, La résolution spatiale et la sensibilité du système en fonction de la distance sourcecollimateur (de 1 cmà 15 cm du collimateur par pas de 2 cm) ontété mesuréesà l'aide d'un capillaire et de cinq sources cylindriques de 3 mm d'épaisseur et avec di?érents diamètres (0.5, 1, 2, 3 et 4 cm) remplies de 131 I. La sensibilité aété mesurée sans et avec milieu di?usant

, L'activité des sources aété contrôlée avec un activimètre (MEDI 405, précision de ±3%)

, Elle variait d'un minimum de 8.9 MBq pour le plus petit cylindreà un maximum de

, Toutes les mesures ontété e?ectuéesà température ambiante. L'analyse d'image utilisée est la même que celle présentée dans la section A.5. La résolution spatiale aété mesurée comme décrit pour les simulations dans la section A.4.1. La sensibilité de la caméra (cps/MBq) aété mesurée par le nombre de comptes détectés dans des ROI définies sur les images des sources cylindriques, divisé par le temps d'acquisition et l'activité de la source, corrigé par la décroissance dans le temps

J. Bernier, E. J. Hall, and A. Giaccia, Radiation oncology: a century of achievements, Nature Reviews Cancer, vol.4, pp.737-747, 2004.

A. Ku, The contribution of Marie Sk lodowska-Curie to the development of modern oncology, Analytical and Bioanalytical Chemistry, vol.400, pp.1583-1586, 2011.

F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA: A Cancer Journal for Clinicians, vol.68, pp.394-424, 2018.

. Eanm, Internal Dosimetry Task Force Report on: Treatment Planning For Molecular Radiotherapy: Potential And Prospects. European Association of Nuclear Medicine, 2017.

M. G. Stabin and A. B. Brill, State of the Art in Nuclear Medicine Dose Assessment, Seminars in Nuclear Medicine, vol.38, pp.308-320, 2008.

L. Strigari, M. Konijnenberg, C. Chiesa, M. Bardies, Y. Du et al., The evidence base for the use of internal dosimetry in the clinical practice of molecular radiotherapy, European Journal of Nuclear Medicine and Molecular Imaging, vol.41, 1976.

G. D. Flux, K. Gleisner, C. Chiesa, M. Lassmann, N. Chouin et al., From fixed activities to personalized treatments in radionuclide therapy: lost in translation?, European Journal of Nuclear Medicine and Molecular Imaging, vol.45, issue.1, pp.152-154, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-01635732

C. Chiesa, K. Gleisner, G. Flux, J. Gear, S. Walrand et al., The conflict between treatment optimization and registration of radiopharmaceuticals with fixed activity posology in oncological nuclear medicine therapy, European Journal of Nuclear Medicine and Molecular Imaging, vol.44, pp.1783-1786, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02379748

G. Flux, M. Bardies, M. Monsieurs, S. Savolainen, S. Strand et al., The Impact of PET and SPECT on Dosimetry for Targeted Radionuclide Therapy, Zeitschrift für Medizinische Physik, vol.16, issue.1, pp.47-59, 2006.

Y. K. Dewaraja, E. C. Frey, G. Sgouros, A. B. Brill, P. Roberson et al., MIRD Pamphlet No. 23: Quantitative SPECT for Patient-Specific 3-Dimensional Dosimetry in Internal Radionuclide Therapy, Journal of Nuclear Medicine, 2012.

M. Ljungberg and K. S. Gleisner, 3-D Image-Based Dosimetry in Radionuclide Therapy, IEEE Transactions on Radiation and Plasma Medical Sciences, vol.2, pp.527-540, 2018.

M. Lassmann and U. Eberlein, The Relevance of Dosimetry in Precision Medicine, Journal of Nuclear Medicine, vol.59, pp.1494-1499, 2018.

M. G. Stabin, Uncertainties in Internal Dose Calculations for Radiopharmaceuticals, Journal of Nuclear Medicine, vol.49, pp.853-860, 2008.

M. P. Stokkel, D. H. Junak, M. Lassmann, M. Dietlein, and M. Luster, EANM procedure guidelines for therapy of benign thyroid disease, European Journal of Nuclear Medicine and Molecular Imaging, vol.37, pp.2218-2228, 2010.

M. Lassmann, H. Hänscheid, C. Chiesa, C. Hindorf, G. Flux et al., EANM Dosimetry Committee series on standard operational procedures for pre-therapeutic dosimetry I: blood and bone marrow dosimetry in di?erentiated thyroid cancer therapy, European Journal of Nuclear Medicine and Molecular Imaging, vol.35, pp.1405-1412, 2008.

M. Lassmann, C. Reiners, and M. Luster, Dosimetry and thyroid cancer: the individual dosage of radioiodine, Endocrine-Related Cancer, vol.17, pp.161-172, 2010.

, Latest global cancer data: Cancer burden rises to 18.1 million new cases and 9.6 million cancer deaths in 2018 -The International Agency for Research on Cancer (IARC), 2018.

K. Gleisner, E. Spezi, P. Solny, P. M. Gabina, F. Cicone et al., Variations in the practice of molecular radiotherapy and implementation of dosimetry: results from a European survey, EJNMMI Physics, vol.4, 2017.

J. Carlsson, E. Aronsson, S. Hietala, T. Stigbrand, and J. Tennvall, Tumour therapy with radionuclides: assessment of progress and problems, Radiotherapy and Oncology, vol.66, pp.107-117, 2003.

R. Baskar, K. A. Lee, R. Yeo, and K. Yeoh, Cancer and Radiation Therapy: Current Advances and Future Directions, International Journal of Medical Sciences, vol.9, issue.3, pp.193-199, 2012.

D. L. Bailey and A. , of Physicists in Medicine,éds, Nuclear medicine physics: a handbook for teachers and students. No. 1617 de STI/PUB, Vienna: International Atomic Energy Agency, p.951442102, 2014.

E. Sage and N. Shikazono, Radiation-induced clustered DNA lesions: Repair and mutagenesis, Free Radical Biology and Medicine, vol.107, pp.125-135, 2017.

D. Eriksson and T. Stigbrand, Radiation-induced cell death mechanisms

C. Arena, V. De-micco, E. Macaeva, and R. Quintens, Space radiation e?ects on plant and mammalian cells, Acta Astronautica, vol.104, pp.419-431, 2014.

N. Hunter and C. R. Muirhead, Review of relative biological e?ectiveness dependence on linear energy transfer for low-LET radiations, Journal of Radiological Protection, vol.29, pp.5-21, 2009.

A. Neshasteh-riz, Relative Biological E?ectiveness (RBE) of 131i Radiation Relative to 60co Gamma Rays, CELL JOURNAL, vol.15, issue.3, p.6, 2013.

H. Willers, F. Xia, and S. N. Powell, Recombinational DNA Repair in Cancer and Normal Cells: The Challenge of Functional Analysis, Journal of Biomedicine and Biotechnology, vol.2, issue.2, pp.86-93, 2002.

M. Borràs-fresneda, J. Barquinero, M. Gomolka, S. Hornhardt, U. Rössler et al., Di?erences in DNA Repair Capacity, Cell Death and Transcriptional Response after Irradiation between a Radiosensitive and a Radioresistant Cell Line, Scientific Reports, vol.6, p.27043, 2016.

S. Mehta, V. Suhag, M. Semwal, and N. Sharma, Radiotherapy: Basic Concepts and Recent Advances, Medical Journal, Armed Forces India, vol.66, pp.158-162, 2010.

J. Borras, Y. Lievens, M. Barton, J. Corral, J. Ferlay et al., How many new cancer patients in Europe will require radiotherapy by 2025? An ESTRO-HERO analysis, 2016.

S. T. Group, The UK Standardisation of Breast Radiotherapy (START) Trial A of radiotherapy hypofractionation for treatment of early breast cancer: a randomised trial, 2008.

D. Dearnaley, I. Syndikus, H. Mossop, V. Khoo, A. Birtle et al., Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: 5-year outcomes of the randomised, non-inferiority, phase 3 CHHiP trial, The Lancet Oncology, vol.17, pp.1047-1060, 2016.

A. E. Nahum and J. Uzan, Biological Optimization of External-Beam Radiotherapy, Computational and Mathematical Methods in Medicine, vol.2012, 2012.

M. Siggel, Concepts for the e cient Monte Carlo-based treatment plan optimization in radiotherapy, p.129, 2012.

J. M. Brown, D. J. Carlson, and D. J. Brenner, The Tumor Radiobiology of SRS and SBRT: Are More than the 5 R's Involved?, International journal of radiation oncology, vol.88, pp.254-262, 2014.

T. Hellevik and I. Martinez-zubiaurre, Radiotherapy and the Tumor Stroma: The Importance of Dose and Fractionation, Frontiers in Oncology, vol.4, 2014.

C. Garibaldi, B. A. Jereczek-fossa, G. Marvaso, S. Dicuonzo, D. P. Rojas et al., Recent advances in radiation oncology, vol.11, 2017.

S. Lacombe, E. Porcel, and E. Scifoni, Particle therapy and nanomedicine: state of art and research perspectives | Cancer Nanotechnology | Full Text, 2017.

. Ptcog, Particle Therapy Co-Operative Group: Facilities under Construction, 2019.

. Ptcog, Particle Therapy Co-Operative Group: Facilities in Operation, 2019.

J. Skowronek, Current status of brachytherapy in cancer treatment -short overview, Journal of Contemporary Brachytherapy, vol.9, pp.581-589, 2017.

