, Table 6.4: Location of the high activity region on the 116 Cd foil in [Sector

. Z]-units, 12 regions are identified and excluded from the analysis which correspond to about 11 % of the foil

J. Chadwick, Intensitätsverteilung im magnetischen Spektrum der ?-Strahlen von Radium B + C, Phys. Ges, vol.16, p.383, 1914.

W. Pauli, Letter to the physical society of tubingen, 1930.

C. L. Cowan, F. Reines, F. B. Harrison, H. W. Kruse, and A. D. Mcguire, Detection of the Free Neutrino: a Confirmation, Science, vol.124, issue.3212, pp.103-104, 1956.

E. Fermi, Versuch einer Theorie der ?-Strahlen. I, Zeitschrift für Physik, vol.88, issue.3, pp.161-177, 1934.

S. L. Glashow, Partial Symmetries of Weak Interactions, Nucl. Phys, vol.22, pp.579-588, 1961.

A. Salam, Renormalizability of gauge theories, Phys. Rev, vol.127, pp.331-334, 1962.

S. Weinberg, A model of leptons, Phys. Rev. Lett, vol.19, pp.1264-1266, 1967.

C. D. Anderson and S. H. Neddermeyer, Cloud chamber observations of cosmic rays at 4300 meters elevation and near sea-level, Phys. Rev, vol.50, pp.263-271, 1936.

G. Danby, J. Gaillard, K. Goulianos, L. M. Lederman, N. Mistry et al., Observation of high-energy neutrino reactions and the existence of two kinds of neutrinos, Phys. Rev. Lett, vol.9, pp.36-44, 1962.

M. L. Perl, Evidence for anomalous lepton production in e + ? e ? annihilation, Phys. Rev. Lett, vol.35, pp.1489-1492, 1975.
URL : https://hal.archives-ouvertes.fr/in2p3-00019526

K. Kodama, Observation of tau neutrino interactions, Phys. Lett, vol.504, pp.218-224, 2001.
URL : https://hal.archives-ouvertes.fr/in2p3-00011541

S. Schael, Precision electroweak measurements on the Z resonance, Phys. Rept, vol.427, pp.257-454, 2006.
URL : https://hal.archives-ouvertes.fr/in2p3-00025230

M. Goldhaber, L. Grodzins, and W. Sunyar, Helicity of Neutrinos, Phys. Rev, vol.109, pp.1015-1017, 1958.

R. Davis, D. S. Harmer, and K. C. Hoffman, Search for neutrinos from the sun, Phys. Rev. Lett, vol.20, pp.1205-1209, 1968.

J. N. Abdurashitov, Measurement of the solar neutrino capture rate with gallium metal. III: Results for the 2002-2007 data-taking period, Phys. Rev, vol.80, p.15807, 2009.

W. Hampel, GALLEX solar neutrino observations: Results for GALLEX III, Phys.Lett, vol.388, pp.384-396, 1996.

A. Acker, J. G. Learned, S. Pakvasa, and T. J. Weiler, A Single solution to the atmospheric and solar neutrino anomalies, Phys. Lett, vol.298, pp.149-153, 1993.

W. Yao, Review of Particle Physics, Journal of Physics G, vol.33, p.1, 2006.
URL : https://hal.archives-ouvertes.fr/in2p3-00532614

K. A. Olive, Review of Particle Physics, Chin. Phys, vol.38, p.90001, 2014.
URL : https://hal.archives-ouvertes.fr/in2p3-00732358

B. Pontecorvo, Mesonium and anti-mesonium, Zh. Eksp. Teor. Fiz, vol.6, p.429, 1957.

Z. Maki, M. Nakagawa, and S. Sakata, Remarks on the unified model of elementary particles, Progress of Theoretical Physics, vol.28, issue.5, pp.870-880, 1962.

J. N. Bahcall, A. M. Serenelli, and S. Basu, New solar opacities, abundances, helioseismology, and neutrino fluxes, Astrophys. J, vol.621, pp.85-88, 2005.

K. S. Hirata, Observation of 8 B solar neutrinos in the kamiokande-ii detector, Phys. Rev. Lett, vol.63, pp.16-19, 1989.

S. P. Mikheev, A. Yu, and . Smirnov, Resonance Amplification of Oscillations in Matter and Spectroscopy of Solar Neutrinos, Sov. J. Nucl. Phys, vol.42, p.1441, 1985.

