, On constate en revanche que pour du PCL pur, l'état de surface n'évolue pas, la surface demeure lisse et aucun précipité n'est formé. D'après les analyses par EDX, les précipités recouvrant l'hybride sont des phosphates de calcium de composition voisine du minéral osseux (Figure 107-B) et leur forme en sphérulite est caractéristique d'une apatite (Figure 107-C). Ces résultats démontrent que le caractère bioactif du mélange hybride organiqueinorganique demeure même après les deux extrusions subies au cours du procédé, La bioactivité de la matrice hybride imprimée a été évaluée in vitro par immersion dans le SBF

, Évolution de l'état de surface de barreaux imprimés en PCL pur et en hybride PCL-bioverre (noté PCL-BV) au cours de l'interaction avec le SBF, vue au MEB (A), Cliché MEB des précipités formés en surface du barreau hybride après 7 jours d'immersion (C)

, La taille des barreaux constituant ce maillage peut actuellement descendre à une centaine de micromètres. À terme, nous avons pour ambition d'imprimer directement le scaffold hybride, un procédé qui conduit à une structure plus fidèle au modèle, plus régulière et plus reproductible par rapport à l'utilisation d'une empreinte sacrificielle. Dans la partie 9.2, des scaffolds ont été imprimés avec une buse de 800 µm à partir d'un fil hybride qui a été préalablement fabriqué par extrusion. Il s'agit là de premiers prototypes et des travaux supplémentaires sont requis dans le but d'améliorer le rendu final. En l'état actuel, il n'est pas possible d'imprimer un scaffold hybride PCL-bioverre avec une buse de 400 µm à partir d'un fil. De plus, les matrices hybrides obtenues avec une buse de 800 µm, Conclusions et perspectives L'impression du moule permet de faire varier la morphologie de la matrice hybride. Dans la partie 9.1, l'hybride PCL-bioverre a ainsi été élaboré avec des structures macroporeuses à mailles carrées

, Une solution consiste à imprimer le scaffold à partir de granules hybrides et non à partir d'un fil. Cette méthode permet d'appliquer des forces de compression plus importantes en vue d'extruder l'hybride à travers une buse de 400 µm voire 250 µm. Elle est d'ailleurs fréquemment employée pour l'impression de scaffolds en PCL pur, pp.169-172

, Deux dispositifs existent pour ce type d'imprimante : soit la matière est entraînée par une vis sans fin, vol.169

, La conception de ces dispositifs a fait l'objet d'un projet étudiant à l'école d'ingénieurs Polytech de Clermont-Ferrand, vol.173

, Les étudiants sont parvenus à extruder l'hybride PCL-bioverre à travers une buse de 400 µm à 85°C avec un système de pousse-seringue développé par leur soin, vol.108

, Représentation schématique du système d'extrusion par pousse-seringue développé à Polytech

, En second lieu, nous avons tenté d'imprimer directement les scaffolds à partir de fil hybride préalablement fabriqué. La bioactivité semble conservée même après les deux étapes d'extrusion de l'hybride (fabrication du fil puis impression), mais le matériau est difficilement extrudé à travers une buse de 400 µm, ce qui limite fortement le potentiel de cette technique d'impression. Nous avons alors établi que l'utilisation d'un fil hybride n'était pas adaptée à notre matériau et qu'il était plus judicieux d'imprimer à partir de granules hybrides. Le projet étudiant à l'école d'ingénieurs Polytech de Clermont-Ferrand a permis de confirmer la puissance de l'impression 3D à partir de granules, l'hybride ayant été extrudé à travers une buse de 400 µm sans résistance apparente, nous nous sommes penchés sur l'élaboration de scaffolds hybrides PCL-bioverre au moyen de différentes techniques d'impression 3D, le but étant de simplifier le procédé de fabrication des scaffolds et de pouvoir créer de nouvelles structures macroporeuses

C. Bossard, H. Granel, E. Jallot, C. Vial, H. Tiainen et al., Polycaprolactone / bioactive glass hybrid scaffolds for bone regeneration, Biomedical Glasses, vol.4, pp.108-122, 2018.
DOI : 10.1515/bglass-2018-0010

URL : http://www.degruyter.com/downloadpdf/j/bglass.2018.4.issue-1/bglass-2018-0010/bglass-2018-0010.xml

:. C. Brevet, H. Bossard, J. Granel, Y. Lao, E. Wittrant et al., Implant à porosité contrôlée en un matériau hybride dopé en nutriment ostéoinducteur