C. T. Sawin and D. V. Becker, Radioiodine and the Treatment of Hyperthyroidism: The Early History *, vol.7, pp.163-176, 1997.

B. W. Wessels, J. H. Syh, and R. F. Meredith, Overview of dosimetry for systemic targeted radionuclide therapy (STaRT), International Journal of Radiation Oncology*Biology*Physics, vol.66, pp.39-45, 2006.

M. Seidlin, L. D. Marinelli, and E. Oshri, Radioactive iodine therapy: Effect on functioning metastases of adenocarcinoma of the thyroid, Journal of the American Medical Association, vol.132, pp.838-847, 1946.

T. Das and M. Pillai, Options to meet the future global demand of radionuclides for radionuclide therapy, Nuclear Medicine and Biology, vol.40, pp.23-32, 2013.

A. Dash, F. F. Knapp, and M. Pillai, Targeted Radionuclide Therapy -An Overview, Current Radiopharmaceuticals, vol.6, pp.152-180, 2013.

B. W. Wessels and C. F. Meares, Physical and chemical properties of radionuclide therapy, Seminars in Radiation Oncology, vol.10, pp.115-122, 2000.

J. Zweit, Radionuclides and carrier molecules for therapy, Physics in Medicine and Biology, vol.41, 1905.

L. Marcu, E. Bezak, and B. J. Allen, Global comparison of targeted alpha vs targeted beta therapy for cancer: In vitro, in vivo and clinical trials, Critical Reviews in Oncology/Hematology, vol.123, pp.7-20, 2018.

L. , Beta emitters and radiation protection, Acta Oncologica, vol.48, pp.308-313, 2009.

J. Pouget, I. Navarro-teulon, M. Bardiès, N. Chouin, G. Cartron et al., Clinical radioimmunotherapy-the role of radiobiology, Nature Reviews Clinical Oncology, vol.8, pp.720-734, 2011.

Y. Dekempeneer, M. Keyaerts, A. Krasniqi, J. Puttemans, S. Muyldermans et al., Targeted alpha therapy using short-lived alpha-particles and the promise of nanobodies as targeting vehicle, Expert Opinion on Biological Therapy, vol.16, pp.1035-1047, 2016.

G. Henriksen, D. R. Fisher, J. C. Roeske, O. S. Bruland, and R. H. Larsen, Targeting of Osseous Sites with alpha-Emitting 223ra: Comparison with the beta-Emitter 89sr in Mice, p.9

M. R. Zalutsky, Labeling monoclonal antibodies and F(ab')2 fragments with the a-particle-emitting nuclide astatine-211: Preservation of immunoreactivity and in vivo localizing capacity, Proc. Natl. Acad. Sci, p.5, 1989.

A. I. Kassis and S. J. Adelstein, Radiobiologic Principles in Radionuclide Therapy, p.10, 2005.

J. A. O'donoghue and T. E. Wheldon, Targeted radiotherapy using Auger electron emitters, Physics in Medicine and Biology, vol.41, 1973.

F. Buchegger, F. Perillo-adamer, Y. M. Dupertuis, and A. Bischof-delaloye, Auger radiation targeted into DNA: a therapy perspective, European Journal of Nuclear Medicine and Molecular Imaging, vol.33, pp.1352-1363, 2006.

E. Lopci, A. Chiti, M. R. Castellani, G. Pepe, L. Antunovic et al., Matched pairs dosimetry: 124i/131i metaiodobenzylguanidine and 124i/131i and 86y/90y antibodies, European Journal of Nuclear Medicine and Molecular Imaging, vol.38, p.28, 2011.

C. Muller, M. Bunka, S. Haller, U. Koster, V. Groehn et al., Promising Prospects for 44sc-/47sc-Based Theragnostics: Application of 47sc for Radionuclide Tumor Therapy in Mice, Journal of Nuclear Medicine, vol.55, pp.1658-1664, 2014.

R. S. Benjamin, A. Amro, and M. I. El-desouki, Measurement of iodine-123 thyroid uptake using a gamma camera with LEAP collimator, Journal of Nuclear Medicine Technology, vol.27, pp.215-219, 1999.

W. Jentzen, R. F. Hobbs, A. Stahl, J. Knust, G. Sgouros et al., Pre-therapeutic 124i PET(/CT) dosimetry confirms low average absorbed doses per administered 131i activity to the salivary glands in radioiodine therapy of differentiated thyroid cancer, European Journal of Nuclear Medicine and Molecular Imaging, vol.37, pp.884-895, 2010.

U. Eberlein, M. Cremonesi, and M. Lassmann, Individualized Dosimetry for Theranostics: Necessary, Nice to Have, or Counterproductive?, Journal of Nuclear Medicine, vol.58, pp.97-103, 2017.

R. Wierts, B. Brans, B. Havekes, G. J. Kemerink, S. G. Halders et al., Dose-Response Relationship in Di?erentiated Thyroid Cancer Patients Undergoing Radioiodine Treatment Assessed by Means of 124i PET/CT, Journal of Nuclear Medicine, vol.57, pp.1027-1032, 2016.

J. Notni and H. Wester, Rethinking the role of radiometal isotopes: Towards a future concept for theranostic radiopharmaceuticals, 2018.

C. J. Anderson and R. Ferdani, Copper-64 Radiopharmaceuticals for PET Imaging of Cancer: Advances in Preclinical and Clinical Research, Cancer Biotherapy and Radiopharmaceuticals, vol.24, pp.379-393, 2009.

S. Walrand, G. D. Flux, M. W. Konijnenberg, R. Valkema, E. P. Krenning et al., Dosimetry of yttrium-labelled radiopharmaceuticals for internal therapy: 86y or 90y imaging?, European Journal of Nuclear Medicine and Molecular Imaging, vol.38, p.57, 2011.

F. Rosch, H. Herzog, and S. M. Qaim, The Beginning and Development of the Theranostic Approach in Nuclear Medicine, as Exemplified by the Radionuclide Pair 86y and 90y, Pharmaceuticals, vol.10, p.56, 2017.

S. Lehenberger, C. Barkhausen, S. Cohrs, E. Fischer, J. Grünberg et al., The lowenergy beta(-) and electron emitter 161tb as an alternative to 177lu for targeted radionuclide therapy, Nuclear Medicine and Biology, vol.38, pp.917-924, 2011.

C. Muller, K. Zhernosekov, U. Koster, K. Johnston, H. Dorrer et al., A Unique Matched Quadruplet of Terbium Radioisotopes for PET and SPECT and for -and -Radionuclide Therapy: An In Vivo Proof-of-Concept Study with a New Receptor-Targeted Folate Derivative, Journal of Nuclear Medicine, vol.53, pp.1951-1959

F. Rösch and R. P. Baum, Generator-based PET radiopharmaceuticals for molecular imaging of tumours: on the way to THERANOSTICS, Dalton Transactions, vol.40, pp.6104-6111, 2011.

D. R. Fisher, S. Shen, and R. F. Meredith, MIRD Dose Estimate Report No. 20: Radiation Absorbed-Dose Estimates for 111in-and 90y-Ibritumomab Tiuxetan, Journal of Nuclear Medicine, vol.50, pp.644-652, 2009.

T. Saito, T. Endo, A. Kawaguchi, M. Ikeda, R. Katoh et al., Increased expression of the sodium/iodide symporter in papillary thyroid carcinomas, Journal of Clinical Investigation, vol.101, pp.1296-1300, 1998.

O. Dohán, A. De-la-vieja, V. Paroder, C. Riedel, M. Artani et al., Characterization, Regulation, and Medical Significance, The Sodium/Iodide Symporter, vol.24, pp.48-77, 2003.

D. M. Wiel, J. Wu, L. E. Brown, T. J. Mangner, D. P. Swanson et al., Radiolabeled Adrenergic Neuron-Blocking Agents: AdrenomeduDary Imaging with[1311]Iodobenzylguanidin, 1979.

V. Cuccurullo, G. L. Cascini, O. Tamburrini, A. Rotondo, and L. Mansi, Bone Metastases Radiopharmaceuticals: An Overview, 2013.

, Internal Dosimetry Task Force Report on: Treatment Planning For Molecular Radiotherapy: Potential And Prospects

S. Nilsson, R. H. Larsen, S. D. Fosso, L. Balteskard, K. W. Borch et al., First Clinical Experience with alpha-Emitting Radium-223 in the Treatment of Skeletal Metastases, Clin Cancer Res, p.10, 2005.

P. Schneider, J. Farahati, and C. Reiners, Radiosynovectomy in rheumatology, orthopedics, and hemophilia. -Semantic Scholar, Journal of nuclear medicine, 2005.

F. Breedveld, Therapeutic monoclonal antibodies, The Lancet, vol.355, pp.735-740, 2000.

F. E. Von-eyben, G. S. Baumann, and R. P. Baum, PSMA diagnostics and treatments of prostate cancer become mature, Clinical and Translational Imaging, vol.6, issue.2, pp.145-148, 2018.

R. P. Baum, H. R. Kulkarni, C. Schuchardt, A. Singh, M. Wirtz et al., 177lu-Labeled Prostate-Specific Membrane Antigen Radioligand Therapy of Metastatic Castration-Resistant Prostate Cancer: Safety and E cacy, Journal of Nuclear Medicine, vol.57, pp.1006-1013, 2016.