C. Patrignani and P. D. Group, Review of Particle Physics, Chinese Physics C, vol.40, issue.10, p.100001, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-00732358

K. Takaaki, Atmospheric neutrinos and discovery of neutrino oscillations, Proceedings of the Japan Academy. Series B, Physical and Biological Sciences, vol.86, pp.303-321, 2010.

T. J. Haines, Calculation of Atmospheric Neutrino Induced Backgrounds in a Nucleon Decay Search, Phys. Rev. Lett, vol.57, pp.1986-1989, 1986.

Y. Ashie, Evidence for an oscillatory signature in atmospheric neutrino oscillation, Phys. Rev. Lett, vol.93, p.101801, 2004.

S. H. Ahn, Detection of accelerator produced neutrinos at a distance of 250-km, Phys. Lett, vol.511, pp.178-184, 2001.

D. G. Michael, Observation of muon neutrino disappearance with the MINOS detectors and the NuMI neutrino beam, Phys. Rev. Lett, vol.97, p.191801, 2006.
URL : https://hal.archives-ouvertes.fr/in2p3-00137433

N. Agafonova, Observation of a first ? ? candidate in the OPERA experiment in the CNGS beam, Phys. Lett, vol.691, pp.138-145, 2010.

S. Abe, Precision Measurement of Neutrino Oscillation Parameters with KamLAND, Phys. Rev. Lett, vol.100, p.221803, 2008.

F. P. An, New measurement of antineutrino oscillation with the full detector configuration at daya bay, Phys. Rev. Lett, vol.115, p.111802, 2015.

N. Agafonova, New results on ? µ ? ? ? appearance with the OPERA experiment in the CNGS beam, JHEP, vol.11, p.36, 2013.
URL : https://hal.archives-ouvertes.fr/in2p3-00854495

T. Nakaya, R. K. Plunkett, ;. Minos, T. Minos+, and N. Experiments, Neutrino Oscillations with the, New J. Phys, vol.18, issue.1, p.15009, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01861932

R. Acciarri, Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE), 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01267529

K. Abe, A Long Baseline Neutrino Oscillation Experiment Using J-PARC Neutrino Beam and Hyper-Kamiokande, 2014.

F. An, Neutrino Physics with JUNO, J. Phys, vol.43, issue.3, p.30401, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01180414

M. G. Aartsen, PINGU: A Vision for Neutrino and Particle Physics at the South Pole, J. Phys, vol.44, issue.5, p.54006, 2017.

A. Kouchner, KM3NeT -ORCA: measuring the neutrino mass ordering in the Mediterranean, Journal of Physics: Conference Series, vol.718, issue.6, p.62030, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01553887

T. A. Mueller, Improved Predictions of Reactor Antineutrino Spectra, Phys. Rev, vol.83, p.54615, 2011.
URL : https://hal.archives-ouvertes.fr/in2p3-00558857

P. Huber, On the determination of anti-neutrino spectra from nuclear reactors, Phys. Rev, vol.84, p.24617, 2011.

G. Mention, The reactor antineutrino anomaly, Journal of Physics: Conference Series, vol.408, issue.1, p.12025, 2013.

G. Mention, M. Fechner, T. Lasserre, T. A. Mueller, D. Lhuillier et al., The Reactor Antineutrino Anomaly, Phys. Rev, vol.83, p.73006, 2011.

S. Gariazzo, C. Giunti, M. Laveder, Y. F. Li, and E. M. Zavanin, Light sterile neutrinos, J. Phys, vol.43, p.33001, 2016.

A. Aguilar-arevalo, Evidence for neutrino oscillations from the observation of antineutrino(electron) appearance in a anti-neutrino(muon) beam, Phys. Rev, vol.64, p.112007, 2001.

V. Hélaine, Sterile neutrino search at the ILL nuclear reactor: the STEREO experiment, Prospects in Neutrino Physics (NuPhys2015), 2015.

N. Ryder, First results of the deployment of a SoLid detector module at the SCK-CEN BR2 reactor, PoS, p.71, 2015.

G. Bellini, SOX: Short distance neutrino Oscillations with BoreXino, JHEP, vol.08, p.38, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01554361

B. Pontecorvo, Neutrino Experiments and the Problem of Conservation of Leptonic Charge, Zh. Eksp. Teor. Fiz, vol.26, p.1717, 1967.

