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Abstract

Title: Simulations and associated data analysis for realistic LISA configuration

Gravitational Wave (GW) astronomy has provided a new window to investigate our Universe.
In the effort to broaden the frequency band of GW observations, the Laser Interferometer
Space Antenna (LISA) will be the first-ever space-based GW detector, aiming at detecting
the GW signals from various astrophysical and cosmological sources in the band from 0.02
mHz to 1 Hz. LISA was chosen to be one of the large missions of the European Space Agency
and it is one of the most complex space missions ever. It will consist of three spacecraft,
separated by about 2.5 million kilometers, using laser interferometry to monitor the variation
of the spacetime due to the passing GWs. For the success of the mission, we need to develop
a simulator, associated data processing pipelines and robust data analysis methods to study
the performance of the LISA instrument and the feasibility of extracting the information from
various GW sources from the measured data.

The first goal of this thesis is to improve the current LISA simulator, namely LISANode,
for simulating more realistic instrumental configurations. In particular, we have implemented
new features in the simulator, related to instrumental noises contributing to the interferometric
measurements with some options for correlation and non-stationarity.

Another contribution to LISANode concerns the dynamics of the instrument. The reference
points for measuring the proper distance in spacetime, which contains the information of pass-
ing GWs, are the test-masses. The Drag-Free Attitude Control System (DFACS) will allow
the test-masses to follow their geodesics along the sensitive axis of the interferometric measure-
ment, while maintaining the positions and attitudes of the test-masses (in other directions)
and spacecraft to keep them rigid to each other. The implementation and related study made
during this thesis are on the realistic motion of the Moving Optical Sub-Assembly (MOSA),
which hosts the test-mass in the spacecraft.

A study has been conducted about noise propagation through the instrument and the
Time Delay Interferometry (TDI), which is the main algorithm used to suppress the dominant
noise sources. We derived the analytical models for the propagation of different noises, in the
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transfer functions for the power and cross-power spectral densities. These models have been
validated with data generated with LISANode. The study of the noise propagation through
TDI is also applied on experimental LISA-like data, such as LISA-On-Table.

The second goal of the thesis is to examine the data analysis method searching for GW
signals. In particular, we focus on the Stochastic Gravitational Wave Backgrounds (SGWBs)
that could be detected by LISA, either of cosmological origin or of astrophysical origin. The
signal reconstruction from experimental data is challenging because of the possible confusion
between the SGWBs and the instrumental noise. In this work, we use the SGWBinner code
to study the simultaneous reconstruction of a Stochastic Gravitational Wave Background
(SGWB) signal and the instrumental noise. Using the adapted instrumental noise model which
we infer from the study of the LISA instrument and from the noise propagation through TDI,
we improve the signal reconstruction for realistic data generated either with LISANode or with
a data generation tool dedicated for SGWBs, SGWB_data.

Associated keywords: gravitational wave, LISA, TDI, simulation, LISANode, noise
propagation, LISA Dynamics, SGWB



Résumé

Titre: Simulations et analyse des données associées pour une configuration réaliste de
LISA

L’astronomie des ondes gravitationnelles (OG) a ouvert une fenêtre réaliste et prometteuse
pour étudier notre Univers. Afin d’élargir la bande des fréquences d’observation des ondes
gravitationnelles, l’antenne spatiale à interféromètre laser (LISA) a été conçue pour être le
tout premier détecteur spatial d’ondes gravitationnelles, visant à détecter les signaux d’ondes
gravitationnelles provenant de diverses sources astrophysiques et cosmologiques dans la bande
allant de 0,02 mHz à 1 Hz. LISA sera composé de trois vaisseaux spatiaux, séparés par environ
2,5 millions de kilomètres, qui utiliseront l’interférométrie laser pour surveiller la variation de
l’espace-temps due au passage des ondes gravitationnelles. Le développement du simulateur
LISA, du pipeline de traitement de données associé et du pipeline d’analyse des données est
essentiel pour étudier les performances de l’instrument LISA et la faisabilité de l’extraction de
différentes sources d’OG à partir des données de mesure.

Le premier objectif de cette thèse est de développer le simulateur LISA actuel, à savoir
LISANode, pour une configuration instrumentale plus réaliste. En particulier, nous avons
implémenté de nouvelles fonctionnalités dans le simulateur liées aux bruits instrumentaux
contribuant aux mesures interférométriques avec quelques options pour la corrélation et la
non-stationnarité.

En outre, une étude sur la propagation du bruit à travers la conception de l’instrument
et l’interférométrie à retardement (TDI), qui est le principal algorithme pour supprimer le
bruit de fréquence laser dominant, a été menée pour vérifier les performances de la simulation
instrumentale. Il s’avère que les modèles analytiques pour la propagation TDI de différents
bruits sont validés avec les densités spectrales de puissance calculées à partir des données
simulées par LISANode. L’étude de la propagation du bruit est également utile pour tester les
performances de certaines données expérimentales de type LISA, telles que LISA-On-Table.