B. Rojas, D. R. Mcgowan, M. J. Guy, J. Tipping, M. Aldridge et al., Eighty per cent more patients in 10 years of UK molecular radiotherapy: Internal Dosimetry Users Group survey results from, Nuclear Medicine Communications, vol.40, p.657, 2007.

M. Chinol, L. Bodei, M. Cremonesi, and G. Paganelli, Receptor-mediated radiotherapy with 90y-DOTA-DPhe1-Tyr3-octreotide: The experience of the european institute of oncology group, Seminars in Nuclear Medicine, vol.32, pp.141-147, 2002.

U. Pandey, S. Banerjee, A. Mukherjee, H. D. Sarma, and M. Venkatesh, 90y-DOTA-Lanreotide: A potential agent for targeted therapy, Journal of Radioanalytical and Nuclear Chemistry, vol.273, pp.719-723, 2007.

V. Sandblom, Strategies for optimisation of 177Lu-octreotate therapy -exploring local administration and combination therapy regimens, 2019.

N. Lepaureur, C. Lacoeuille, F. Bouvry, and . Hindré, Rhenium-188 Labeled Radiopharmaceuticals: Current Clinical Applications in Oncology and Promising Perspectives, 2019.

M. Grzmil, A. Meisel, M. Behé, and R. Schibli, An Overview of Targeted Radiotherapy, pp.85-100, 2019.

S. K. Sahoo, S. Parveen, and J. J. Panda, The present and future of nanotechnology in human health care, Nanomedicine: Nanotechnology, Biology, and Medicine, vol.3, pp.20-31, 2007.

D. R. Perinelli, M. Cespi, G. Bonacucina, and G. F. Palmieri, PEGylated polylactide (PLA) and poly (lactic-co-glycolic acid) (PLGA) copolymers for the design of drug delivery systems, Journal of Pharmaceutical Investigation, vol.49, pp.443-458, 2019.

R. Shukla, M. Handa, S. B. Lokesh, M. Ruwali, K. Kohli et al., Conclusion and Future Prospective of Polymeric Nanoparticles for Cancer Therapy, Polymeric Nanoparticles as a Promising Tool for Anti-cancer Therapeutics (P. Kesharwani, K. M. Paknikar et V. Gajbhiye,éds), pp.389-408, 2019.

C. Yeong, M. Cheng, and K. Ng, Therapeutic radionuclides in nuclear medicine: current and future prospects, Journal of Zhejiang University. Science. B, vol.15, pp.845-863, 2014.

S. A. Moosavian and A. Sahebkar, Aptamer-functionalized liposomes for targeted cancer therapy, Cancer Letters, vol.448, pp.144-154, 2019.

D. Emfietzoglou, K. Kostarelos, and G. Sgouros, An Analytic Dosimetry Study for the Use of Radionuclide-Liposome Conjugates in Internal Radiotherapy, Journal of Nuclear Medicine, vol.42, pp.499-504, 2001.

E. B. Kullberg, N. Bergstrand, J. Carlsson, K. Edwards, M. Johnsson et al., Development of EGF-Conjugated Liposomes for Targeted Delivery of Boronated DNA-Binding Agents, 2002.

D. Fan, J. Shi, Z. Luoping, H. Gao, X. Zhang et al., 177lu-labeled Payloaded Liposome for SPECT/Optical Dual-modality Imaging and Combined Radio-and Chemotherapy in LLC Mice Model, Journal of Nuclear Medicine, vol.59, pp.1134-1134, 2018.

C. Kratochwil, K. Schmidt, A. Afshar-oromieh, F. Bruchertseifer, H. Rathke et al., Targeted alpha therapy of mCRPC: Dosimetry estimate of 213bismuth-PSMA-617, European Journal of Nuclear Medicine and Molecular Imaging, vol.45, pp.31-37, 2018.

M. Sathekge, Treatment of brain metastases of castration-resistant prostate cancer with 225ac-PSMA-617, 2019.

, Global Radiopharmaceutical Market Research Report -Forecast, 2023.

G. C. Krijger, B. Ponsard, M. Harfensteller, H. T. Wolterbeek, and J. W. Nijsen, The necessity of nuclear reactors for targeted radionuclide therapies, Trends in Biotechnology, vol.31, pp.390-396, 2013.

J. R. Ballinger, 99mo shortage in nuclear medicine: crisis or challenge?, Journal of Labelled Compounds and Radiopharmaceuticals, vol.53, issue.4, pp.167-168, 2010.

J. R. Ballinger, Short-and long-term responses to molybdenum-99 shortages in nuclear medicine, The British Journal of Radiology, vol.83, pp.899-901, 2010.

, Worldwide shortage of radioisotope Tc99m to impact Nuclear Medicine service | The Loop, 2018.

V. Roelf, S. A. Pauwels, L. K. Kvols, and D. J. Kwekkeboom, Long-Term Follow-Up of Renal Function After Peptide Receptor Radiation Therapy with?sup 90?Y-DOTA?sup 0?, Tyr?sup 3?-Octreotide and?sup 177?Lu-DOTA?sup 0?,Tyr?sup 3?-Octreotate -ProQuest, 2004.

A. Imhof, P. Brunner, N. Marincek, M. Briel, C. Schindler et al., Response, Survival, and Long-Term Toxicity After Therapy With the Radiolabeled Somatostatin Analogue [ 90 Y-DOTA]-TOC in Metastasized Neuroendocrine Cancers, Journal of Clinical Oncology, vol.29, pp.2416-2423, 2011.

N. Falzone, R. Gregory, M. Aldridge, S. Y. Terry, and G. Flux, Clinical trials in molecular radiotherapy-Tribulations and Triumphs Report of the NCRI CTRad meeting held at the Lift Islington, The British Journal of Radiology, vol.92, p.20190117, 2018.

Y. S. Lee, J. S. Kim, K. M. Kim, S. M. Lim, and H. Kim, Determination of energy windows for the triple energy window scatter correction method in I-131 on a Siemens SYMBIA gamma camera: a GATE simulation study, Journal of Instrumentation, vol.10, pp.1004-01004, 2015.

, laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, vol.122, p.73, 2013.

A. L. Kesner and L. Bodei, Modern Radiopharmaceutical Dosimetry Should Include Robust Biodistribution Reporting, Journal of Nuclear Medicine, vol.59, pp.1507-1509, 2018.

W. E. Bolch, K. F. Eckerman, G. Sgouros, and S. R. Thomas, MIRD Pamphlet No. 21: A Generalized Schema for Radiopharmaceutical Dosimetry-Standardization of Nomenclature, Journal of Nuclear Medicine, vol.50, pp.477-484, 2009.

W. S. Snyder, M. R. Ford, G. G. Warner, and S. B. Watson, S", Absorbed Dose per Unit Cumulated Activity for Selected Radionuclides and Organs, MIRD Pamphlet, issue.11, 1975.

R. W. Leggett, A Physiological Systems Model for Iodine for Use in Radiation Protection, Radiation Research, vol.174, pp.496-516, 2010.

D. R. Melo, A. B. Brill, P. Zanzonico, P. Vicini, B. Moroz et al., Organ Dose Estimates for Hyperthyroid Patients Treated with 131 I: An Update of the Thyrotoxicosis Follow-Up Study, Radiation Research, vol.184, pp.595-610, 2015.

H. Motulsky and A. Christopoulos, Fitting Models to Biological Data using Linear and Nonlinear Regression, p.351, 2003.

Y. K. Dewaraja, M. Ljungberg, A. J. Green, P. B. Zanzonico, and E. C. Frey, Guidelines for Quantitative 131i SPECT in Dosimetry Applications, vol.24, 2013.

F. Wong, Journal of nuclear medicine : o cial publication, Society of Nuclear Medicine, vol.50, 2008.

J. A. Siegel, S. R. Thomas, J. B. Stubbs, M. G. Stabin, M. T. Hays et al., MIRD Pamphlet No. 16: Techniques for Quantitative Radiopharmaceutical Biodistribution Data Acquisition and Analysis for Use in Human Radiation Dose Estimates, p.25, 1998.

J. Eary, F. Appelbaum, L. Durack, and P. Brown, Preliminary validation of the opposing view method for quantitative gamma camera imaging -Eary -1989 -Medical Physics -Wiley Online Library, 1989.

. Norrgren, Accuracy of the Quantification of Organ Activity from Planar Gamma Camera Images | Cancer Biotherapy and Radiopharmaceuticals, 2004.

G. Delpon, L. Ferrer, A. Lisbona, and M. Bardiès, Impact of Scatter and Attenuation Corrections for Iodine-131 Two-Dimensional Quantitative Imaging in Patients, Cancer Biotherapy and Radiopharmaceuticals, vol.18, pp.191-199, 2003.

B. E. Zimmerman, D. Gro?ev, I. Buvat, M. A. Pérez, E. C. Frey et al., Multicentre evaluation of accuracy and reproducibility of planar and SPECT image quantification: An IAEA phantom study, Zeitschrift für Medizinische Physik, vol.27, pp.98-112, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02401403

R. Jaszczak, K. L. Greer, and R. E. Coleman, SPECT using a specially designed cone beam collimator, Society of Nuclear Medicine, vol.29, issue.8, pp.1398-1405, 1988.

Y. K. Dewaraja, S. J. Wilderman, M. Ljungberg, K. F. Koral, K. Zasadny et al., Accurate Dosimetry in 131i Radionuclide Therapy Using Patient-Specific, 3-Dimensional Methods for SPECT Reconstruction and Absorbed Dose Calculation, Journal of Nuclear Medicine, vol.46, pp.840-849, 2005.