, France Communication orale de 15 minutes intitulée "Polycaprolactone / bioactive glass hybrid scaffolds for bone regeneration" ? Actions de communication scientifique : Le 9 mai 2017 : présentation des travaux de thèse (15 minutes) à une association étudiante Lie'Utopie, dans le cadre de l'activité « Présente ta thèse » Le 14 février 2017 : présentation des travaux de thèse (2 fois 15 minutes) à des classes de premières et de terminales au lycée polyvalent Jean Monnet à Yzeure, ? Participation à des congrès internationaux : "ESB : European Society for Biomaterials" du 9 au 13 septembre 2018 à Maastricht

D. F. Williams, Definitions in biomaterials, 2nd Consensus Meeting, 1991.

M. Vert, Y. Doi, K. Hellwich, M. Hess, P. Hodge et al., Terminology for biorelated polymers and applications (IUPAC Recommendations 2012), vol.84, p.377, 2012.
DOI : 10.1351/pac-rec-10-12-04

URL : https://hal.archives-ouvertes.fr/hal-00720283

C. Isabelle, Biologie du remodelage osseux, Médecine Nucléaire -Imagerie fonctionnelle et métabolique, vol.28, pp.57-65, 2004.

D. Chappard, Modelage et remodelage au cours de l'ostéo-intégration, Revue de Stomatologie, de Chirurgie Maxillo-faciale et de, Chirurgie Orale, vol.114, issue.3, pp.159-165, 2013.

L. C. Gerstenfeld, D. M. Cullinane, G. L. Barnes, D. T. Graves, and T. A. Einhorn, Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation, J. Cell. Biochem, vol.88, issue.5, pp.873-884, 2003.

T. Albrektsson and C. Johansson, Osteoinduction, osteoconduction and osseointegration, Eur. Spine J, vol.10, issue.2, pp.96-101, 2001.
DOI : 10.1007/978-3-642-56071-2_3

URL : http://europepmc.org/articles/pmc3611551?pdf=render

A. Kinaci, V. Neuhaus, and D. Ring, Trends in bone graft use in the United States, 2014.

H. Dressmann, Ueber Knochenplombierung bei Hohlenformigen Defekten des Knochens, vol.9, pp.804-810, 1892.

C. Laurencin, Y. Khan, and S. F. El-amin, Bone graft substitutes, Expert Rev. Med. Devices, vol.3, issue.1, pp.49-57, 2006.

G. Chaushu, O. Mardinger, M. Peleg, O. Ghelfan, and J. Nissan, Analysis of Complications Following Augmentation With Cancellous Block Allografts, J. Periodontol, vol.81, issue.12, pp.1759-1764, 2010.

A. Sakkas, F. Wilde, M. Heufelder, K. Winter, and A. Schramm, Autogenous bone grafts in oral implantology-is it still a "gold standard"? A consecutive review of 279 patients with 456 clinical procedures, International Journal of Implant Dentistry, vol.3, p.23, 2017.

R. M. William, E. Stephen, I. Bain, and . Gregory, Synthetic bone graft substitutes, ANZ J. Surg, vol.71, issue.6, pp.354-361, 2003.

L. L. Hench and H. A. Paschall, Direct chemical bond of bioactive glass-ceramic materials to bone and muscle, J. Biomed. Mater. Res, vol.7, issue.3, pp.25-42, 1973.

I. D. Xynos, A. J. Edgar, L. D. Buttery, L. L. Hench, and J. M. Polak, Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass® 45S5 dissolution, J. Biomed. Mater. Res, vol.55, issue.2, pp.151-157, 2001.

L. L. Hench and D. Greenspan, Interactions between bioactive glass and collagen: a review and new perspectives, vol.49, pp.1-40, 2013.

P. Saravanapavan, J. R. Jones, R. S. Pryce, and L. L. Hench, Bioactivity of gel-glass powders in the CaO-SiO2 system: a comparison with ternary (CaO-P2P5-SiO2) and quaternary glasses (SiO2-CaO-P2O5-Na2O), Journal of Biomedical Materials Research Part A, vol.66, issue.1, pp.110-119, 2003.

L. Larry, Bioceramics: from concept to clinic, J. Am. Ceram. Soc, vol.74, issue.7, pp.1487-1510, 1991.

R. Li, A. E. Clark, and L. L. Hench, An investigation of bioactive glass powders by sol-gel processing, J. Appl. Biomater, vol.2, issue.4, pp.231-239, 1991.