E. Majorana, Teoria simmetrica dell'elettrone e del positrone, vol.14, p.171, 2008.

T. D. Lee and C. N. Yang, Parity nonconservation and a two-component theory of the neutrino, Phys. Rev, vol.105, pp.1671-1675, 1957.

J. Schechter and J. W. Valle, Neutrino masses in su(2) u(1) theories, Phys. Rev. D, vol.22, pp.2227-2235, 1980.

J. Schechter and J. W. Valle, Neutrino Decay and Spontaneous Violation of Lepton Number, Phys. Rev, vol.25, p.774, 1982.

C. Kraus, Final results from phase II of the Mainz neutrino mass search in tritium beta decay, Eur. Phys. J, vol.40, pp.447-468, 2005.

V. M. Lobashev, Neutrino mass and anomaly in the tritium beta spectrum. Results of the 'Troitsk nu mass' experiment, Nucl. Phys. Proc. Suppl, vol.77, pp.327-332, 1999.

A. Osipowicz, KATRIN: A Next generation tritium beta decay experiment with sub-eV sensitivity for the electron neutrino mass. Letter of intent, 2001.

K. Assamagan, Upper limit of the muon-neutrino mass and charged-pion mass from momentum analysis of a surface muon beam, Phys. Rev. D, vol.53, pp.6065-6077, 1996.

R. Barate, An Upper limit on the tau-neutrino mass from three-prong and five-prong tau decays, Eur. Phys. J, vol.2, pp.395-406, 1998.
URL : https://hal.archives-ouvertes.fr/in2p3-00000376

B. W. Lee and S. Weinberg, Cosmological Lower Bound on Heavy Neutrino Masses, Phys. Rev. Lett, vol.39, pp.165-168, 1977.

J. Lesgourgues and S. Pastor, Massive neutrinos and cosmology, Phys. Rept, vol.429, pp.307-379, 2006.

P. A. Ade, Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys, vol.571, p.16, 2014.
URL : https://hal.archives-ouvertes.fr/in2p3-00804198

C. F. Weizsacker, Zur Theorie der Kernmassen, Z. Phys, vol.96, pp.431-458, 1935.

M. Goeppert-mayer, Double beta-disintegration, Phys. Rev, vol.48, pp.512-516, 1935.

G. Racah, On the symmetry of particle and antiparticle, Nuovo Cim, vol.14, pp.322-328, 1937.

M. Hirsch, H. V. Klapdor-kleingrothaus, and S. G. Kovalenko, Supersymmetry and neutrinoless double beta decay, Phys. Rev, vol.53, pp.1329-1348, 1996.

M. C. Gonzalez-garcia, M. Maltoni, and T. Schwetz, Updated fit to three neutrino mixing: status of leptonic CP violation, Journal of High Energy Physics, vol.2014, issue.11, p.52, 2014.

P. Guzowski, Combined limit on the neutrino mass from neutrinoless double-? decay and constraints on sterile majorana neutrinos, Phys. Rev. D, vol.92, p.12002, 2015.

C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes, and R. P. Hudson, Experimental test of parity conservation in beta decay, Phys. Rev, vol.105, pp.1413-1415, 1957.

M. Doi, T. Kotani, H. Nishiura, and E. Takasugi, Double beta decay, Progress of Theoretical Physics, vol.69, issue.2, p.602, 1983.

R. Arnold, Probing new physics models of neutrinoless double beta decay with SuperNEMO, The European Physical Journal C, vol.70, issue.4, pp.927-943, 2010.
URL : https://hal.archives-ouvertes.fr/in2p3-00542775

P. R. Gell-mann and R. Slansky, Complex spinors and unified theories, Supergravity, p.315, 1979.
DOI : 10.1142/9789812836854_0018

URL : http://arxiv.org/abs/1306.4669

Y. Chikashige, R. N. Mohapatra, and R. D. Peccei, Spontaneously broken lepton number and cosmological constraints on the neutrino mass spectrum, Phys. Rev. Lett, vol.45, pp.1926-1929, 1980.

C. S. Aulakh and R. N. Mohapatra, The neutrino as the supersymmetric partner of the majoron, Physics Letters B, vol.119, issue.1, pp.136-140, 1982.

