2.4_4.7_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.4_4.7(Sig:2.2_4.5_SP1.1), .1) CB2POL2POL3_BKGMV2POLEXP_2.3_4.6(Sig:2.2_4.5_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.3_4.6(Sig:2.3_4.6_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.3_4.6(Sig:2.4_4.7_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.3_4.6_Weight=2.0(Sig:2.2_4.5_Weight=2.0_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.3_4.6_Weight=2.0(Sig:2.3_4.6_Weight=2.0_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.4_4.7(Sig:2.2_4.5_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.4_4.7(Sig:2.3_4.6_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.4_4.7(Sig:2.4_4.7_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.4_4.7_Weight=2.0(Sig:2.2_4.5_Weight=2.0_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.4_4.7_Weight=2.0(Sig:2.3_4.6_Weight=2.0_SP1.1) CB2POL2POL3_BKGMV2POL4Cheb_2.2_4.5(Sig:2.2_4.5_SP1.1) CB2POL2POL3_BKGMV2POL4Cheb_2.2_4.5(Sig:2.3_4.6_SP1.1) CB2POL2POL3_BKGMV2POL4Cheb_2.2_4.5

, Sig:2.4_4.7_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5(Sig:2.2_4.5_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5(Sig:2.3_4.6_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5(Sig:2.4_4.7_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5_Weight=2.0(Sig:2.2_4.5_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5_Weight=2.0(Sig:2.3_4.6_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5_Weight=2.0(Sig:2.4_4.7_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.3_4.6(Sig:2.2_4.5_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.3_4.6(Sig:2.3_4.6_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.3_4.6(Sig:2.4_4.7_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.3_4.6_Weight=2.0(Sig:2.2_4.5_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.3_4.6_Weight=2.0(Sig:2.3_4.6_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2, 0_SP1.1) CB2VWG2_BKGMV2POL2_2.4_4.7(Sig:2.2_4.5_SP1.1) CB2VWG2_BKGMV2POL2_2.4_4.7(Sig:2.3_4.6_SP1.1) CB2VWG2_BKGMV2POL2_2.4_4.7(Sig:2.4_4.7_SP1.1) CB2VWG2_BKGMV2POL2_2.4_4.7_Weight=2.0(Sig:2.2_4.5_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POL2_2.4_4.7_Weight=2.0(Sig:2.3_4.6_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POL2_2.4_4.7_Weight=2.0(Sig:2.4_4.7_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POLEXP_2.2_4.5(Sig:2.2_4.5_SP1.1) CB2VWG2_BKGMV2POLEXP_2.2_4.5(Sig:2.3_4.6_SP1.1) CB2VWG2_BKGMV2POLEXP_2.2_4.5(Sig:2.4_4.7_SP1.1) CB2VWG2_BKGMV2POLEXP_2.2_4.5_Weight=2.0(Sig:2.2_4.5_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POLEXP_2.2_4.5_Weight=2.0(Sig:2.3_4.6_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POLEXP_2.2_4.5_Weight=2.0(Sig:2.4_4.7_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POLEXP_2.3_4.6(Sig:2.2_4.5_SP1.1) CB2VWG2_BKGMV2POLEXP_2.3_4.6(Sig:2.3_4.6_SP1.1)