B. He and E. Frey, Comparison of conventional, model-based quantitative planar, and quantitative SPECT image processing methods for organ activity estimation using In-111 agents -IOPscience, 2006.

J. Pereira, M. Stabin, F. Lima, M. Guimarães, and J. Forrester, Image Quantification for Radiation Dose Calculations -Limitations and Uncertainties, Health physics, vol.99, pp.688-701, 2010.

T. Li, E. Ao, B. Lambert, . Brans, and . Vandenberghe, Quantitative Imaging for Targeted Radionuclide Therapy Dosimetry -Technical Review, 2017.

A. Divoli, S. Chiavassa, L. Ferrer, J. Barbet, G. D. Flux et al., E?ect of Patient Morphology on Dosimetric Calculations for Internal Irradiation as Assessed by Comparisons of Monte Carlo Versus Conventional Methodologies, Journal of Nuclear Medicine, vol.50, pp.316-323, 2009.

W. S. Snyder, H. L. Fisher, M. R. Ford, and G. G. Warner, Estimates of absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom, Journal of Nuclear Medicine, vol.5, pp.7-52, 1969.

M. Cristy, Mathematical phantoms representing children of various ages for use in estimates of internal dose

. Ornl/nureg/tm-367, , 1980.

M. Cristy, K. F. Eckerman, and V. I. Methods, SPECIFIC ABSORBED FRACTIONS OF ENERGY AT VARIOUS AGES FROM INTERNAL PHOTON SOURCES, 1987.

M. Stabin, E. Watson, M. Cristy, J. Ryman, K. Eckerman et al., Mathematical models and specific absorbed fractions of photon energy in the nonpregnant adult female and at the end of each trimester of pregnancy, 1995.

A. Lemosquet, Voxel anthropomorphic phantoms : review of models used for ionising radiation dosimetry, 2005.

M. Caon, Voxel-based computational models of real human anatomy: a review, Radiation and Environmental Biophysics, vol.42, pp.229-235, 2004.

H. Zaidi and X. G. Xu, Computational Anthropomorphic Models of the Human Anatomy: The Path to Realistic Monte Carlo Modeling in Radiological Sciences, Annual Review of Biomedical Engineering, vol.9, issue.1, pp.471-500, 2007.

R. Kramer, J. W. Vieira, H. J. Khoury, F. R. Lima, and D. Fuelle, All about MAX: a male adult voxel phantom for Monte Carlo calculations in radiation protection dosimetry, Physics in Medicine and Biology, vol.48, pp.1239-1262, 2003.

R. Kramer, H. J. Khoury, J. W. Vieira, E. C. Loureiro, V. J. Lima et al., All about FAX: a Female Adult voXel phantom for Monte Carlo calculation in radiation protection dosimetry, Physics in Medicine and Biology, vol.49, pp.5203-5216, 2004.

R. Kramer, H. J. Khoury, J. W. Vieira, and V. J. Lima, MAX06 and FAX06: update of two adult human phantoms for radiation protection dosimetry, Physics in Medicine and Biology, vol.51, pp.3331-3346, 2006.

X. G. Xu, T. C. Chao, and A. Bozkurt, VIP-Man: an image-based wholebody adult male model constructed from color photographs of the Visible Human Project for multi-particle Monte Carlo calculations, Health Physics, vol.78, pp.476-486, 2000.

N. Petoussi-henss, M. Zanki, U. Fill, and D. Regulla, The GSF family of voxel phantoms, Physics in Medicine and Biology, vol.47, pp.89-106, 2002.

B. Zhang, J. Ma, L. Liu, and J. Cheng, CNMAN: a Chinese adult male voxel phantom constructed from color photographs of a visible anatomical data set, Radiation Protection Dosimetry, vol.124, pp.130-136, 2007.

H. Norris, Y. Zhang, J. Bond, G. M. Sturgeon, A. Minhas et al., A set of 4d pediatric XCAT reference phantoms for multimodality research, Medical Physics, vol.41, 2014.

S. M. Ramos, Internal radiation dose and modeling codes in nuclear medicine: a fresh look at old problems, 2017.

W. Segars, Development and application of the new dynamic NURBS-based cardiac-torso (NCAT) phantom, 2002.

E. Hoseinian, Hybrid phantom approach for radiation dosimetry applications -ProQuest, 2010.

E. Hoseinian-azghadi, L. Rafat-motavalli, and H. Miri-hakimabad, Development of a 9-months pregnant hybrid phantom and its internal dosimetry for thyroid agents, Journal of Radiation Research, vol.55, pp.730-747, 2014.

W. Segars and B. Tsui, Handbook of Anatomical Models for Radiation Dosimetry, The MCAT, NCAT, XCAT, and MOBY Computational Human and Mouse Phantoms, vol.14, pp.105-133, 2009.

W. P. Segars, Population of anatomically variable 4d XCAT adult phantoms for imaging research and optimization, 2013.

V. F. Cassola, V. J. De-melo, R. Lima, H. J. Kramer, and . Khoury, FASH and MASH: female and male adult human phantoms based on polygon mesh surfaces: I. Development of the anatomy, Physics in Medicine and Biology, vol.55, pp.133-162, 2010.

H. Menzel, C. Clement, and P. Deluca, ICRP Publication 110. Realistic reference phantoms: an ICRP/ICRU joint e?ort. A report of adult reference computational phantoms, Annals of the ICRP, vol.39, issue.2, pp.1-164, 2009.

J. Zhang, Y. H. Na, P. F. Caracappa, and X. G. Xu, RPI-AM and RPI-AF, a pair of mesh-based, size-adjustable adult male and female computational phantoms using ICRP-89 parameters and their calculations for organ doses from monoenergetic photon beams, Physics in medicine and biology, vol.54, pp.5885-5908, 2009.

G. W. Mckinney, F. B. Brown, H. G. Hughes, M. R. James, R. L. Martz et al., MCNP 6.1.1 New Features Demonstrated, Nuclear Science Symposium, p.21, 2014.

M. Brada, M. Pijls-johannesma, and D. De-ruysscher, Proton Therapy in Clinical Practice: Current Clinical Evidence, Journal of Clinical Oncology, vol.25, pp.965-970, 2007.

I. Kawrakow, The EGSnrc Code System, Monte Carlo Simulation of Electron and photon Transport, 2001.

F. Salvat, J. Fernández-varea, and . Sempau, PENELOPE-2011: A Code System for Monte Carlo Simulation of Electron and Photon Transport, 2011.

G. Battistoni, F. Cerutti, A. Fassò, A. Ferrari, S. Muraro et al., The FLUKA code: description and benchmarking, AIP Conference Proceedings, vol.896, pp.31-49, 2007.

J. C. Yanch and A. B. Dobrzeniecki, Monte Carlo simulation in SPECT: complete 3d modeling of source, collimator and tomographic data acquisition, IEEE Transactions on Nuclear Science, vol.40, pp.198-203, 1993.

M. Smith, E. Carey, and R. Jaszczak, A vectorized Monte Carlo code for modeling photon transport in SPECT, 1993.

C. Thompson, J. Moreno-cantu, and Y. Picard, PETSIM: Monte Carlo simulation of all sensitivity and resolution parameters of cylindrical positron imaging systems, Physics in medicine and biology, vol.37, pp.731-780, 1992.

H. Zaidi, C. Labbe, and C. Morel, Implementation of an environment for Monte Carlo simulation of fully 3-D positron tomography on a high-performance parallel platform, Parallel Computing, vol.24, pp.1523-1536, 1998.

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assie et al., GATE: a simulation toolkit for PET and SPECT, Physics in Medicine & Biology, vol.49, issue.19, p.4543, 2004.
URL : https://hal.archives-ouvertes.fr/in2p3-00021834

M. J. Berger, MIRD Pamphlet No 2 : Energy deposition in water by photons from point isotropic sources, J. Nucl. Med, vol.9, issue.1, pp.15-25, 1971.

W. G. Cross, N. O. Freedman, and P. Y. Wong, Tables of beta-ray dose distribution in water, p.116, 1982.

E. E. Furhang, G. Sgouros, and C. Chui, Radionuclide photon dose kernels for internal emitter dosimetry, Medical Physics, vol.23, pp.759-764, 1996.

C. Janicki, D. M. Duggan, and D. A. Rahdert, A dose point kernel model for a low energy gamma emitting stent in a heterogeneous medium, Medical Physics, vol.28, pp.1397-1405, 2001.

F. Botta, A. Mairani, G. Battistoni, M. Cremonesi, A. D. Dia et al., Calculation of electron and isotopes dose point kernels with FLUKA Monte Carlo code for dosimetry in nuclear medicine therapy, Medical Physics, vol.38, pp.3944-3954, 2011.

W. E. Bolch, L. G. Bouchet, J. S. Robertson, B. W. Wessels, J. A. Siegel et al., The Dosimetry of Nonuniform Activity Distributions -Radionuclide S Values at the Voxel Level, p.26, 1998.

M. G. Stabin, MIRDOSE: Personal Computer Software for Internal Dose Assessment in Nuclear Medicine, p.10, 1996.

M. G. Stabin, R. B. Sparks, and E. Crowe, OLINDA/EXM: The Second-Generation Personal Computer Software for Internal Dose Assessment in Nuclear Medicine, Journal of Nuclear Medicine, vol.46, pp.1023-1027, 2005.