J. Livage, M. Henry, and C. Sanchez, Sol-gel chemistry of transition metal oxides, Prog. Solid State Chem, vol.18, issue.4, pp.259-341, 1988.

P. Sepulveda, R. Julian, and L. H. Larry, Characterization of melt-derived 45S5 and sol-gel-derived 58S bioactive glasses, J. Biomed. Mater. Res, vol.58, issue.6, pp.734-740, 2002.

M. Vallet-regí, C. V. Ragel, and A. J. Salinas, Glasses with medical applications, Eur. J. Inorg. Chem, issue.6, pp.1029-1042, 2003.

J. Lao and J. Nedelec, Verres bioactifs, Techniques de l'ingénieur base documentaire : TIB573DUO(ref. article : n4955), 2014.

J. R. Jones, Review of bioactive glass: from Hench to hybrids, Acta Biomater, vol.9, issue.1, pp.4457-4486, 2013.

S. Bose, M. Roy, and A. Bandyopadhyay, Recent advances in bone tissue engineering scaffolds, Trends Biotechnol, vol.30, issue.10, pp.546-554, 2012.

A. Vaccaro, The role of osteoconductive scaffold in synthetic bone graft, 2002.

P. Sepulveda, J. R. Jones, and L. L. Hench, Bioactive sol-gel foams for tissue repair, J. Biomed. Mater. Res, vol.59, issue.2, pp.340-348, 2002.

J. Lacroix, Sol-gel synthesis of macroporous scaffolds based on bioactive glasses for bone tissue engineering. Micro-PIXE characterization of their in vitro and in vivo reactivity, 2013.
URL : https://hal.archives-ouvertes.fr/tel-01065128

X. Wang, X. Li, A. Ito, and Y. Sogo, Synthesis and characterization of hierarchically macroporous and mesoporous CaO-MOSiO2-P2O5 (M=Mg, Zn, Sr) bioactive glass scaffolds, Acta Biomater, vol.7, issue.10, pp.3638-3644, 2011.

P. Yan, J. Wang, J. Ou, Z. Li, Z. Lei et al., Synthesis and characterization of three-dimensional ordered mesoporous-macroporous bioactive glass, Mater. Lett, vol.64, issue.22, pp.2544-2547, 2010.

Q. Fu, E. Saiz, and A. P. Tomsia, Bioinspired Strong and Highly Porous Glass Scaffolds, Adv. Funct. Mater, vol.21, issue.6, pp.1058-1063, 2011.

Q. Fu, E. Saiz, and A. P. Tomsia, Direct Ink Writing of Highly Porous and Strong Glass Scaffolds for Load-bearing Bone Defects Repair and Regeneration, Acta Biomater, vol.7, issue.10, pp.3547-3554, 2011.

Q. Fu, E. Saiz, M. N. Rahaman, and A. P. Tomsia, Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives, Materials Science and Engineering: C, vol.31, issue.7, pp.1245-1256, 2011.

J. Duan, Y. Yu, Y. Li, Y. Yu, Y. Li et al., Toxic Effect of Silica Nanoparticles on Endothelial Cells through DNA Damage Response via Chk1-Dependent G2/M Checkpoint, vol.8, p.62087, 2013.

P. Guidi, M. Nigro, M. Bernardeschi, V. Scarcelli, P. Lucchesi et al., Genotoxicity of amorphous silica particles with different structure and dimension in human and murine cell lines, Mutagenesis, vol.28, issue.2, pp.171-180, 2013.

K. Zhang, Y. Wang, M. A. Hillmyer, and L. F. Francis, Processing and properties of porous poly(l-lactide)/bioactive glass composites, Biomaterials, vol.25, issue.13, pp.2489-2500, 2004.

A. Liu, Z. Hong, X. Zhuang, X. Chen, Y. Cui et al., Surface modification of bioactive glass nanoparticles and the mechanical and biological properties of poly(l-lactide) composites, Acta Biomater, vol.4, issue.4, pp.1005-1015, 2008.

C. J. Brinker and G. W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing

B. M. Novak, Hybrid Nanocomposite Materials-between inorganic glasses and organic polymers, Adv. Mater, vol.5, issue.6, pp.422-433, 1993.

O. Mahony, O. Tsigkou, C. Ionescu, C. Minelli, L. Ling et al., Silica-gelatin hybrids with tailorable degradation and mechanical properties for tissue regeneration, Adv. Funct. Mater, vol.20, issue.22, pp.3835-3845, 2010.