, Sig:2.3_4.6_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.3_4.6(Sig:2.4_4.7_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.3_4.6_Weight=2.0(Sig:2.2_4.5_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.3_4.6_Weight=2.0(Sig:2.4_4.7_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.4_4.7(Sig:2.2_4.5_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.4_4.7(Sig:2.3_4.6_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.4_4.7(Sig:2.4_4.7_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.4_4.7_Weight=2.0(Sig:2.2_4.5_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.4_4.7_Weight=2.0(Sig:2.4_4.7_Weight=2.0_SP1.1) CB2POL2POL3_BKGMV2POL2_2.2_4.5(Sig:2.2_4.5_SP1.1) CB2POL2POL3_BKGMV2POL2_2.2_4.5(Sig:2.3_4.6_SP1.1) CB2POL2POL3_BKGMV2POL2_2.2_4.5(Sig:2.4_4.7_SP1.1) CB2POL2POL3_BKGMV2POL2_2.2_4.5_Weight=2.0(Sig:2.2_4.5_Weight=2.0_SP1.1) CB2POL2POL3_BKGMV2POL2_2.2_4.5_Weight=2.0(Sig:2.3_4.6_Weight=2.0_SP1.1), :2.4_4.7_Weight=2.0_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.4_4.7(Sig:2.2_4.5_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.4_4.7(Sig:2.3_4.6_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.4_4.7(Sig:2.4_4.7_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.4_4.7_Weight=2.0(Sig:2.2_4.5_Weight=2.0_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.4_4.7_Weight=2.0(Sig:2.3_4.6_Weight=2.0_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.4_4.7_Weight=2.0(Sig:2.4_4.7_Weight=2.0_SP1.1) CB2POL2POL3_BKGMV2POL4Cheb_2.2_4.5(Sig:2.2_4.5_SP1.1) CB2POL2POL3_BKGMV2POL4Cheb_2.2_4.5(Sig:2.3_4.6_SP1.1) CB2POL2POL3_BKGMV2POL4Cheb_2.2_4.5(Sig:2.4_4.7_SP1.1) CB2POL2POL3_BKGMV2POL4Cheb_2.2_4.5_Weight=2.0(Sig:2.2_4.5_Weight=2.0_SP1.1) CB2POL2POL3_BKGMV2POL4Cheb_2.2_4.5_Weight=2.0(Sig:2.3_4.6_Weight=2.0_SP1.1) CB2POL2POL3_BKGMV2POL4Cheb_2.2_4.5_Weight=2.0

, Sig:2.4_4.7_Weight=2.0_SP1.1) CB2POL2POL3_BKGMV2POL2_2.4_4.7(Sig:2.3_4.6_SP1.1) CB2POL2POL3_BKGMV2POL2_2.4_4.7_Weight=2.0(Sig:2.2_4.5_Weight=2.0_SP1.1) CB2POL2POL3_BKGMV2POL2_2.4_4.7_Weight=2.0(Sig:2.4_4.7_Weight=2.0_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.2_4.5(Sig:2.3_4.6_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.2_4.5_Weight=2.0(Sig:2.2_4.5_Weight=2.0_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.2_4.5_Weight=2.0(Sig:2.4_4.7_Weight=2.0_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.3_4.6(Sig:2.3_4.6_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.3_4, Sig:2.3_4.6_SP1.1) CB2VWG2_BKGMV2POLEXP_2.3_4.6_Weight=2.0(Sig:2.4_4.7_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POLEXP_2.4_4.7(Sig:2.3_4.6_SP1.1) CB2VWG2_BKGMV2POLEXP_2.4_4.7_Weight=2.0(Sig:2.4_4.7_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5(Sig:2.3_4.6_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5_Weight=2.0(Sig:2.4_4.7_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.3_4.6(Sig:2.3_4.6_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.3_4.6_Weight=2.0(Sig:2.4_4.7_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.4_4.7(Sig:2.3_4.6_SP1.1)

. , Flow vector resolution of SPD, V0A,and V0C sub-detectors as a function of centrality in the 20-40 % class

. , Comparison of the ?v 2 ? results obtained with the event plane and the scalar product methods for semi-central collisions using (Left) the SPD or (Right) the V0A as EP/SP detector. Boxes for systematic uncertainty contain signal extraction and J/? reconstruction. Numerical values can be found in Tab. B.5 and Tab

, Illustration of the in-and out-of-plane regions around the collision, p.95

. , Comparison of nuclear modification factor values from the in-and out-ofplane binning to the ??-integrated analysis

. , Comparison of R AA values integrated in ?? from this analysis with z vertex < 10cm cut (integrated values) to results from previous analysis without z vertex cut (preliminary values [Tar17])

. , Comparison of nuclear modification factor values from the in-and out-ofplane binning analysis to the computed values from integrated R AA and v 2 results for the 20-40% centrality class

. , ALICE projections for (Left) prompt and non-prompt D 0 v 2 in semi-central 30-50 % Pb-Pb collisions and (Right) D 0 , D + s and ? c v 2 with estimated statistical uncertainties at s NN = 5.5 TeV