I. Gardin, L. G. Bouchet, K. Assié, J. Caron, A. Lisbona et al., Voxeldose: A Computer Program for 3-D Dose Calculation in Therapeutic Nuclear Medicine, Cancer Biotherapy and Radiopharmaceuticals, vol.18, pp.109-115, 2003.

M. Ljungberg, K. Sjogreen, X. Liu, E. Frey, Y. Dewaraja et al., A 3-Dimensional Absorbed Dose Calculation Method Based on Quantitative SPECT for Radionuclide Therapy: Evaluation for 131i Using Monte Carlo Simulation, p.10, 2002.

A. R. Prideaux, H. Song, R. F. Hobbs, B. He, E. C. Frey et al., Three-Dimensional Radiobiologic Dosimetry: Application of Radiobiologic Modeling to Patient-Specific 3-Dimensional Imaging-Based Internal Dosimetry, Journal of nuclear medicine : o cial publication, vol.48, pp.1008-1016, 2007.

S. Chiavassa, M. Bardiès, F. Guiraud-vitaux, D. Bruel, J. Jourdain et al., OEDIPE: A Personalized Dosimetric Tool Associating Voxel-Based Models with MCNPX, Cancer Biotherapy and Radiopharmaceuticals, vol.20, pp.325-332, 2005.

G. Flux, M. Bardies, C. Chiesa, M. Monsieurs, S. Savolainen et al., Clinical radionuclide therapy dosimetry: the quest for the 'Holy Gray, EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, vol.34, issue.10, pp.1699-1700, 2007.

J. I. Gear, M. G. Cox, J. Gustafsson, K. S. Gleisner, I. Murray et al., EANM practical guidance on uncertainty analysis for molecular radiotherapy absorbed dose calculations, European Journal of Nuclear Medicine and Molecular Imaging, vol.45, pp.2456-2474, 2018.

, Joint Committee for Guides in Metrology. JCGM 100. Evaluation of measurement data -Guide to the expression of uncertainty in measurement

, Evaluation of measurement data -Supplement 1 to the "Guide to the expression of uncertainty in measurement" -Propagation of distributions using a Monte Carlo method, JCGM, vol.101

, Joint Committee for Guides in Metrology. JCGM 102. Evaluation of measurement data -Supplement 2 to the "Guide to the expression of uncertainty in measurement" -Extension to any number of output quantities

B. R. Siebert, Uncertainty in radiation dosimetry: basic concepts and methods, Radiation Protection Dosimetry, vol.121, issue.1, pp.3-11, 2006.

J. I. Gear, J. Taprogge, O. White, and G. D. Flux, Characterisation of the attenuation properties of 3d-printed tungsten for use in gamma camera collimation, EJNMMI Physics, vol.6, 2019.

J. Gustafsson, G. Brolin, M. Cox, M. Ljungberg, L. Johansson et al., Uncertainty propagation for SPECT/CT-based renal dosimetry in 177 Lu peptide receptor radionuclide therapy, Physics in Medicine and Biology, vol.60, pp.8329-8346, 2015.

M. Lassmann, C. Chiesa, G. Flux, and M. Bardiès, EANM Dosimetry Committee guidance document: good practice of clinical dosimetry reporting, European Journal of Nuclear Medicine and Molecular Imaging, vol.38, pp.192-200, 2011.

R. N. Smith and G. M. Wilson, Clinical trial of di?erent doses of 131-I in treatment of thyrotoxicosis, British Medical Journal, vol.1, pp.129-132, 1967.

J. F. Eary, K. A. Krohn, O. W. Press, L. Durack, and I. D. Bernstein, Importance of PrecTreatment Radiation Absorbed Dose Estimation for Radioimmunotherapy of Non-Hodgkin's Lymphoma, p.4, 1997.

H. Peters, C. Fischer, U. Bogner, C. Reiners, and H. Schleusener, Radioiodine therapy of Graves' hyperthyroidism: standard vs. calculated 131 iodine activity*. Results from a prospective, randomized, multicentre study, European Journal of Clinical Investigation, vol.25, issue.3, pp.186-193, 1995.

H. Peters, C. Fischer, U. Bogner, C. Reiners, and H. Schleusener, Reduction in thyroid volume after radioiodine therapy of Graves' hyperthyroidism: results of a prospective, randomized, multicentre study, European Journal of Clinical Investigation, vol.26, pp.59-63, 1996.

H. Peters, C. Fischer, U. Bogner, C. Reiners, and H. Schleusener, Treatment of Graves' Hyperthyroidism with Radioiodine: Results of a Prospective Randomized Study, Thyroid, vol.7, pp.247-251, 1997.

H. R. Maxon, S. R. Thomas, V. S. Hertzberg, J. G. Kereiakes, I. W. Chen et al., Relation between e?ective radiation dose and outcome of radioiodine therapy for thyroid cancer, The New England Journal of Medicine, vol.309, pp.937-941, 1983.

G. D. Flux, M. Haq, S. J. Chittenden, S. Buckley, C. Hindorf et al., A dose-e?ect correlation for radioiodine ablation in di?erentiated thyroid cancer, European Journal of Nuclear Medicine and Molecular Imaging, vol.37, pp.270-275

W. Jentzen, J. Hoppenbrouwers, P. V. Leeuwen, D. Velden, R. Kolk et al., Assessment of Lesion Response in the Initial Radioiodine Treatment of Di?erentiated Thyroid Cancer Using 124i PET Imaging, Journal of Nuclear Medicine, vol.55, pp.1759-1765, 2014.

S. Pauwels, R. Barone, S. Walrand, F. Borson-chazot, R. Valkema et al., Practical Dosimetry of Peptide Receptor Radionuclide Therapy with 90y-Labeled Somatostatin Analogs, Journal of Nuclear Medicine, vol.46, pp.92-98, 2005.

Y. K. Dewaraja, M. J. Schipper, P. L. Roberson, S. J. Wilderman, H. Amro et al., 131i-Tositumomab Radioimmunotherapy: Initial Tumor Dose-Response Results Using 3-Dimensional Dosimetry Including Radiobiologic Modeling, Journal of Nuclear Medicine, vol.51, pp.1155-1162, 2010.

J. Blakkisrud, A. Løndalen, J. Dahle, S. Turner, H. Holte et al., Red Marrow-Absorbed Dose for Non-Hodgkin Lymphoma Patients Treated with 177 Lu-Lilotomab Satetraxetan, a Novel Anti-CD37 Antibody-Radionuclide Conjugate, Journal of Nuclear Medicine, vol.58, pp.55-61, 2017.

M. Salvatori and M. Luster, Radioiodine therapy dosimetry in benign thyroid disease and di?erentiated thyroid carcinoma, European Journal of Nuclear Medicine and Molecular Imaging, vol.37, pp.821-828, 2010.

E. Garin, Y. Rolland, M. Pracht, S. L. Sourd, S. Laffont et al., High impact of macroaggregated albumin-based tumour dose on response and overall survival in hepatocellular carcinoma patients treated with 90 Y-loaded glass microsphere radioembolization, Liver International, vol.37, pp.101-110, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01447063

R. Jeraj, T. Bradshaw, and U. Simon?i?, Molecular Imaging to Plan Radiotherapy and Evaluate Its E cacy, Journal of Nuclear Medicine, vol.56, pp.1752-1765, 2015.

D. Bernard, M. D. Desruet, M. Wolf, J. Roux, C. Boin et al., Radioiodine therapy in benign thyroid disorders. Evaluation of French nuclear medicine practices, Annales d'Endocrinologie, vol.75, pp.241-246, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02007511

M. Luster, S. E. Clarke, M. Lassmann, P. Lind, W. J. Oyen et al., Guidelines for radioiodine therapy of di?erentiated thyroid cancer, European Journal of Nuclear Medicine and Molecular Imaging, vol.35, p.1941, 2008.

L. Vija-racaru, C. Fontan, M. Bauriaud-mallet, S. Brillouet, O. Caselles et al., Clinical outcomes 1 year after empiric 131i therapy for hyperthyroid disorders: real life experience and predictive factors of functional response, Nuclear Medicine Communications, vol.38, pp.756-763, 2017.

M. Lassmann, H. Hänscheid, C. Reiners, and S. R. Thomas, Blood and Bone Marrow Dosimetry in Radioiodine Therapy of Di?erentiated Thyroid Cancer After Stimulation with rhTSH, Journal of Nuclear Medicine, vol.46, pp.900-901, 2005.

S. Y. Jeong, H. W. Kim, S. Lee, B. Ahn, and J. Lee, Salivary Gland Function 5 Years After Radioactive Iodine Ablation in Patients with Di?erenti-ated Thyroid Cancer: Direct Comparison of Pre-and Postablation Scintigraphies and Their Relation to Xerostomia Symptoms, Thyroid, vol.23, pp.609-616, 2013.

B. Liu, R. Huang, A. Kuang, Z. Zhao, Y. Zeng et al., Iodine kinetics and dosimetry in the salivary glands during repeated courses of radioiodine therapy for thyroid cancer, Medical Physics, vol.38, pp.5412-5419, 2011.

G. H. Kramer, M. B. Hauck, and J. M. Chamberlain, Biological Half-life of Iodine in Adults with Intact Thyroid Function and in Athyreotic Persons, Radiation Protection Dosimetry, vol.102, pp.129-135, 2002.