G. B. Gelmini and M. Roncadelli, Left-handed neutrino mass scale and spontaneously broken lepton number, Physics Letters B, vol.99, issue.5, pp.411-415, 1981.
DOI : 10.1016/0370-2693(81)90559-1

P. Bamert, C. P. Burgess, and R. N. Mohapatra, Multi-majoron modes for neutrinoless double-beta decay, Nuclear Physics B, vol.449, issue.1, pp.25-48, 1995.

S. P. Martin, A Supersymmetry primer, Adv. Ser. Direct. High Energy Phys, vol.18, p.1, 1997.

N. Fatemi-ghomi, Measurement of the double beta decay half-life of Nd-150 and search for neutrinoless decay modes with NEMO-3 detector, 2009.

J. Menéndez, A. Poves, E. Caurier, and F. Nowacki, Disassembling the nuclear matrix elements of the neutrinoless ?? decay, Nuclear Physics A, vol.818, issue.3, pp.139-151, 2009.

E. Caurier, F. Nowacki, and A. Poves, Nuclear-structure aspects of the neutrinoless ??-decays, The European Physical Journal A, vol.36, issue.2, pp.195-200, 2008.

E. Caurier, J. Menéndez, F. Nowacki, and A. Poves, Influence of pairing on the nuclear matrix elements of the neutrinoless ?? decays, Phys. Rev. Lett, vol.100, p.52503, 2008.
URL : https://hal.archives-ouvertes.fr/in2p3-00172436

R. A. Sen'kov and M. Horoi, Accurate shell-model nuclear matrix elements for neutrinoless double-? decay, Phys. Rev. C, vol.90, p.51301, 2014.

D. Fang, A. Faessler, V. Rodin, and F. Simkovic, Neutrinoless double beta decay of deformed nuclei within QRPA with realistic interaction, Phys. Rev, vol.83, p.34320, 2011.

J. Terasaki, Many-body correlations of quasiparticle random-phase approximation in nuclear matrix elements of neutrinoless double-? decay, Phys. Rev, vol.91, issue.3, p.34318, 2015.

M. T. Mustonen and J. Engel, Large-scale calculations of the double-? decay of

. Ge, 130 T e, 136 Xe, and 150 N d in the deformed self-consistent Skyrme quasiparticle random-phase approximation, Phys. Rev, vol.87, issue.6, p.64302, 2013.

J. Barea, J. Kotila, and F. Iachello, Nuclear matrix elements for double-? decay, Phys. Rev. C, vol.87, p.14315, 2013.

N. N. Bogolyubov, V. V. Tolmachev, and D. V. Shirkov, A New method in the theory of superconductivity, Fortsch. Phys, vol.6, pp.605-682, 1958.

P. K. Rath, R. Chandra, K. Chaturvedi, P. Lohani, P. K. Raina et al., Neutrinoless ?? decay transition matrix elements within mechanisms involving light majorana neutrinos, classical majorons, and sterile neutrinos, Phys. Rev. C, vol.88, p.64322, 2013.

J. F. Berger, M. Girod, and D. Gogny, Microscopic analysis of collective dynamics in low energy fission, Nuclear Physics A, vol.428, pp.23-36, 1984.

T. R. Rodriguez and G. Martinez-pinedo, Energy density functional study of nuclear matrix elements for neutrinoless ?? decay, Phys. Rev. Lett, vol.105, p.252503, 2010.

L. S. Song, J. M. Yao, P. Ring, and J. Meng, Relativistic description of nuclear matrix elements in neutrinoless double-? decay, Phys. Rev. C, vol.90, p.54309, 2014.

A. Smolnikov and P. Grabmayr, Conversion of experimental half-life to effective electron neutrino mass in 0??? decay, Phys. Rev. C, vol.81, p.28502, 2010.

B. Kay, Valence neutron properties relevant to the neutrinoless double-? decay of 130 te, Phys. Rev. C, vol.87, p.11302, 2013.

J. D. Vergados, H. Ejiri, and F. Simkovic, Theory of Neutrinoless Double Beta Decay, Rept. Prog. Phys, vol.75, p.106301, 2012.

F. T. Avignone, S. R. Elliott, and J. Engel, Double beta decay, majorana neutrinos, and neutrino mass, Rev. Mod. Phys, vol.80, pp.481-516, 2008.