. .. , III using the d N/d ?? method and the V0A as event plane detector. Boxes represent systematic uncertainty from the signal extraction, Distributions of the V0C EP angles in centrality ranges after each calibration step (from Step0 to Step4) from left to right and top to bottom

. , IX B.4 Systematics for J/? v 2 extraction in the centrality ranges 5-20%, 20-40% and 40-60% using the mean v 2 technique with the EP method and the V0A as

X. B. , XII B.7 Systematics for J/? v 2 extraction in the centrality ranges 20-40% using the mean v 2 technique with the SP method and the V0A as EP detector, 5 Systematics for J/? v 2 extraction in the centrality ranges 5-20%, 20-40% and 40-60% using the mean v 2 technique with the EP method and the SPD as

C. ]. , Geometrical details of the MFT half disks (radius, position, number of sensors and number of ladders), table taken from, vol.18

. .. Mft-sensor-requirements, 18 2.3 pALPIDE-1 sectors

]. .. Sat06, Mass and binding energy of charmonium states, p.44

. , Binding energy, relative dissociation temperature and radius of charmonium and bottomonium resonances [Sat06]

. , Calibration steps of the Q n vector for the SPD, V0A and V0C with the QnVectorCorrections framework

N. , EP resolutions of SPD and V0A detectors for the various centrality ranges considered in this analysis

, Table of data points shown in Fig. 5.3 : J/? v 2 (corrected values) in centrality classes 5-20 %, 20-40 %, and 40-60 % in the rapidity range 2.5 < y < 4 from the d N/d ?? method with the SPD as event plane detector, p.74

, Table of data points shown in Fig. 5.12) J/? v 2 (corrected values) in centrality classes 5-20 %, 20-40 %, and 40-60 %, in the rapidity range 2.5 < y < 4 from the mean v 2 method with the V0A as event plane detector, vol.5, p.77

. .. , 20-40 %, and 40-60 %, in the rapidity range 2.5 < y < 4 from the mean v 2 method with the SPD as event plane detector, Table of data points shown in Fig. 5.13) J/? v 2 (corrected values) in centrality classes 5-20 %

N. , SP resolutions of SPD and V0A detectors for the 20-40 % centrality

. .. , Averages of the nuclear overlap function ?T AA ? and number of participating nucleons ?N part ? for the centrality classes of the analysis, p.98

. .. , 99 5.10 Summary of systematic uncertainties on the R AA measurement. Values with an asterisk are considered as fully correlated with the corresponding variable, vol.100

. , Fractions of primordial and (re)generated J/? at forward rapidity in different p T bins from R AA calculations of TM1 [DR15] in Pb-Pb collisions at s NN = 5.02 TeV for the 20-40 % centrality class

/. and .. .. , 3 p T-dependence of NA60 parameters for J/? signal shape obtained from J/? embedding sample for centrality 0-90% and ?4 < y < ?2.5, CB2 parameters for J/? signal shape obtained from pp collisions for 0 < p T < 12GeV

. , XII B.6 Table of data points shown in Fig. 5.29 : J/? v 2 (corrected values) in the 2040 % centrality range and in the rapidity range ?4 < y < ?2.5 from the ?v 2 ? method with the scalar product and the V0A as event plane detector, the 2040 % centrality range and in the rapidity range ?4 < y < ?2.5

[. E598 and J. J. Aubert, Experimental Observation of a Heavy Particle, J. Phys. Rev. Lett, vol.33, p.44, 1974.

S. and J. E. Augustin, Discovery of a Narrow Resonance in e + e ? Annihilation, Phys. Rev. Lett, vol.33, p.141, 1974.

[. Star and K. H. Ackermann, Elliptic flow in Au+Au collisions at s NN =

. Gev, Phys. Rev. Lett, vol.86, pp.402-407, 2001.

[. Star and C. Adler, Identified particle elliptic flow in Au+Au collisions at s NN = 130 GeV, Phys. Rev. Lett, vol.87, p.182301, 2001.