L. Gabrielli, L. Connell, L. Russo, J. Jimenez-barbero, F. Nicotra et al., Exploring GPTMS reactivity against simple nucleophiles: chemistry beyond hybrid materials fabrication, vol.4, pp.1841-1848, 2013.

L. Gabrielli, L. Russo, A. Poveda, J. R. Jones, F. Nicotra et al., Epoxide opening versus silica condensation during sol-gel hybrid biomaterial synthesis, Chemistry -A European Journal, vol.19, issue.24, pp.7856-7864, 2013.

D. Wang, F. Romer, L. Connell, C. Walter, E. Saiz et al., Highly flexible silica/chitosan hybrid scaffolds with oriented pores for tissue regeneration, J. Mater. Chem. B, vol.3, issue.38, pp.7560-7576, 2015.

S. Rhee, Bone-like apatite-forming ability and mechanical properties of PCL/silica hybrid as a function of PCL content, Biomaterials, vol.25, issue.7-8, pp.1167-1175, 2004.

A. Li, H. Shen, H. Ren, C. Wang, D. Wu et al., Bioactive organic/inorganic hybrids with improved mechanical performance, J. Mater. Chem. B, vol.3, issue.7, pp.1379-1390, 2015.

D. Mondal, S. J. Dixon, K. Mequanint, and A. S. Rizkalla, Mechanically-competent and cytocompatible polycaprolactone-borophosphosilicate hybrid biomaterials, J. Mech. Behav. Biomed. Mater, vol.75, pp.180-189, 2017.

A. L. Macon, S. J. Page, J. J. Chung, N. Amdursky, M. M. Stevens et al., A structural and physical study of sol-gel methacrylate-silica hybrids: intermolecular spacing dictates the mechanical properties, Phys. Chem. Chem. Phys, vol.17, issue.43, pp.29124-29133, 2015.

B. Yu, C. A. Turdean-ionescu, R. A. Martin, R. J. Newport, J. V. Hanna et al., Effect of calcium source on structure and properties of sol-gel derived bioactive glasses, Langmuir, vol.28, issue.50, pp.17465-17476, 2012.

O. Mahony, S. Yue, C. Turdean-ionescu, J. V. Hanna, M. E. Smith et al., Silica-gelatin hybrids for tissue regeneration: inter-relationships between the process variables, J. Sol-Gel Sci. Technol, vol.69, issue.2, pp.288-298, 2013.

L. S. Connell, F. Romer, M. Suarez, E. M. Valliant, Z. Zhang et al., Chemical characterisation and fabrication of chitosan-silica hybrid scaffolds with 3-glycidoxypropyl trimethoxysilane, J. Mater. Chem. B, vol.2, issue.6, pp.668-680, 2014.

Y. Ding, J. A. Roether, A. R. Boccaccini, and D. W. Schubert, Fabrication of electrospun poly (3-hydroxybutyrate)/poly (e-caprolactone)/silica hybrid fibermats with and without calcium addition, Eur. Polym. J, vol.55, pp.222-234, 2014.

A. R. Silva, T. L. Macedo, D. J. Coletta, S. Feldman, and M. D. Pereira, Synthesis, characterization and cytotoxicity of Chitosan/Polyvinyl Alcohol/Bioactive Glass hybrid scaffolds obtained by lyophilization, vol.21, pp.964-973, 2016.

G. Poologasundarampillai, B. Yu, O. Tsigkou, D. Wang, F. Romer et al., PGA/silica hybrids with calcium incorporated in the silica network by use of a calcium alkoxide precursor, Chemistry (Weinheim an Der Bergstrasse, Germany), vol.20, issue.26, pp.8149-8160, 2014.

G. Poologasundarampillai, B. Yu, J. R. Jones, and T. Kasuga, Electrospun silica/PLLA hybrid materials for skeletal regeneration, Soft Matter, vol.7, issue.21, pp.10241-10251, 2011.

J. Lao, J. Lacroix, E. Jallot, and X. Dieudonné, Implant with controlled porosity made of a hybrid material, 2014.

J. Lao, E. Jallot, and X. Dieudonné, Hybrid material implant having variable porosity, 2016.

S. Padilla, J. Román, A. Carenas, and M. Vallet-regí, The influence of the phosphorus content on the bioactivity of sol-gel glass ceramics, Biomaterials, vol.26, issue.5, pp.475-483, 2005.