L’une des technologies clés pour le succès de la mission LISA est le système de contrôle
d’attitude sans traînée (DFACS). Il permettra aux test-masses, qui jouent le rôle de point de
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référence pour la mesure de la distance propre dans l’espace-temps, de suivre leurs géodésiques
le long de l’axe sensible à la mesure interférométrique tout en maintenant les positions et les
attitudes des test-masses (dans d’autres directions) et du vaisseau spatial pour qu’ils restent
rigides les uns par rapport aux autres. Une partie de cette thèse contribue à l’implémentation
de la dynamique de LISA dans LISANode, en particulier pour le mouvement plus réaliste du
Moving Optical Sub-Assembly (MOSA), qui contient la masse test, dans le vaisseau spatial.
Nous montrons que l’impact du mouvement du MOSA peut avoir des effets sur la performance
du DFACS.

Le deuxième objectif de la thèse est d’examiner la méthode d’analyse des données pour la
recherche des signaux OG. En particulier, nous nous concentrons sur les fonds stochastiques
d’ondes gravitationnelles (SGWBs) qui pourraient être détectés par LISA, qu’il s’agisse de
sources cosmologiques ou astrophysiques. La reconstruction du signal des fonds stochastiques
d’ondes gravitationnelles à partir de données expérimentales est difficile en raison des diverses
composantes qui peuvent contribuer au signal, et des bruits instrumentaux, qui peuvent être
confondus avec le signal même. Dans notre travail, nous utilisons l’outil SGWBinner pour
étudier la reconstruction simultanée du signal SGWB et du bruit instrumental. Avec le modèle
de bruit instrumental adapté que nous avons developpé avec de l’étude de l’instrument LISA
et de la propagation du bruit à travers TDI, nous pouvons obtenir une meilleure reconstruction
du signal en utilisant les données simulées plus réalistes de LISANode et d’un autre outil de
génération de données, SGWB_data.

Mot-clef associés: onde gravitationnelle, LISA, interférométrie, retardée (TDI), sim-
ulation, LISANode, propagation du bruit, dynamique de LISA, fond stochastique d’ondes
gravitationnelles (SGWB)



Résumé substantiel

Titre: Simulations et analyse des données associées pour une configuration réaliste de
LISA

L’astronomie des ondes gravitationnelles a ouvert une fenêtre réaliste et prometteuse pour
étudier notre Univers. Afin d’élargir la bande de fréquence d’observation des ondes gravitation-
nelles, l’antenne spatiale à interféromètre laser (LISA) a été conçue pour être le tout premier
détecteur spatial d’ondes gravitationnelles, visant à détecter les signaux d’ondes gravitation-
nelles provenant de diverses sources astrophysiques et cosmologiques dans la bande allant de
0,02 mHz à 1 Hz. LISA a été sélectionné comme l’une des principales missions de l’Agence spa-
tiale européenne, et le début de son exploitation est prévu pour le milieu des années 2030. LISA
est l’une des missions spatiales les plus complexes jamais entreprises. Elle consistera en trois
engins spatiaux, séparés par environ 2,5 millions de kilomètres, qui utiliseront l’interférométrie
laser pour mesurer les variations de l’espace-temps due au passage des ondes gravitationnelles.
Le développement du simulateur LISA et des chaînes de traitement et d’analyse des données est
essentiel pour étudier les performances de l’instrument LISA et la faisabilité de l’extraction de
différentes sources d’onde gravitationnelle à partir des mesures. Une simulation aussi réaliste
que possible est nécessaire pour tester le design de LISA et la validation de ses performances
et pour développer des méthodes d’analyse des données appropriées.

Le premier objectif de cette thèse est de contribuer au développement du simulateur actuel
de LISA, à savoir LISANode, pour une configuration instrumentale plus réaliste. En partic-
ulier, nous avons implémenté de nouvelles fonctionnalités liées aux bruits instrumentaux dans
les mesures interférométriques avec des options pour la corrélation et la non-stationnarité.
L’impact de ces caractéristiques réalistes dans la propagation du bruit et l’analyse des don-
nées a pu être examiné avec ces données simulées.

En outre, une étude sur la propagation du bruit à travers l’instrument et l’interférométrie
retardée (TDI), qui est le principal algorithme pour supprimer le bruit de fréquence laser
dominant, a été menée. Les modèles analytiques pour la propagation TDI de différents bruits
sont validés avec les densités spectrales de puissance calculées à partir des données simulées par
LISANode. L’étude de la propagation du bruit est également utile pour tester les performances
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de certaines données expérimentales de type LISA, telles que les données de l’expérience LISA-
On-Table.