[. Star and C. Adler, Disappearance of back-to-back high p T hadron correlations in central Au+Au collisions at s NN = 200 GeV, Phys. Rev. Lett, vol.90, p.82302, 2003.

P. and S. S. Adler, Elliptic flow of identified hadrons in Au+Au collisions at s NN = 200 GeV, Nucl. Instrum. Meth, vol.91, pp.250-303, 2003.
URL : https://hal.archives-ouvertes.fr/in2p3-00014208

[. Na49 and C. Alt, Directed and elliptic flow of charged pions and protons in Pb+Pb collisions at 40-A-GeV and 158-A-GeV, Phys. Rev, vol.68, p.34903, 2003.

[. Star and J. Adams, Azimuthal anisotropy at RHIC: The First and fourth harmonics, Phys. Rev. Lett, vol.92, p.62301, 2004.

[. , ]. Star, and J. Adams, Particle type dependence of azimuthal anisotropy and nuclear modification of particle production in Au+Au collisions at s NN =

. Gev, Phys. Rev. Lett, vol.92, p.52302, 2004.

[. Star and J. Adams, Azimuthal anisotropy in Au+Au collisions at s NN =

, GeV. Phys. Rev, 2005.

[. , ]. Star, and J. Adams, Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR Collaboration's critical assessment of the evidence from RHIC collisions, Nucl. Phys, vol.757, pp.184-283, 2005.

P. and S. S. Adler, Measurement of single electron event anisotropy in Au+Au collisions at s NN = 200 GeV, Phys. Rev, vol.72, p.24901, 2005.

P. and S. S. Adler, Saturation of azimuthal anisotropy in Au+Au collisions at s NN = 62 GeV to 200 GeV, Phys. Rev. Lett, vol.94, p.232302, 2005.

N. and B. Alessandro, A New measurement of J/? suppression in PbPb collisions at 158 GeV per nucleon, Eur. Phys. J, vol.39, pp.335-345, 2005.
URL : https://hal.archives-ouvertes.fr/in2p3-00023808

[. Star and B. I. Abelev, Mass, quark-number, and s NN dependence of the second and fourth flow harmonics in ultra-relativistic nucleus-nucleus collisions, Phys. Rev, vol.75, p.54906, 2007.

[. Star and B. I. Abelev, Partonic flow and ?-meson production in Au+Au collisions at s NN = 200 GeV, Phys. Rev. Lett, vol.99, p.112301, 2007.

A. Phenix and . Adare, Scaling properties of azimuthal anisotropy in Au+Au and Cu+Cu collisions at s NN = 200 GeV, Phys. Rev. Lett, vol.98, p.162301, 2007.

N. and R. Arnaldi, J/? production in indium-indium collisions at 158GeV/nucleon, Phys. Rev. Lett, vol.99, p.48, 2007.
URL : https://hal.archives-ouvertes.fr/in2p3-00176311

A. and K. Aamodt, The ALICE experiment at the CERN LHC, JINST, vol.3, issue.2, p.8002, 2008.
URL : https://hal.archives-ouvertes.fr/in2p3-00311441

[. Phenix and S. Afanasiev, High-p T ? 0 Production with Respect to the Reaction Plane in Au+Au Collisions at s NN = 200 GeV, Phys. Rev, vol.80, p.108, 2009.

[. Phenix and S. Afanasiev, Photoproduction of J/? and of high mass e + e ? in ultra-peripheral Au+Au collisions at s NN =, GeV. Phys. Lett, vol.679, pp.321-329, 2009.

A. and K. Aamodt, Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV, Phys. Rev. Lett, vol.105, p.31, 2010.
URL : https://hal.archives-ouvertes.fr/in2p3-00537767

R. Lhcb and . Aaij,

. Tev, Eur. Phys. J, vol.71, p.1645, 2011.

[. Phenix and A. Adare, Heavy Quark Production in p + p and Energy Loss and Flow of Heavy Quarks in Au+Au Collisions at s NN = 200 GeV, Phys. Rev, vol.84, p.44905, 2011.