P. Saravanapavan, R. Julian, S. Russell, and L. H. Larry, Bioactivity of gel-glass powders in the CaO-SiO2 system: A comparison with ternary (CaO-P2P5-SiO2) and quaternary glasses (SiO2-CaO-P2O5-Na2O), Journal of Biomedical Materials Research Part A, vol.66, issue.1, pp.110-119, 2003.

A. Martinez, I. Izquierdo-barba, and M. Vallet-regi, Bioactivity of a CaO-SiO2 binary glasses system, Chem. Mater, vol.12, issue.10, pp.3080-3088, 2000.

J. Isaac, J. Nohra, J. Lao, E. Jallot, J. Nedelec et al., Effects of strontium-doped bioactive glass on the differentiation of cultured osteogenic cells, eCells and Materials Journal, vol.21, pp.130-143, 2011.
URL : https://hal.archives-ouvertes.fr/in2p3-00607842

J. Lao, J. Lacroix, J. Nohra, N. Naaman, J. M. Sautier et al., Chemical imaging of the reconstruction of new bone and trace elements inside bioactive glass scaffolds in vivo: a multimodal and quantitative micro-ion beam analysis, Surf. Interface Anal, vol.46, pp.702-706, 2014.

B. Yu, G. Poologasundarampillai, C. A. Turdean-ionescu, M. E. Smith, and J. R. Jones, A new calcium source for bioactive sol-gel hybrids, Bioceramics Development and Applications, vol.1, pp.1-3, 2011.

M. M. Pereira, A. E. Clark, and L. L. Hench, Calcium phosphate formation on sol-gel-derived bioactive glasses in vitro, J. Biomed. Mater. Res, vol.28, issue.6, pp.693-698, 1994.

X. Dieudonne, V. Montouillout, E. Jallot, F. Fayon, and J. Lao, Bioactive glass hybrids: a simple route towards the gelatin-SiO2-CaO system, Chem. Commun, vol.50, issue.63, pp.8701-8704, 2014.

J. Lao, X. Dieudonne, F. Fayon, V. Montouillout, and E. Jallot, Bioactive glass-gelatin hybrids: building scaffolds with enhanced calcium incorporation and controlled porosity for bone regeneration, J. Mater. Chem. B, vol.4, issue.14, pp.2486-2497, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01898624

M. Descamps, T. Duhoo, F. Monchau, J. Lu, P. Hardouin et al., Manufacture of macroporous ??-tricalcium phosphate bioceramics, 2008.

S. F. Hulbert, S. J. Morrison, and J. J. Klawitter, Tissue reaction to three ceramics of porous and non-porous structures, J. Biomed. Mater. Res, vol.6, issue.5, pp.347-374, 1972.

V. Karageorgiou and D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis, vol.26, pp.5474-5491, 2005.

M. Bohner and J. Lemaitre, Can bioactivity be tested in vitro with SBF solution?, Biomaterials, vol.30, issue.12, pp.2175-2179, 2009.

T. H. Salles, C. B. Lombello, and M. A. , Electrospinning of gelatin/poly(vinyl pyrrolidone) blends from water/acetic acid solutions, Materials Research, vol.18, issue.3, pp.509-518, 2015.

E. Stathatos, P. Lianos, B. Orel, A. S. Vuk, and R. Jese, Study of acetic acid-catalyzed nanocomposite organic/inorganic ureasil sol?gel ionic conductors, Langmuir, vol.19, issue.18, pp.7587-7591, 2003.
DOI : 10.1021/la0300535

Z. Ma, C. Gao, Y. Gong, and J. Shen, Paraffin spheres as porogen to fabricate poly(L-lactic acid) scaffolds with improved cytocompatibility for cartilage tissue engineering, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.67, issue.1, pp.610-617, 2003.
DOI : 10.1002/jbm.b.10049

D. M. Smith, G. W. Scherer, and J. M. Anderson, Shrinkage during drying of silica gel, J. Non-Cryst. Solids, vol.188, issue.3, pp.191-206, 1995.
DOI : 10.1016/0022-3093(95)00187-5

R. C. Reid, J. M. Prausnitz, and B. E. Poling, The properties of gases and liquids, 1987.

S. Nasrazadani and E. Eureste, Application of FTIR for quantitative lime analysis, 2008.

M. Khachani, A. E. Hamidi, M. Halim, and S. Arsalane, Non-isothermal kinetic and thermodynamic studies of the dehydroxylation process of synthetic calcium hydroxide Ca(OH) 2, 2014.