A. Garfagnini, Neutrinoless Double Beta Decay Experiments, 12th Conference on Flavor Physics and CP Violation, 2014.

H. V. Klapdor-kleingrothaus, Latest results from the Heidelberg-Moscow double beta decay experiment, Eur. Phys. J, vol.12, pp.147-154, 2001.

H. Klapdor-kleingrothaus, I. Krivosheina, A. Dietz, and O. Chkvorets, Search for neutrinoless double beta decay with enriched 76Ge in Gran Sasso, Physics Letters B, vol.586, issue.3-4, pp.198-212, 1990.

C. E. Aalseth, Comment on evidence for neutrinoless double beta decay, Mod. Phys. Lett, vol.17, pp.1475-1478, 2002.

C. E. Aalseth, Recent results of the IGEX 76Ge double-beta decay experiment, Physics of Atomic Nuclei, vol.63, issue.7, pp.1225-1228, 2000.

M. Agostini, Results on neutrinoless double-? decay of 76 ge from phase i of the gerda experiment, Phys. Rev. Lett, vol.111, issue.12, p.122503, 2013.

M. Agostini, Background free search for neutrinoless double beta decay with GERDA Phase II, 2017.

N. , The Majorana Demonstrator Neutrinoless Double-Beta Decay Experiment, Adv. High Energy Phys, vol.2014, p.365432, 2014.

N. , The Large Enriched Germanium Experiment for Neutrinoless Double Beta Decay (LEGEND)

B. H. Marik, Semiconductor-based experiments for neutrinoless double beta decay search, Nuclear Physics B -Proceedings Supplements, vol.229, pp.141-145, 2012.

J. Ebert, Results of a search for neutrinoless double-? decay using the COBRA demonstrator, Phys. Rev, vol.94, issue.2, p.24603, 2016.

S. Umehara, Neutrino-less double-? decay of 48 Ca studied by caf 2 (eu) scintillators, Phys. Rev. C, vol.78, p.58501, 2008.

A. S. Umehara, Search for neutrino-less double beta decay with candles, AIP Conference Proceedings, vol.1441, pp.448-450, 2012.

F. A. Danevich, Search for double beta decay of 116 Cd with enriched 116 CdWO 4 crystal scintillators (Aurora experiment), J. Phys. Conf. Ser, vol.718, issue.6, p.62009, 2016.

A. Gando, Search for Majorana Neutrinos near the Inverted Mass Hierarchy Region with KamLAND-Zen, Phys. Rev. Lett, vol.117, issue.8, p.109903, 2016.

S. Junpei, KamLAND-Zen: Status and Future, Nuclear Physics B -Proceedings Supplements, vol.237, pp.28-30, 2013.

S. Andringa, Current Status and Future Prospects of the SNO+ Experiment, Adv. High Energy Phys, vol.2016, p.6194250, 2016.

E. Andreotti, 130Te Neutrinoless Double-Beta Decay with CUORICINO, Astropart. Phys, vol.34, pp.822-831, 2011.

, Status of the CUORE experiment, Journal of Physics: Conference Series, vol.447, issue.1, p.12066, 2013.

, LUCIFER: Neutrinoless Double Beta decay search with scintillating bolometers, Journal of Physics: Conference Series, vol.335, issue.1, p.12047, 2011.

E. Armengaud, Development of 100 Mo-containing scintillating bolometers for a highsensitivity neutrinoless double-beta decay search, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01669511

, Search for neutrinoless double-beta decay in 136 Xe with EXO-200, Phys. Rev. Lett, vol.109, p.32505, 2012.

J. J. Gomez-cadenas, Present status and future perspectives of the NEXT experiment, Adv. High Energy Phys, vol.2014, p.907067, 2014.

A. Gando, Limit on Neutrinoless ?? Decay of 136 Xe from the First Phase of KamLAND-Zen and Comparison with the Positive Claim in 76 Ge, Phys. Rev. Lett, vol.110, issue.6, p.62502, 2013.

R. Arnold, Measurement of the double-beta decay half-life and search for the neutrinoless double-beta decay of 48 Ca with the NEMO-3 detector, Phys. Rev, vol.93, issue.11, p.112008, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01299739

M. Agostini, Results on ?? decay with emission of two neutrinos or Majorons in 76 Ge from GERDA PhaseI, The European Physical Journal C, vol.75, issue.9, p.416, 2015.