[. Phenix and A. Adare, J/? suppression at forward rapidity in Au+Au collisions at s NN = 200 GeV, XXV XXXIV BIBLIOGRAPHY [A + 12a, vol.84, p.2100, 2011.

R. Lhcb and . Aaij, Measurement of the ratio of prompt ? c to J/? production in pp collisions at s = 7 TeV, Phys. Lett, vol.718, pp.431-440, 2012.

A. and B. Abelev, Deviation from quark-number scaling of the anisotropy parameter v 2 of pions, kaons, and protons in Au+Au collisions at s NN = 200 GeV, Phys. Rev. Lett, vol.109, p.64914, 2012.

P. and A. Adare, J/? suppression at forward rapidity in Au+Au collisions at s NN = 39 and 62.4 GeV, Phys. Rev

. Tev, Phys. Rev. Lett, vol.111, p.7, 2013.

[. , ]. Alice, and B. Abelev, Centrality determination of Pb-Pb collisions at s NN

, = 2.76 TeV with ALICE, Phys. Rev, vol.88, issue.4, p.44909, 2013.

A. and S. Acharya, /? production as a function of charged-particle pseudorapidity density in p-Pb collisions at s NN = 5.02 TeV, Phys. Lett, vol.776, pp.91-104, 2018.

N. Armesto, M. A. Braun, E. G. Ferreiro, and C. Pajares, Percolation approach to quark-gluon plasma and J/? suppression, Phys. Rev. Lett, vol.77, pp.3736-3738, 1996.
DOI : 10.1103/physrevlett.77.3736

URL : http://arxiv.org/pdf/hep-ph/9607239

A. Andronic, P. Braun-munzinger, K. Redlich, and J. Stachel, Statistical hadronization of charm in heavy ion collisions at SPS, RHIC and LHC, Phys. Lett, vol.571, p.7, 2003.

A. Andronic, P. Braun-munzinger, and J. Stachel, Thermal hadron production in relativistic nuclear collisions: The Hadron mass spectrum, the horn, and the QCD phase transition, Erratum: Phys. Lett, vol.673, p.59, 2009.

J. F. Amundson, O. J. Eboli, E. M. Gregores, and F. Halzen, Quantitative tests of color evaporation: Charmonium production, Phys. Lett, vol.390, pp.323-328, 1997.

N. Andersson, V. Ferrari, D. I. Jones, K. D. Kokkotas, B. Krishnan et al., Gravitational waves from neutron stars: Promises and challenges, Gen. Rel. Grav, vol.43, pp.409-436, 2011.
DOI : 10.1007/s10714-010-1059-4

URL : http://arxiv.org/pdf/0912.0384

F. Arleo, R. Kolevatov, S. Peigné, and M. Rustamova, Centrality and p T dependence of J/? suppression in proton-nucleus collisions from parton energy loss, JHEP, p.155, 2013.

P. Antonioli, A. Kluge, and W. Riegler, Upgrade of the ALICE Readout & Trigger System, vol.16, p.3

B. Audurier, G. Martinez-garcia, and P. Pillot, Étude de la production inclusive de J/? dans les collisions pp et Pb-Pb à s NN = 5.02 TeV avec le spectromètre à muons de l'expérience ALICE au LHC, p.99, 2017.

F. Arleo and S. Peigne, Heavy-quarkonium suppression in p-A collisions from parton energy loss in cold QCD matter, JHEP, vol.03, p.122, 2013.
URL : https://hal.archives-ouvertes.fr/in2p3-00861683

F. Arleo and S. Peigné, Quarkonium suppression in heavy-ion collisions from coherent energy loss in cold nuclear matter, JHEP, vol.10, p.73, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01178617

F. Arleo, S. Peigne, and T. Sami, Revisiting scaling properties of medium-induced gluon radiation, Phys. Rev, vol.83, p.114036, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00612919

N. Armesto, Nuclear shadowing, J. Phys, vol.32, pp.367-394, 2006.
DOI : 10.1088/0954-3899/32/11/r01

URL : https://hal.archives-ouvertes.fr/hal-00281172

G. Mark, A. Alford, K. Schmitt, T. Rajagopal, and . Schäfer, Color superconductivity in dense quark matter, Rev. Mod. Phys, vol.80, pp.1455-1515, 2008.