S. L. Hyer, B. Pratt, M. Gray, S. Chittenden, Y. Du et al., Dosimetry-based treatment for Graves' disease, Nuclear Medicine Communications, vol.39, pp.486-492, 2018.

D. Autret, A. Bitar, L. Ferrer, A. Lisbona, and M. Bardiès, Monte Carlo modeling of gamma cameras for I-131 imaging in targeted radiotherapy, Cancer biotherapy & radiopharmaceuticals, vol.20, issue.1, pp.77-84, 2005.

B. F. Hutton, K. Erlandsson, and K. Thielemand, Advances in clinical molecular imaging instrumentation | SpringerLink, 2018.

C. Scheiber, CdTe and CdZnTe detectors in nuclear medicine, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.448, pp.513-524, 2000.

, X-Ray Data Booklet

J. M. Berger, NISTXCOM : Photon Cross Section Database

S. C. Moore, K. Kouris, and I. Cullum, Collimator design for single photon emission tomography, European Journal of Nuclear Medicine, vol.19, pp.138-150, 1992.

S. H. Razavi, F. Kalantari, M. Z. Bagheri, N. Namiranian, R. Nafisi-moghadam et al., Characterization of low, medium and high energy collimators for common isotopes in nuclear medicine: A Monte Carlo study, 2017.

, NIST: X-Ray Mass Attenuation Coe cients -Adipose Tissue

K. Van-audenhaege, R. Van-holen, S. Vandenberghe, C. Vanhove, S. D. Metzler et al., Review of SPECT collimator selection, optimization, and fabrication for clinical and preclinical imaging, Medical Physics, vol.42, pp.4796-4813, 2015.

D. J. Macey, G. L. Denardo, S. J. Denardo, and H. H. Hines, Comparison of Low-and Medium-Energy Co mators for SPECT Imaging with Iodine-123-Labeled Antibodies, p.9, 1986.

Y. K. Dewaraja, M. Ljungberg, and K. F. , Characterization of scatter and penetration using Monte Carlo simulation in 131i imaging, Society of Nuclear Medicine, vol.41, issue.1, p.123, 2000.

G. T. Gullberg, G. L. Zeng, F. L. Datz, P. E. Christian, C. Tung et al., Review of convergent beam tomography in single photon emission computed tomography, Physics in Medicine and Biology, vol.37, pp.507-534, 1992.

B. M. Tsui, J. A. Terry, and G. T. Gullberg, Evaluation of cardiac cone-beam single photon emission computed tomography using observer performance experiments and receiver operating characteristic analysis, Investigative radiology, vol.28, pp.1101-1112, 1993.

F. Beekman and F. Van-der-have, The pinhole: gateway to ultra-high-resolution three-dimensional radionuclide imaging, European Journal of Nuclear Medicine and Molecular Imaging, vol.34, pp.151-161, 2007.

R. J. Jaszczak, L. Chang, and P. H. Murphy, Single Photon Emission Computed Tomography Using Multi-Slice Fan Beam Collimators, IEEE Transactions on Nuclear Science, vol.26, pp.610-618, 1979.

D. Pareto, A. Cot, J. Pavía, C. Falcón, I. Juvells et al., Iterative reconstruction with correction of the spatially variant fan-beam collimator response in neurotransmission SPET imaging, European Journal of Nuclear Medicine and Molecular Imaging, vol.30, pp.1322-1329, 2003.

T. Ichihara, N. Motomura, K. Ogawa, H. Hasegawa, J. Hashimoto et al., Evaluation of SPET quantification of simultaneous emission and transmission imaging of the brain using a multidetector SPET system with the TEW scatter compensation method and fan-beam collimation, European Journal of Nuclear Medicine, vol.23, pp.1292-1299, 1996.

R. J. Jaszczak, C. E. Floyd, S. H. Manglos, K. L. Greer, and R. E. Coleman, Cone beam collimation for single photon emission computed tomography: Analysis, simulation, and image reconstruction using filtered backprojection, Medical Physics, vol.13, issue.4, pp.484-489, 1986.

M. Annis, M. Johnson, and R. Mastronardi, Tomographic imaging with concentric conical collimator, 1989.

M. A. Ghanem, A. H. Elgazzar, M. M. Elsaid, and F. Shehab, Comparison of Pinhole and High-Resolution Parallel-Hole Imaging for Nodular Thyroid Disease, Clinical Nuclear Medicine, vol.36, p.770, 2011.

D. Weber, M. Ivanovic, D. Franceschi, S. Strand, K. Erlandsson et al., Pinhole SPECT: An approach to in vivo high resolution SPECT imaging in small laboratory animals, Journal of nuclear medicine : o cial publication, vol.35, pp.342-350, 1994.

O. V. Makarova, G. Yang, P. T. Amstutz, and C. Tang, Fabrication of antiscatter grids and collimators for X-ray and gamma-ray imaging by lithography and electroforming, Microsystem Technologies, vol.14, pp.1613-1619, 2008.

O. V. Makarova, G. Yang, C. Tang, D. C. Mancini, R. Divan et al., Fabrication of collimators for gamma-ray imaging, Design and Microfabrication of Novel X-Ray Optics II, vol.5539, pp.126-132, 2004.

M. Zhong, W. Liu, G. Ning, L. Yang, and Y. Chen, Laser direct manufacturing of tungsten nickel collimation component, Journal of Materials Processing Technology, vol.147, pp.167-173, 2004.

K. Deprez, S. Vandenberghe, K. V. Audenhaege, J. V. Vaerenbergh, and R. V. Holen, Rapid additive manufacturing of MR compatible multipinhole collimators with selective laser melting of tungsten powder, Medical Physics, vol.40, issue.1, p.12501, 2013.

E. Uhlmann, A. Bergmann, and W. Gridin, Investigation on Additive Manufacturing of Tungsten Carbide-cobalt by Selective Laser Melting, Procedia CIRP, vol.35, pp.8-15, 2015.

R. K. Enneti, R. Morgan, and S. V. Atre, E?ect of process parameters on the Selective Laser Melting (SLM) of tungsten, International Journal of Refractory Metals and Hard Materials, vol.71, pp.315-319, 2018.

K. Deprez, Preclinical SPECT imaging based on compact collimators and high resolution scintillation detectors. dissertation, 2014.

A. R. Formiconi, D. L. Gunter, E. Vanzi, F. Martino, and D. Volterrani, Optimization of high energy collimator design, Nuclear Science Symposium Conference Record, vol.6, pp.3393-3397, 2004.

H. O. Anger, Scintillation Camera with Multichannel Collimators, 1964.

J. A. Sorenson and M. E. Phelps, Physics in Nuclear Medicine, p.16

A. L. Weinmann, C. B. Hruska, and M. K. O'connor, Design of optimal collimation for dedicated molecular breast imaging systems, Medical Physics, vol.36, pp.845-856, 2009.

R. L. Mather, Gamma-ray collimator penetration and scattering e?ects, Journal of Applied Physics, vol.28, pp.1200-1207, 1957.

E. L. Keller, Optimum dimensions of paralleI-hole, multi-aperture collimators for gamma-ray cameras, J Nucl Med, vol.9, pp.233-235, 1968.

M. S. Gerber and D. W. Miller, Parallel-Hole, Collimator Design, Journal of Nuclear Medicine, vol.15, pp.724-725, 1974.

Y. Lee, H. Ryu, H. Cho, S. W. Lee, Y. Choi et al., Optimization of an ultra-high-resolution parallel-hole collimator for CdTe semiconductor SPECT system, Journal of Instrumentation, vol.8, p.1044, 2013.

C. A. Gils, C. Beijst, R. V. Rooij, and H. W. Jong, Impact of reconstruction parameters on quantitative I-131 SPECT, Physics in Medicine and Biology, vol.61, issue.14, p.5166, 2016.

R. Kumar, C. Bal, A. Pandey, S. Sharma, S. Karunanithi et al., Characterization of parallel-hole collimator using Monte Carlo Simulation, Indian Journal of Nuclear Medicine, vol.30, issue.2, p.128, 2015.

S. Agostinelli, J. Chuma, G. Gracia-abril, G. Greeniaus, W. Greiner et al., Geant4-a simulation toolkit, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.506, pp.250-303, 2003.
URL : https://hal.archives-ouvertes.fr/in2p3-00020246

L. Cantalamessa, M. Baldini, A. Orsatti, L. Meroni, V. Amodei et al., Thyroid Nodules in Graves Disease and the Risk of Thyroid Carcinoma, 1999.

Y. Erbil, U. Barbaros, N. Özbey, Y. Kapran, M. Tükenmez et al., Graves' disease, with and without nodules, and the risk of thyroid carcinoma, The Journal of Laryngology & Otology, vol.122, 2007.

, ICRP Publication 23: Report of the Task Group on Reference Man. ICRP Publication 23, Annals of the ICRP, 1975.

R. Brun and F. Rademakers, ROOT -An object oriented data analysis framework, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, vol.389, pp.81-86, 1997.

A. Douraghy, D. L. Prout, R. W. Silverman, and A. F. Chatziioannou, Evaluation of scintillator afterglow for use in a combined optical and PET imaging tomograph, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.569, pp.557-562, 2006.

G. F. Knoll, Radiation detection and measurement, p.247083754, 2000.

S. E. Derenzo, M. J. Weber, E. Bourret-courchesne, and M. K. Klintenberg, The quest for the ideal inorganic scintillator, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.505, pp.111-117, 2003.