J. Mott, Search for double beta decay of 82 Se with the NEMO-3 detector and development of apparatus for low-level radon measurements for the SuperNEMO experiment, pp.2013-2022

J. Argyriades, Measurement of the two neutrino double beta decay half-life of Zr-96 with the NEMO-3 detector, Nucl. Phys, vol.847, pp.168-179, 2010.
URL : https://hal.archives-ouvertes.fr/in2p3-00511000

R. Arnold, First results of the search for neutrinoless double-beta decay with the nemo-3 detector, Phys. Rev. Lett, vol.95, p.182302, 2005.
URL : https://hal.archives-ouvertes.fr/in2p3-00024486

R. Arnold, Measurement of the Double Beta Decay Half-life of 130 T e with the NEMO-3 Detector, Phys. Rev. Lett, vol.107, p.62504, 2011.

J. B. Albert, Improved measurement of the 2??? half-life of 136 Xe with the EXO-200 detector, Phys. Rev, vol.89, issue.1, p.15502, 2014.

R. Arnold, Measurement of the 2??? decay half-life of 150 Nd and a search for 0??? decay processes with the full exposure from the NEMO-3 detector, Phys. Rev, vol.94, issue.7, p.72003, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02144319

R. Arnold, Results of the search for neutrinoless double-? decay in 100 Mo with the NEMO-3 experiment, Phys. Rev, vol.92, issue.7, p.72011, 2015.

K. Alfonso, Search for neutrinoless double-beta decay of 130 Te with cuore-0, Phys. Rev. Lett, vol.115, p.102502, 2015.
URL : https://hal.archives-ouvertes.fr/in2p3-01202519

J. R. Wilson, Double Beta Decay Measurement with COBRA, Nuclear Physics B -Proceedings Supplements, vol.221, pp.313-316, 2011.

F. Boehm and P. Vogel, Physics of Massive Neutrinos, 1992.

C. Berger, Experimental study of muon bundles observed in the fréjus detector, Phys. Rev. D, vol.40, pp.2163-2171, 1989.

D. Mei and A. Hime, Muon-induced background study for underground laboratories, Phys. Rev, vol.73, p.53004, 2006.

D. Dassie, Double beta decay prototype detector with multiwire drift tubes in the Geiger mode, Nucl. Instrum. Meth, vol.309, pp.465-475, 1991.
URL : https://hal.archives-ouvertes.fr/in2p3-00015381

R. Arnold, Performances of NEMO-2, a Prototype Tracking Detector for Double Beta Decay Measurements, Nucl. Instrum. Meth, vol.354, 1995.

R. Arnold, Technical design and performance of the NEMO 3 detector, Nucl. Instrum. Meth, vol.536, pp.79-122, 2005.
URL : https://hal.archives-ouvertes.fr/in2p3-00023220

R. Arnold, Observation of two neutrino double beta decay of Cd-116 with the tracking detector NEMO-2, Pisma Zh. Eksp. Teor. Fiz, vol.61, pp.170-174, 1995.
URL : https://hal.archives-ouvertes.fr/in2p3-00015147

S. R. Elliott, A. A. Hahn, M. K. Moe, M. A. Nelson, and M. A. Vient, Double beta decay of Se-82, Phys. Rev, vol.46, pp.1535-1537, 1992.

J. Tuli, Nuclear Data Sheets for A = 60, Nuclear Data Sheets, vol.309, pp.347-481, 2003.

J. Argyriades, Measurement of the background in the NEMO 3 double beta decay experiment, Nucl. Instrum. Meth, vol.606, pp.449-465, 2009.
URL : https://hal.archives-ouvertes.fr/in2p3-00378540

R. Arnold, Measurement of the 2??? Decay Half-Life and Search for the 0??? Decay of 116 Cd with the NEMO-3 Detector, Phys. Rev, vol.95, issue.1, p.12007, 2017.
URL : https://hal.archives-ouvertes.fr/in2p3-01766477

D. Waters, Latest Results from NEMO-3 & Status of the SuperNEMO Experiment, J. Phys. Conf. Ser, vol.888, issue.1, p.12033, 2017.

R. Arnold, Search for neutrinoless quadruple-? decay of 150 Nd with the NEMO-3 detector, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01582779

J. J. Gomez-cadenas, Physics case of supernemo with 82se source : Docdb 358-v2, 2008.

A. S. Barabash, The BiPo-3 detector for the measurement of ultra low natural radioactivities of thin materials, 2017.
URL : https://hal.archives-ouvertes.fr/in2p3-01480194

M. Cascella, The SuperNEMO Tracking Detector, Proceedings, Topical Research Meeting on Prospects in Neutrino Physics, 2014.