A. E. Gash, T. M. Tillotson, J. H. Satcher, L. W. Hrubesh, and R. L. Simpson, New sol-gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors, J. Non-Cryst. Solids, vol.285, issue.1, pp.22-28, 2001.
DOI : 10.1016/s0022-3093(01)00427-6

R. K. Iler, The chemistry of silica, J. Chem. Educ, vol.57, issue.11, p.324, 1980.

S. L. Greasley, S. J. Page, S. Sirovica, S. Chen, R. A. Martin et al., Controlling particle size in the Stöber process and incorporation of calcium, J. Colloid Interface Sci, vol.469, pp.213-223, 2016.

S. Wu, C. Mou, and H. Lin, Synthesis of mesoporous silica nanoparticles, Chem. Soc. Rev, vol.42, issue.9, pp.3862-3875, 2013.

M. S. Johnsson and G. Nancollas, The Role of Brushite and Octacalcium Phosphate in Apatite Formation, 1992.

C. Drouet, Apatite formation: why it may not work as planned, and how to conclusively identify apatite compounds, BioMed Research, vol.12, 2013.
DOI : 10.1155/2013/490946

URL : https://hal.archives-ouvertes.fr/hal-01120700

H. Aguiar, J. Serra, P. González, and B. León, Structural study of sol-gel silicate glasses by IR and Raman spectroscopies, J. Non-Cryst. Solids, vol.355, issue.8, pp.475-480, 2009.
DOI : 10.1016/j.jnoncrysol.2009.01.010

P. Innocenzi, Infrared spectroscopy of sol-gel derived silica-based films: a spectra-microstructure overview, J. Non-Cryst. Solids, vol.316, issue.2, pp.309-319, 2003.
DOI : 10.1016/s0022-3093(02)01637-x

A. G. Kalampounias, IR and Raman spectroscopic studies of sol-gel derived alkaline-earth silicate glasses, Bull. Mater. Sci, vol.34, issue.2, pp.299-303, 2011.

J. R. Jones, P. D. Lee, and L. L. Hench, Hierarchical porous materials for tissue engineering, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.364, issue.263, 1838.
DOI : 10.1098/rsta.2005.1689

P. Lips, P. Courpron, and P. J. Meunier, Mean wall thickness of trabecular bone packets in the human iliac crest: Changes with age, Calcif. Tissue Res, vol.26, issue.1, pp.13-17, 1978.

L. J. Gibson, Biomechanics of cellular solids, J. Biomech, vol.38, issue.3, pp.377-399, 2005.
DOI : 10.1016/j.jbiomech.2004.09.027

D. L. Kopperdahl and T. M. Keaveny, Yield strain behavior of trabecular bone, J. Biomech, vol.31, issue.7, pp.601-608, 1998.
DOI : 10.1016/s0021-9290(98)00057-8

P. S. Gomes and M. H. Fernandes, Rodent models in bone-related research: the relevance of calvarial defects in the assessment of bone regeneration strategies, Lab. Anim, vol.45, issue.1, pp.14-24, 2011.

E. Gentleman, Y. C. Fredholm, G. Jell, N. Lotfibakhshaiesh, M. D. O'donnell et al., The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro, Biomaterials, vol.31, issue.14, pp.3949-3956, 2010.

J. P. Thawani, A. C. Wang, K. D. Than, C. Lin, F. L. Marca et al., Bone morphogenetic proteins and cancer, vol.66, issue.2, pp.233-246, 2010.

J. Lao, Du bioverre à l'hybride organo-minéral : élaboration de substituts osseux et caractérisation de la bioactivité par microsondes nucléaires, Habilitation à diriger des recherches, 2017.

S. Rokidi and P. G. Koutsoukos, Crystal growth of calcium phosphates from aqueous solutions in the presence of strontium, Chem. Eng. Sci, vol.77, pp.157-164, 2012.

J. Lacroix, J. Lao, J. Nedelec, and E. Jallot, Micro PIXE-RBS for the study of Sr release at bioactive glass scaffolds / biological medium interface, Nuclear Instruments and Methods B, vol.306, pp.153-157, 2013.
URL : https://hal.archives-ouvertes.fr/in2p3-00803653

A. Bigi, E. Boanini, C. Capuccini, and M. Gazzano, Strontium-substituted hydroxyapatite nanocrystals, Inorg. Chim. Acta, vol.360, issue.3, pp.1009-1016, 2007.