F. Arleo and V. Tram, A Systematic study of J/? suppression in cold nuclear matter, Eur. Phys. J, vol.55, pp.449-461, 2008.

E. and J. Barrette, Observation of anisotropic event shapes and transverse flow in Au+Au collisions at AGS energy, Phys. Rev. Lett, vol.73, pp.2532-2535, 1994.

E. and J. Barrette, Energy and charged particle flow in a 10.8-A Au+Au collisions, Phys. Rev, vol.55, pp.1420-1430, 1997.

E. and J. Barrette, Directed flow of light nuclei in Au+Au collisions at AGS energies, Phys. Rev, vol.59, pp.884-888, 1999.

P. and B. B. Back, Pseudorapidity and centrality dependence of the collective flow of charged particles in Au+Au collisions at 130 GeV, Phys. Rev. Lett, vol.89, p.222301, 2002.

P. and B. B. Back, Centrality and pseudorapidity dependence of elliptic flow for charged hadrons in Au+Au collisions at s NN = 200 GeV, Phys. Rev, vol.72, p.51901, 2005.

N. and G. Borges, Charmonia production at the CERN/SPS, J. Phys, vol.32, pp.381-390, 2006.
URL : https://hal.archives-ouvertes.fr/in2p3-00025239

. Sz and . Borsanyi, Calculation of the axion mass based on high-temperature lattice quantum chromodynamics, Nature, vol.539, issue.7627, pp.69-71, 2016.

C. Bedda, M. Agnello, and E. Bruna, The ALICE experiment: D +-meson production in heavy-ion collisions and silicon low noise sensors characterization for the ITS Upgrade, 1925.

F. René-brun, F. Bruyant, S. Carminati, M. Giani, A. Maire et al., GEANT Detector Description and Simulation Tool, p.80, 1994.

G. T. Bodwin, E. Braaten, and G. Peter-lepage, Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium, Phys. Rev, vol.51, pp.1125-1171, 1995.

S. Oliver, P. Bruning, P. Collier, S. Lebrun, R. Myers et al., The LHC Main Ring, vol.1, 2004.

N. Borghini, P. M. Dinh, and J. Ollitrault, A New method for measuring azimuthal distributions in nucleus-nucleus collisions, Phys. Rev, vol.63, p.54906, 2001.

N. Borghini, P. M. Dinh, and J. Ollitrault, Flow analysis from multiparticle azimuthal correlations, Phys. Rev, vol.64, p.54901, 2001.

S. Borsanyi, Z. Fodor, C. Hoelbling, S. D. Katz, S. Krieg et al., Full result for the QCD equation of state with 2+1 flavors, Phys. Lett, vol.730, pp.99-104, 2014.

J. D. Bjorken, Highly Relativistic Nucleus-Nucleus Collisions: The Central Rapidity Region, Phys. Rev, vol.27, issue.5, pp.140-151, 1983.

E. L. Bratkovskaya, A. P. Kostyuk, W. Cassing, and H. Stoecker, Charmonium chemistry in A+A collisions at relativistic energies, Phys. Rev, vol.69, p.54903, 2004.

P. Buncic, . Krzewicki, and . Vyvre, Technical Design Report for the Upgrade of the Online-Offline Computing System, vol.16, p.3, 2015.

P. Braun-munzinger, Quarkonium production in ultra-relativistic nuclear collisions: Suppression versus enhancement, J. Phys, vol.34, pp.471-478, 2007.

P. Braun-munzinger and J. Stachel, Non)thermal aspects of charmonium production and a new look at J/? suppression, Phys. Lett, vol.490, p.7, 2000.

J. , P. Blaizot, and J. Ollitrault, J/? suppression in Pb Pb collisions: A Hint of quark-gluon plasma production?, Phys. Rev. Lett, vol.77, pp.1703-1706, 1996.

N. Borghini and J. Y. Ollitrault, Azimuthally sensitive correlations in nucleusnucleus collisions, Phys. Rev, vol.70, p.64905, 2004.