M. Moszynski, A. Syntfeld-ka?uch, L. Swiderski, M. Grodzicka, J. Iwanowska et al., Energy resolution of scintillation detectors, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.805, pp.25-35, 2016.

. Saint-gobain, E ciency Calculations for Selected Scintillators

A. Phunpueok, W. Chewpraditkul, P. Limsuwan, and C. Wanarak, Light output and energy resolution of Lu0.7y0.3alo3:Ce and Lu1.95y0.05sio5:Ce scintillators, Procedia Engineering, vol.32, pp.564-570, 2012.

C. Wanarak, W. Chewpraditkul, and A. Phunpueok, Light yield nonproportionality and energy resolution of Lu1.95y0.05sio5:Ce and Lu2sio5:Ce scintillation crystals, Procedia Engineering, vol.32, pp.765-771, 2012.

P. Lecoq, Development of new scintillators for medical applications, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, vol.809, pp.130-139, 2016.

N. J. Cherepy, Z. M. Seeley, S. A. Payne, P. R. Beck, O. B. Drury et al., Development of Transparent Ceramic Ce-Doped Gadolinium Garnet Gamma Spectrometers, p.8

F. Meng, Development and Improvement of Cerium Activated Gadolinium Gallium Aluminum Garnets Scintillators for Radiation Detectors by Codoping, 2015.

A. Nassalski, M. Kapusta, T. Batsch, D. Wolski, D. Mockel et al., Comparative Study of Scintillators for PET/CT Detectors, IEEE Transactions on Nuclear Science, vol.54, pp.3-10, 2007.

M. S. Alekhin, J. T. De-haas, I. V. Khodyuk, K. W. Krämer, P. R. Menge et al., Improvement of gamma-ray energy resolution of LaBr3:Ce3+ scintillation detectors by Sr2+ and Ca2+ co-doping, Applied Physics Letters, vol.102, p.161915, 2013.

D. Shah, LaCl3:Ce Scintillator for Gamma Ray Detection

E. Van-loef, W. Mengesha, J. Valentine, P. Dorenbos, and C. Van-eijk, Non-proportionality and energy resolution of a LaCl3:10% Ce3+ scintillation crystal, IEEE Transactions on Nuclear Science, vol.50, pp.155-158, 2003.

L. Pidol, B. Viana, A. Bessière, A. Galtayries, P. Dorenbos et al., High E ciency of Lutetium Silicate Scintillators, Ce-Doped LPS and LYSO Crystals for Medical Applications, 2007.

S. Blahuta, A. Bessiere, B. Viana, P. Dorenbos, and V. Ouspenski, Evidence and Consequences of Ce4+ in LYSO:Ce,Ca and LYSO:Ce,Mg Single Crystals for Medical Imaging Applications, IEEE Transactions on Nuclear Science, vol.60, pp.3134-3141, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02422983

W. Chewpraditkul, L. Swiderski, M. Moszynski, T. Szczesniak, A. Syntfeld-kazuch et al., Scintillation Properties of LuAG:Ce, YAG:Ce and LYSO:Ce Crystals for Gamma-Ray Detection, IEEE Transactions on Nuclear Science, vol.56, pp.3800-3805, 2009.

M. Grodzicka, M. Moszynski, T. Szczesniak, A. Syntfeld-kazuch, I. Swiderski et al., Characterization of LFS-3 scintillator in comparison with LSO, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.652, pp.226-230, 2011.

M. Grodzicka, M. Moszynski, T. Szczesniak, M. Kapusta, M. Szawlowski et al., Energy resolution of scintillation detectors with SiPM light readout, IEEE Nuclear Science Symposuim & Medical Imaging Conference, pp.1940-1948, 2010.

R. Pani, M. Colarieti-tosti, M. Cinti, C. Polito, C. Trigila et al., Investigation of radiation detection properties of CRY-018 and CRY-019 scintillators for medical imaging -IOPscience, 2016.

P. Sibczynski, J. Iwanowska-hanke, M. Moszynski, L. Swiderski, M. Szawiowski et al., Characterization of GAGG:Ce scintillators with various Al-to-Ga ratio, Spectrometers, Detectors and Associated Equipment, vol.772, pp.112-117, 2015.

J. Iwanowska, L. Swiderski, T. Szczesniak, P. Sibczynski, M. Moszynski et al., Performance of cerium-doped Gd3al2ga3o12 (GAGG:Ce) scintillator in gamma-ray spectrometry, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.712, pp.34-40, 2013.

F. R. Schneider, K. Shimazoe, I. Somlai-schweiger, and S. I. Ziegler, A PET detector prototype based on digital SiPMs and GAGG scintillators, Physics in Medicine and Biology, vol.60, pp.1667-1679, 2015.

Y. Lee, H. Leem, S. Yamamoto, Y. Choi, K. Kamada et al., Digital silicon photomultiplier readout of a new fast and bright scintillation crystal (Ce:GFAG), Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.832, pp.63-67, 2016.

S. Kawamura, J. H. Kaneko, M. Higuchi, J. Haruna, S. Saeki et al., Scintillation Characteristics of Ce:$Gd 2si 2o 7$ (Ce 2.5-30 mol%) Single Crystals Prepared by the Floating Zone Method, IEEE Transactions on Nuclear Science, vol.56, pp.328-330, 2009.

S. Kurosawa, T. Shishido, A. Suzuki, J. Pejchal, Y. Yokota et al., Performance of Ce-doped (La, Gd)2si2o7 scintillator with an avalanche photodiode, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.744, pp.30-34, 2014.

E. V. Van-loef, P. Dorenbos, C. W. Van-eijk, K. Kramer, and H. U. Gudel, High-energy-resolution scintillator: Ce3+ activated LaBr3, Applied Physics Letters, vol.79, pp.1573-1575, 2001.

N. Cherepy, S. A. Payne, R. Hawrami, A. Burger, L. Boatner et al., Prospects for High Energy Resolution Gamma Ray Spectroscopy with Europium-Doped Strontium Iodide, MRS Proceedings, vol.1164, pp.1164-1175, 2009.

A. Giaz, V. Fossati, G. Hull, F. Camera, N. Blasi et al., Characterization of new scintillators: SrI 2 :Eu, CeBr 3 , GYGAG:Ce and CLYC:Ce, Journal of Physics: Conference Series, vol.620, p.12003, 2015.

R. Pani, M. N. Cinti, A. Fabbri, C. Orlandi, R. Pellegrini et al., Excellent pulse height uniformity response of a new LaBr3:Ce scintillation crystal for gamma ray imaging, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.787, pp.46-50, 2015.

M. Moszynski, D. Wolski, T. Ludziejewski, M. Kapusta, A. Lempicki et al., Properties of the new LuAP:Ce scintillator, vol.385, pp.123-131, 1997.

C. Kuntner, E. Auffray, P. Lecoq, C. Pizzolotto, and M. Schneegans, Intrinsic energy resolution and light output of the Lu0.7y0.3ap:Ce scintillator, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.493, pp.131-136, 2002.

M. Balcerzyk, M. Moszynski, M. Kapusta, D. Wolski, J. Pawelke et al., A study of energy resolution and nonproportionality, IEEE Transactions on Nuclear Science, vol.47, pp.1319-1323, 2000.

M. Kapusta, M. Balcerzyk, M. Moszy?ski, and J. Pawelke, A high-energy resolution observed from a YAP:Ce scintillator, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.421, pp.610-613, 1999.

N. J. Cherepy, S. A. Payne, S. J. Asztalos, G. Hull, J. D. Kuntz et al., Scintillators with potential to supersede lanthanum bromide, IEEE Transactions on Nuclear Science, vol.56, issue.3, pp.873-880, 2009.

N. J. Cherepy, G. Hull, A. D. Drobshoff, S. A. Payne, E. Van-loef et al., Strontium and barium iodide high light yield scintillators, Applied Physics Letters, vol.92, p.83508, 2008.

S. Kawamura, J. H. Kaneko, M. Higuchi, T. Yamaguchi, J. Haruna et al., Floating Zone Growth and Scintillation Characteristics of Cerium-Doped Gadolinium Pyrosilicate Single Crystals, IEEE Transactions on Nuclear Science, vol.54, pp.1383-1386, 2007.

P. Lecoq, Pushing the Limits in Time-of-Flight PET Imaging, IEEE Journals & Magazine, 2017.

B. Singh, M. S. Marshall, S. Waterman, C. Pina-hernandez, A. Koshelev et al., Enhanced Scintillation Light Extraction Using Nanoimprinted Photonic Crystals, IEEE Transactions on Nuclear Science, vol.65, pp.1059-1065, 2018.

M. Casey, Z. Burbar, H. Zothfuss, V. Panin, . Bharkhada et al., First human images from a next generation SiPM based PET/CT system with improved time and spatial resolution, EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, vol.44, pp.303-303

G. Healthcare and . Czt-|-ge-healthcare, NM CT, vol.870, 2016.

K. Iniewsky, CZT detector technology for medical imaging, 2014.

K. Iniewski, C. Seifert, F. Harris, S. Awadallah, H. Chen et al., CZT Pixel Scaling for Improved Spatial Resolution in Medical Imaging, p.5

M. Holstensson, K. Erlandsson, G. Poludniowski, S. Ben-haim, and B. F. Hutton, Model-based correction for scatter and tailing e?ects in simultaneous 99m Tc and 123 I imaging for a CdZnTe cardiac SPECT camera, Physics in Medicine and Biology, vol.60, pp.3045-3063, 2015.