S. Choi, Y. Son, J. Yun, and S. H. Kim, Fisetin inhibits osteoclast differentiation via downregulation of p38 and c-Fos-NFATc1 signaling pathways, Evid. Based Complement. Alternat. Med, vol.9, 2012.

L. Léotoing, M. Davicco, P. Lebecque, Y. Wittrant, and V. Coxam, The flavonoid fisetin promotes osteoblasts differentiation through Runx2 transcriptional activity, Mol. Nutr. Food Res, vol.58, issue.6, pp.1239-1248, 2014.

L. Léotoing, F. Wauquier, J. Guicheux, E. Miot-noirault, Y. Wittrant et al., The polyphenol fisetin protects bone by repressing NF-?B and MKP-1-dependent signaling pathways in osteoclasts, PLoS One, vol.8, issue.7, p.68388, 2013.

K. Hagiwara, T. Goto, M. Araki, H. Miyazaki, and H. Hagiwara, Olive polyphenol hydroxytyrosol prevents bone loss, Eur. J. Pharmacol, vol.662, issue.1, pp.78-84, 2011.

E. Mével, Utilisation des procyanidines et de l'hydroxytyrosol dans la prévention nutritionnelle de l'arthrose, 2015.

V. Coxam, F. Wauquier, C. Darie, M. Spilmont, M. Davicco et al., Huile d'olive et santé osseuse, OCL, vol.21, issue.5, 2014.

J. Anter, J. M. Quesada-gómez, G. Dorado, and A. Casado-díaz, Effect of hydroxytyrosol on human mesenchymal stromal/stem cell differentiation into adipocytes and osteoblasts

Y. Ding, W. Li, T. Müller, D. W. Schubert, A. R. Boccaccini et al., Electrospun polyhydroxybutyrate/poly(?-caprolactone)/58S sol-gel bioactive glass hybrid scaffolds with highly improved osteogenic potential for bone tissue engineering, ACS Appl. Mater. Interfaces, vol.8, issue.27, pp.17098-17108, 2016.

Y. Ding, Q. Yao, W. Li, D. W. Schubert, A. R. Boccaccini et al., The evaluation of physical properties and in vitro cell behavior of PHB/PCL/sol-gel derived silica hybrid scaffolds and PHB/PCL/fumed silica composite scaffolds, Colloids and Surfaces B: Biointerfaces, vol.136, pp.93-98, 2015.

J. Lacoste and S. Therias, Vieillissement des matériaux polymères et des composites, Chimie en Auvergne, issue.395, 2015.

A. Maxwell, W. Broughton, G. Dean, and G. Sims, Review of accelerated ageing methods and lifetime prediction techniques for polymeric materials, 2005.

P. Alves, R. Cardoso, T. R. Correia, B. P. Antunes, I. J. Correia et al., Surface modification of polyurethane films by plasma and ultraviolet light to improve haemocompatibility for artificial heart valves, Colloids and Surfaces B: Biointerfaces, vol.113, pp.25-32, 2014.

P. Alves, S. Pinto, J. Kaiser, A. Bruinink, H. C. Sousa et al., Surface grafting of a thermoplastic polyurethane with methacrylic acid by previous plasma surface activation and by ultraviolet irradiation to reduce cell adhesion, Colloids and Surfaces B: Biointerfaces, vol.82, issue.2, pp.371-377, 2011.

J. Guan, C. Gao, L. Feng, and J. Shen, Functionalizing of polyurethane surfaces by photografting with hydrophilic monomers, J. Appl. Polym. Sci, vol.77, issue.11, pp.2505-2512, 2000.

Z. H. Yabin, G. A. Changyou, G. Jianjun, and S. Jiacong, Promoting the cytocompatibility of polyurethane scaffolds via surface photo-grafting polymerization of acrylamide, 2004.

Y. Zhu, C. Gao, and J. Shen, Surface modification of polycaprolactone with poly(methacrylic acid) and gelatin covalent immobilization for promoting its cytocompatibility, Biomaterials, vol.23, issue.24, pp.4889-4895, 2002.

M. Trivedi, A. Branton, D. Trivedi, G. Nayak, R. Singh et al., Physicochemical and spectroscopic characterization of biofield treated butylated hydroxytoluene, Journal of Food & Industrial Microbiology, vol.1, issue.1, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01465809

. Ciba, Photoinitiators for UV curing, 2003.