R. Baier and R. Ruckl, Hadronic Production of J/? and ?: Transverse Momentum Distributions, Phys. Lett, vol.102, p.45, 1981.

A. Sergey and . Butsyk, PHENIX results on open heavy flavor production and flow in Au+Au collisions at s NN = 200 GeV, Nucl. Phys, vol.774, pp.669-672, 2006.

C. and S. Chatrchyan, Event activity dependence of ?(nS) production in s NN = 5.02 TeV p-Pb and s= 2.76 TeV pp collisions, JHEP, vol.04, p.103, 2014.
URL : https://hal.archives-ouvertes.fr/in2p3-00925493

A. Capella, L. Bravina, E. G. Ferreiro, A. B. Kaidalov, K. Tywoniuk et al., Charmonium dissociation and recombination at RHIC and LHC, Eur. Phys. J, vol.58, p.7, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00202097

C. Patrignani, Review of Particle Physics, Chin. Phys. C, vol.40, issue.10, p.100001, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-00532614

K. J. Eskola, H. Paukkunen, and C. A. Salgado, EPS09: A New Generation of NLO and LO Nuclear Parton Distribution Functions, JHEP, p.65, 2009.

P. and S. Esumi, Identified charged particle azimuthal anisotropy in PHENIX at RHIC, Nucl. Phys, vol.715, pp.599-602, 2003.
URL : https://hal.archives-ouvertes.fr/in2p3-00012683

E. G. Ferreiro, Charmonium dissociation and recombination at LHC: Revisiting comovers, Phys. Lett, vol.731, p.7, 2014.

E. G. Ferreiro, Excited charmonium suppression in proton-nucleus collisions as a consequence of comovers, Phys. Lett, vol.749, pp.98-103, 2015.

P. Foka, A. Ma?gorzata, and . Janik, An overview of experimental results from ultra-relativistic heavy-ion collisions at the CERN LHC: Bulk properties and dynamical evolution, Rev. Phys, vol.1, pp.154-171, 2016.

Z. Fodor and S. D. Katz, Critical point of QCD at finite T and µ, lattice results for physical quark masses, JHEP, 2004.

H. Fritzsch, Producing Heavy Quark Flavors in Hadronic Collisions: A Test of Quantum Chromodynamics, Phys. Lett, vol.67, p.45, 1977.

H. Fujii and K. Watanabe, Heavy quark pair production in high energy p-A collisions: Open heavy flavors, Nucl. Phys, vol.920, pp.78-93, 2013.

H. Fujii and K. Watanabe, Heavy quark pair production in high energy p-A collisions: Quarkonium, Nucl. Phys, vol.915, pp.1-23, 2013.

N. and M. Gonin, Anomalous J/? suppression in Pb+Pb collisions at 158-A-GeV/c, Nucl. Phys, vol.610, p.7, 1996.
URL : https://hal.archives-ouvertes.fr/in2p3-00014443

V. Greco, C. M. Ko, and R. Rapp, Quark coalescence for charmed mesons in ultrarelativistic heavy ion collisions, Phys. Lett, vol.595, pp.202-208, 2004.

U. Gursoy, D. Kharzeev, and K. Rajagopal, Magnetohydrodynamics, charged currents and directed flow in heavy ion collisions, Phys. Rev, vol.89, issue.5, p.54905, 2014.

H. H. Gutbrod, B. W. Kolb, H. R. Schmidt, A. M. Poskanzer, H. G. Ritter et al., A New Component of the Collective Flow in Relativistic Heavy Ion Collisions, Phys. Lett, vol.216, p.31, 1989.

X. Guo, S. Shi, N. Xu, Z. Xu, and P. Zhuang, Magnetic Field Effect on Charmonium Production in High Energy Nuclear Collisions, Phys. Lett, vol.751, p.9, 2015.

P. and Y. Gu, PHENIX Measurements of Higher-order Flow Harmonics for Identified Charged Hadrons in Au+Au collisions at s NN = 39-200 GeV

. Phys, A904-905:353c-356c, 2013.