A. S. Barabash, Calorimeter development for the SuperNEMO double beta decay experiment, Nucl. Instrum. Meth, vol.868, pp.98-108, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01582802

G. J. Feldman and R. D. Cousins, A Unified approach to the classical statistical analysis of small signals, Phys. Rev, vol.57, pp.3873-3889, 1998.

N. , Radon reduction and radon monitoringin the nemo experiment, 2007.

M. S. Basunia, Nuclear Data Sheets for A = 210, Nuclear Data Sheets, vol.121, pp.561-694, 2014.

H. Gomez, Results from bipo measurements of source foil components. : Docdb3244, 2014.

P. Loaiza, Bipo measurement of the purified se-nat+pva pads : Docdb3731-v2, 2015.

X. R. Liu, Update of the latest c-section measurement results. : Docdb3772, 2015.

G. Cern, Geant, vol.4

I. Nasteva, 90-cell prototype performance : Docdb 803, 2009.

A. S. Barabash, Precise half-life values for two-neutrino double-? decay, Phys. Rev. C, vol.81, p.35501, 2010.

N. Kudomi, Double beta decays and elegant v and vi at oto cosmo observatory, Nuclear Physics A, vol.629, issue.1, pp.527-530, 1998.

F. Danevich, Search for 2? decay of cadmium and tungsten isotopes: Final results of the solotvina experiment, Phys. Rev. C, vol.68, p.35501, 2003.

R. Arnold, Double-beta decay of Cd-116, Z. Phys, vol.72, pp.239-247, 1996.
URL : https://hal.archives-ouvertes.fr/in2p3-00015553

O. A. Ponkratenko, V. I. Tretyak, and Y. G. Zdesenko, The Event generator DECAY4 for simulation of double beta processes and decay of radioactive nuclei, Phys. Atom. Nucl, vol.63, p.1355, 2000.

R. Brun, F. Bruyant, M. Maire, A. C. Mcpherson, and P. Zanarini, GEANT 3: user's guide Geant 3.10, Geant 3.11; rev. version, 1987.

S. Blot, Gamma identification and reconstruction in hereward

R. Brun and F. Rademakers, ROOT: An object oriented data analysis framework, Nucl. Instrum. Meth, vol.389, pp.81-86, 1997.

P. Speckmayer, A. Höcker, J. Stelzer, and H. Voss, The toolkit for multivariate data analysis, TMVA 4, Journal of Physics: Conference Series, vol.219, issue.3, p.32057, 2010.

W. Fisher, Systematics and limit calculations, 2006.

P. Van-laarhoven and E. Aarts, Simulated annealing: theory and applications, p.37, 1987.

S. Blot, Résumé Les détecteurs NEMO-3 et SuperNEMO ont été conçus pour la recherche de décroissance double bêta sans émission de neutrinos. Ces détecteurs fournissent une approche unique dans la recherche des événements double bêta en combinant des mesures à la fois de trajectoires, de temps de vol et d'énergie. De plus, grâce à la séparation de la source double bêta du reste du système de détection, les détecteurs NEMO ont la possibilité d, Position paper for 150 Nd ? 150 Sm ground state analysis : Docdb3716, 2014.

, La première concerne l'optimisation des performances du détecteur en fonction de la configuration mécanique de ses feuilles sources. La conclusion de cette étude est que les deux configurations considérées sont équivalentes. La seconde étude s'intéresse à l'un des principaux bruits de fond que constitue le radon dans la recherche des désintégrations double bêta. Cette étude a été concrétisée par le développement et l'implémentation d'un algorithme permettant l'identification et la mesure des événements provenant de ce bruit de fond. Le deuxième volet de cette thèse rapporte l'analyse des données de NEMO-3 pour rechercher les décroissances double bêta avec et sans émission de neutrino du 116 Cd vers les états excités du 116 Sn. Ces décroissances n'ont jamais été observées à ce jour, Cette thèse présente plusieurs études réalisées dans le cadre de l'optimisation et la préparation du détecteur SuperNEMO

N. Mots-clés, Double bêta, SuperNEMO, Feuille source, Radon, État excité, p.116