W. W. Simons, The Sadtler handbook of ultraviolet spectra, Sadtler research laboratories, 1979.

K. Hirayama, Handbook of ultraviolet and visible absorption spectra of organic compounds

R. A. Friedel and M. Orchin, Ultraviolet spectra of aromatic compounds, J. Am. Pharm. Assoc, vol.41, issue.1, p.1952

D. Mondal, A. S. Rizkalla, and K. Mequanint, Bioactive borophosphosilicate-polycaprolactone hybrid biomaterials via a non-aqueous sol gel process, RSC Advances, vol.6, issue.95, pp.92824-92832, 2016.

A. Yao, D. Wang, W. Huang, Q. Fu, M. N. Rahaman et al., In Vitro Bioactive Characteristics of Borate-Based Glasses with Controllable Degradation Behavior, J. Am. Ceram. Soc, vol.90, issue.1, pp.303-306, 2007.

C. Wu, R. Miron, A. Sculean, S. Kaskel, T. Doert et al., Proliferation, differentiation and gene expression of osteoblasts in boron-containing associated with dexamethasone deliver from mesoporous bioactive glass scaffolds, Biomaterials, vol.32, issue.29, pp.7068-7078, 2011.

P. Balasubramanian, L. Hupa, B. Jokic, R. Detsch, A. Grünewald et al., Angiogenic potential of boron-containing bioactive glasses: in vitro study, J. Mater. Sci, vol.52, issue.15, pp.8785-8792, 2017.

S. Rhee, J. Choi, and H. Kim, Preparation of a bioactive and degradable PCL/silica hybrid through a sol-gel method, Biomaterials, vol.23, issue.24, pp.4915-4921, 2002.

J. J. Chung, Y. Fujita, S. Li, M. M. Stevens, T. Kasuga et al., Biodegradable inorganic-organic hybrids of methacrylate star polymers for bone regeneration, Acta Biomater, vol.54, pp.411-418, 2017.

S. Czarnecki and A. Bertin, Hybrid silicon-based organic/inorganic block copolymers with sol-gel active moieties, Chemistry -A European Journal, vol.24, issue.14, pp.3354-3373, 2017.

S. M. Giannitelli, D. Accoto, M. Trombetta, and A. Rainer, Current trends in the design of scaffolds for computer-aided tissue engineering, Acta Biomater, vol.10, issue.2, pp.580-594, 2014.

J. Nam, B. Starly, A. Darling, and W. Sun, Computer aided tissue engineering for modeling and design of novel tissue scaffolds, Computer-Aided Design and Applications, vol.1, issue.1-4, pp.633-640, 2004.

M. I. Gariboldi and S. M. Best, Effect of ceramic scaffold architectural parameters on biological response, Frontiers in Bioengineering and Biotechnology, vol.3, p.151, 2015.

C. Leber, H. Choi, S. Bose, and A. Bandyopadhyay, Micromachined Si channel width and tortuosity on human osteoblast cell attachment and proliferation, Materials Science and Engineering: C, vol.30, issue.1, pp.71-77, 2010.

S. Wood, How to 3D print with flexible filaments, 2014.

F. Wang, L. Shor, A. Darling, S. Khalil, W. Sun et al., Precision extruding deposition and characterization of cellular polycaprolactone tissue scaffolds, Rapid Prototyping Journal, vol.10, issue.1, pp.42-49, 2004.
DOI : 10.1108/13552540410512525

S. Lauren, G. Selçuk, C. Robert, G. Jennifer, K. Qian et al., Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering, Biofabrication, vol.1, issue.1, p.15003, 2009.

J. Li, M. Chen, X. Wei, Y. Hao, and J. Wang, Evaluation of 3D-printed polycaprolactone scaffolds coated with freeze-dried platelet-rich plasma for bone regeneration, Materials, vol.10, issue.7, p.831, 2017.

M. Kammerer, M. Fabritius, C. Carvalho, R. Mülhaupt, T. Feuerstein et al., Valproate release from polycaprolactone implants prepared by 3D-bioplotting, 2011.

A. Aubree, C. Feuillarade, L. Lastra, N. Memain-perennec, M. Palluet et al., Tête d'extrusion pour imprimante 3D, 2018.

. Volumic, , 2018.

. Envisiontec, The 3D-Bioplotter family, 2018.

C. Cellink and . Bio-x, , 2018.

F. Tallia, L. Russo, S. Li, A. L. Orrin, X. Shi et al., Bouncing and 3D printable hybrids with self-healing properties, Materials Horizons, vol.5, issue.5, pp.849-860, 2018.
DOI : 10.1039/c8mh00027a

URL : https://hal.archives-ouvertes.fr/hal-01916322