D. J. Gross and F. Wilczek, Asymptotically Free Gauge Theories-I, Phys. Rev, vol.8, issue.3, pp.3633-3652, 1973.

D. J. Gross and F. Wilczek, Asymptotically Free Gauge Theories. 2, Phys. Rev, vol.9, issue.3, pp.980-993, 1974.

F. Halzen, Cvc for Gluons and Hadroproduction of Quark Flavors, Phys. Lett, vol.69, p.45, 1977.

V. Hendrik-van-hees, R. Greco, and . Rapp, Heavy-quark probes of the quark-gluon plasma at RHIC, Phys. Rev, vol.73, issue.034913, 2006.

J. Willem-van-hoorn, M. Krammer, and P. Riedler, Study and Development of a novel Silicon Pixel Detector for the Upgrade of the ALICE Inner Tracking System, p.25, 2015.

H. Van-hees, M. Mannarelli, V. Greco, and R. Rapp, Nonperturbative heavyquark diffusion in the quark-gluon plasma, Phys. Rev. Lett, vol.100, 2008.

M. Varga-kofarago, R. Snellings, and J. F. Grosse-oetringhaus, Anomalous Broadening of Jet-Peak Shapes in Pb-Pb Collisions and Characterization of Monolithic Active Pixel Sensors for the ALICE Inner Tracking System Upgrade, p.25, 2017.

R. Vogt, Cold Nuclear Matter Effects on J/? and ? Production at the LHC, Phys. Rev, vol.81, p.46, 2010.

S. A. Voloshin, A. M. Poskanzer, and R. Snellings, Collective phenomena in non-central nuclear collisions, Landolt-Bornstein, vol.23, p.94, 2010.

S. Voloshin and Y. Zhang, Flow study in relativistic nuclear collisions by Fourier expansion of Azimuthal particle distributions, Z. Phys, vol.70, pp.665-672, 1996.

P. Yang, Low-power priority Address-Encoder and Reset-Decoder datadriven readout for Monolithic Active Pixel Sensors for tracker system, Nucl. Instrum. Meth, vol.785, pp.61-69, 2015.

L. Yan, P. Zhuang, and N. Xu, Competition between J/? suppression and regeneration in quark-gluon plasma, Phys. Rev. Lett, vol.97, p.232301, 2006.

K. Zhou, Z. Chen, C. Greiner, and P. Zhuang, Thermal Charm and Charmonium Production in Quark Gluon Plasma, Phys. Lett, vol.758, pp.434-439, 2016.

B. Zhang, L. Chen, and C. Ko, Charm elliptic flow at RHIC, Phys. Rev, vol.72, p.24906, 2005.

X. Zhao, A. Emerick, and R. Rapp, In-Medium Quarkonia at SPS, RHIC and LHC. Nucl. Phys., A904-905:611c-614c, vol.110, p.9, 2013.

S. and W. Zha, Excess of J/? yield at very low transverse momenta in Au+Au collisions at s NN and U+U at s NN with STAR, J. Phys. Conf. Ser, vol.779, issue.1, p.46, 2017.

W. Zha, Recent highlights from STAR. Talk at Strangeness in Quark Matter, vol.54, 2017.

B. Zhang, C. Ko, and W. Liu, Thermal charm production in a quark-gluon plasma in Pb-Pb collisions at s NN = 5.5 TeV, Phys. Rev, vol.77, p.24901, 2008.

W. Zha, S. R. Klein, R. Ma, L. Ruan, T. Todoroki et al., Coherent J/? photoproduction in hadronic heavy-ion collisions, Phys. Rev, vol.97, issue.4, p.44910, 2018.

X. Zhao and R. Rapp, Charmonium Production at High p(t) at RHIC, 24th Winter Workshop on Nuclear Dynamics (WWND 2008) South, 2008.

X. Zhao and R. Rapp, Transverse Momentum Spectra of J/? in HeavyIon Collisions, Phys. Lett, vol.664, pp.253-257, 2008.

X. Zhao and R. Rapp, Charmonium in Medium: From Correlators to Experiment, Phys. Rev, vol.82, p.64905, 2010.

X. Zhao and R. Rapp, Medium Modifications and Production of Charmonia at LHC, Nucl. Phys, vol.859, p.7, 2011.