E. Goshen, L. Beilin, E. Stern, T. Kenig, R. Goldkorn et al., Feasibility study of a novel general purpose CZT-based digital SPECT camera: initial clinical results, 2018.

S. Moehrs, A. D. Guerra, D. J. Herbert, and M. A. Mandelkern, A detector head design for small-animal PET with silicon photomultipliers (SiPM), p.16, 2006.

M. Carminati, F. M. Baratelli, M. Occhipinti, K. Erlandsson, K. Nagy et al., Validation and Performance Assessment of a Preclinical SiPM-Based SPECT/MRI Insert, IEEE Transactions on Radiation and Plasma Medical Sciences, vol.3, pp.483-490, 2019.

A. Giussani and C. Hoeschen, Imaging in Nuclear Medicine, 2013.

F. Acerbi and S. Gundacker, Understanding and simulating SiPMs, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, vol.926, 2018.

K. T. Lim, H. Kim, J. Hwang, J. Kim, W. S. Sul et al., Well structure engineering to improve the responsivity of p-on-n SiPM developed at KAIST-NNFC, vol.914, pp.25-31, 2019.

K. S. Ng and S. Sze, Physics of Semiconductor Devices, 2007.

. Hamamatsu, MPPC arrays in a chip size package miniaturized through the adoption of TSV structure -S13361-3050 series, 2018.

C. Piemonte, A. Ferri, A. Gola, A. Picciotto, T. Pro et al., Development of an automatic procedure for the characterization of silicon photomultipliers, 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC), pp.428-432, 2012.

M. Casey, Z. Burbar, V. Rothfuss, . Panin, and . Bharkhada, A next generation SiPM based PET/CT system with improved time and spatial resolution, 2017.

N. Hudin, L. Pinot, N. Dinu, Y. Charon, V. Puill et al., Characterization and Optimization of silicon photomultipliers for the development of intraoperative beta probes, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.695, pp.242-246
URL : https://hal.archives-ouvertes.fr/in2p3-00640073

M. Renschler, W. Painter, F. Bisconti, A. Haungs, T. Huber et al., Characterization of Hamamatsu 64-channel TSV SiPMs, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, vol.888, pp.257-267, 2018.

N. Dinu, T. A. Imando, A. Nagai, L. Pinot, V. Puill et al., SiPM arrays and miniaturized readout electronics for compact gamma camera, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.787, pp.367-372, 2015.
URL : https://hal.archives-ouvertes.fr/in2p3-01018180

Z. Li, M. Wedrowski, P. Bruyndonckx, and G. Vandersteen, Nonlinear least-squares modeling of 3d interaction position in a monolithic scintillator block, Physics in Medicine and Biology, vol.55, pp.6515-6532, 2010.

R. Pani, M. N. Cinti, P. Bennati, R. Pellegrini, R. Scafè et al., New position arithmetic for scintillation camera based on floating weight system, 2011 IEEE Nuclear Science Symposium Conference Record, pp.3395-3398, 2011.

T. Ling, T. H. Burnett, T. K. Lewellen, and R. S. Miyaoka, Parametric positioning of a continuous crystal PET detector with depth of interaction decoding, Physics in Medicine and Biology, vol.53, pp.1843-1863, 2008.

A. Fabbri, P. Bennati, V. Cencelli, M. Cinti, R. Pellegrini et al., A new iterative algorithm for pixilated and continuous scintillating crystal, Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.648, pp.79-84, 2011.

J. W. Scrimger and R. G. Baker, Investigation of Light Distribution from Scintillations in a Gamma Camera Crystal, Physics in Medicine and Biology, vol.12, pp.101-103, 1967.

D. Gagnon, N. Pouliot, L. Laperriere, M. Therrien, and P. Olivier, Maximum likelihood positioning in the scintillation camera using depth of interaction, IEEE Transactions on Medical Imaging, vol.12, pp.101-107, 1993.

W. C. Hunter, H. H. Barrett, and L. R. Furenlid, Calibration Method for ML Estimation of 3d Interaction Position in a Thick Gamma-Ray Detector, IEEE Transactions on Nuclear Science, vol.56, pp.189-196, 2009.

C. W. Lerche, T. Solf, P. Dueppenbecker, B. Goldschmidt, P. K. Marsden et al., Maximum likelihood based positioning and energy correction for pixelated solid state PET detectors, 2011 IEEE Nuclear Science Symposium Conference Record, pp.3610-3613, 2011.

K. Levenberg, A method for the solution of certain non-linear problems in least squares, Quarterly of Applied Mathematics, vol.2, issue.2, pp.164-168, 1944.

D. W. Marquardt, An Algorithm for Least-Squares Estimation of Nonlinear Parameters, Journal of the Society for Industrial and Applied Mathematics, vol.11, issue.2, pp.431-441, 1963.

, NEMA Standards Publication NU 1-2012, Performance Measurements of Gamma Cameras, 2012.

B. Bhatia, S. Bugby, J. Lees, and A. Perkins, A scheme for assessing the performance characteristics of small field-of-view gamma cameras, Physica Medica, vol.31, pp.98-103, 2015.

S. Cherry, J. A. Sorenson, and M. P. Phelps, Physics in Nuclear Medicine

M. K. O'connor and C. Vermeersch, Critical examination of the uniformity requirements for single-photon emission computed tomography, Medical Physics, vol.18, issue.2, pp.190-197, 1991.

D. Lazaro, I. Buvat, G. Loudos, D. Strul, G. Santin et al., Validation of the GATE Monte Carlo simulation platform for modelling a CsI(Tl) scintillation camera dedicated to small-animal imaging, Physics in Medicine and Biology, vol.49, pp.271-285, 2004.
URL : https://hal.archives-ouvertes.fr/in2p3-00023196

. Usersguidev8, GATE: Geant4 Application for Emission Tomography: a simulation toolkit for PET and SPECT, OpenGATE Collaboration

J. Valentin, ICRP Publication 89: Basic anatomical and physiological data for use in radiological protection: reference values, 2002.

W. P. Segars, G. Sturgeon, S. Mendonca, J. Grimes, and B. M. Tsui, 4d XCAT phantom for multimodality imaging research, Medical Physics, vol.37, pp.4902-4915, 2010.

E. B. Silberstein, Comparison of Outcomes After 123i Versus 131i Preablation Imaging Before Radioiodine Ablation in Di?erentiated Thyroid Carcinoma

S. M. Eschmann, G. Reischl, K. Bilger, J. Kupferschläger, M. H. Thelen et al., Evaluation of dosimetry of radioiodine therapy in benign and malignant thyroid disorders by means of iodine-124 and PET, European Journal of Nuclear Medicine and Molecular Imaging, vol.29, pp.760-767, 2002.

S. Lamart, A. Bouville, S. L. Simon, K. F. Eckerman, D. Melo et al., COMPARISON OF INTERNAL DOSIMETRY FACTORS FOR THREE CLASSES OF ADULT COMPUTATIONAL PHANTOMS WITH EM-PHASIS ON I-131 IN THE THYROID, Physics in medicine and biology, vol.56, pp.7317-7335, 2011.

H. P. García and R. B. Sanz, The HURRA filter: An easy method to eliminate collimator artifacts in high-energy gamma camera images, Revista española de medicina nuclear e imagen molecular, vol.36, pp.27-36, 2017.

K. Waterstram and D. Gilmore, Nuclear Medicine and PET/CT -E-Book: Technology and Techniques, 2012.

S. Panwar, V. Ranga, and G. A. Kumar, E ciency of CeBr3 detector: Simulations and measurements using a positron emitter, 2018.

C. L. Siantar, K. Vetter, G. L. Denardo, and S. J. Denardo, Treatment Planning for Molecular Targeted Radionuclide Therapy, 2004.

Y. Dewaraja, J. Li, and K. Koral, Quantitative 131i SPECT with triple energy window Compton scatter correction, IEEE Transactions on Nuclear Science, vol.45, issue.6, pp.3109-3114, 1998.

A. P. Robinson, J. Tipping, D. M. Cullen, and D. Hamilton, The influence of triple energy window scatter correction on activity quantification for 177lu molecular radiotherapy, Physics in Medicine and Biology, vol.61, issue.14, pp.5107-5127, 2016.

, Quantitative Nuclear Medicine Imaging: concepts, requirements and methods, vol.9, p.79, 2014.

R. Barquero, H. P. Garcia, M. G. Incio, P. Minguez, A. Cardenas et al., 131 I activity quantification of gamma camera planar images, Physics in Medicine and Biology, vol.62, issue.3, p.909, 2017.

K. Lin, J. Huang, and Y. Chen, Fully Automatic Region of Interest Selection in Glomerular Filtration Rate Estimation from 99mtc-DTPA Renogram, Journal of Digital Imaging, vol.24, pp.1010-1023, 2011.

A. V. Ulanovsky, V. F. Minenko, and S. V. Korneev, Influence of measurement geometry on the estimate of 131(I) activity in the thyroid: Monte Carlo simulation of a detector and a phantom, Health physics, vol.72, pp.34-41, 1997.

T. Beaumont, P. C. Ideias, M. Rimlinger, D. Broggio, and D. Franck, Development and test of sets of 3d printed age-specific thyroid phantoms for131i measurements, Physics in Medicine and Biology, vol.62, pp.4673-4693, 2017.

T. Beaumont, Apport de l'impression 3D pour la réalisation de familles de fantômes d'étalonnage dédiésà la personnalisation de la mesure en dosimétrie interne