L’une des technologies clés pour le succès de la mission LISA est le système de contrôle
d’attitude et de maintien de la chute libre (DFACS). Il permettra aux test-masses, qui jouent
le rôle de point de référence pour la mesure de la distance propre dans l’espace-temps, de suivre
leurs géodésiques le long de l’axe sensible à la mesure interférométrique tout en maintenant les
positions et les attitudes des test-masses (dans d’autres directions) et du vaisseau spatial pour
qu’ils restent rigides les uns par rapport aux autres. Une partie de cette thèse contribue à
l’implémentation de la dynamique de LISA dans LISANode, en particulier pour le mouvement
plus réaliste du sous-ensemble optique mobile (MOSA), qui contient la masse test, dans le
vaisseau spatial. Nous montrons que l’impact du mouvement du MOSA peut avoir des effets
sur la performance du DFACS.

Le deuxième objectif de la thèse est d’examiner la méthode d’analyse des données pour
la recherche des signaux d’ondes gravitationnelles. En particulier, nous nous concentrons
sur les fonds stochastiques d’ondes gravitationnelles (SGWBs) qui pourraient être détectés
par LISA, qu’il s’agisse de sources cosmologiques ou astrophysiques. La reconstruction du
signal des fonds stochastiques d’ondes gravitationnelles à partir de données expérimentales
est difficile en raison des diverses composantes qui peuvent contribuer au signal, et des bruits
instrumentaux, qui peuvent être confondus avec le signal même. Dans notre travail, nous
utilisons l’outil SGWBinner pour étudier la reconstruction simultanée du signal SGWB et du
bruit instrumental. Avec le modèle de bruit instrumental adapté que nous avons développé
par l’étude de l’instrument LISA et de la propagation des bruits dans TDI, nous pouvons
obtenir une reconstruction du signal. Cette reconstruction a été utilisée sur des données
simulées réalistes de LISANode et sur celles généré par un autre outil de génération de données,
SGWB_data.

Cette thèse est organisée en sept chapitres. Le premier chapitre donne une introduction aux
ondes gravitationnelles. Nous revisitons le cadre théorique des ondes gravitationnelles dans la
théorie de la relativité générale, ainsi que leurs propriétés. Nous abordons ensuite l’idée de
détecter les ondes gravitationnelles et passons en revue certains détecteurs actuels et futurs
ainsi que leurs techniques de détection. Dans la dernière partie de ce chapitre, nous présentons
plusieurs sources de rayonnement gravitationnel et leur détectabilité par les détecteurs actuels
et futurs, notamment la mission LISA. Les fonds stochastiques d’ondes gravitationnelles sont
discutés plus en détail car nous nous concentrons principalement sur ce type de source dans
notre étude au chapitre 6.

Le chapitre 2 présente l’architecture de LISA, notamment la configuration actuelle de la
constellation, son concept de mesure et un aperçu de sa charge utile. Nous passons également
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en revue le système de mesure et d’interférométrie DFACS, qui est essentiel pour notre étude
dans les chapitres suivants, avant de passer en revue les bruits instrumentaux dans LISA. Ce
chapitre présente également un modèle instrumental de la configuration actuelle de LISA. Ce
modèle est implémenté dans un simulateur LISANode. Dans la philosophie de LISANode, une
simulation peut être représentée comme un graphe, qui est construit en connectant plusieurs
nœuds ou sous-graphes. De cette façon, un graphe complexe peut être construit pour s’adapter
au développement instrumental de la mission LISA. Dans la dernière section du chapitre 3, nous
présentons l’architecture logicielle de LISANode et notre contribution à son développement
avec l’implémentation de bruits corrélés et non-stationnaires.

Le chapitre 3 se concentre sur TDI. Tout d’abord, nous présentons une version du pipeline
initial de réduction du bruit, qui est une chaîne de traitement des données visant à réduire
les sources de bruit les plus dominantes dans les données brutes de LISA afin de fournir des
données utilisables à des fins scientifiques. TDI est une étape crucial de ce pipeline. Nous
discutons ensuite du principe de TDI pour éliminer le bruit de fréquence laser et donnons la
formulation de TDI. La dernière section de ce chapitre présente une étude de la réduction
du bruit avec TDI dans des données expérimentales avec le simulateur LISA-On-Table. Nous
présentons brièvement LISA-On-Table, un simulateur électro-optique de LISA, puis nous ex-
aminons les performances de l’algorithme dans la réduction du bruit de fréquence laser sur des
données générées par ce simulateur dans différentes configurations.

Le chapitre 4 présente le résultat principal de l’étude de la propagation du bruit à travers
TDI. Nous introduisons d’abord une méthodologie de calcul des spectres de puissance à partir
des variables TDI, qui peut être appliquée de manière générale à la propagation de tout bruit
secondaire LISA. Quelques exemples de calculs de fonctions de transfert TDI sont discutés
avant de résumer les résultats de propagation pour la plupart des bruits secondaires LISA. En
outre, nous examinons les caractéristiques réalistes de la configuration LISA dans la propaga-
tion du bruit, y compris les impacts du schéma de verrouillage du laser et des corrélations du
bruit. Nous validons ensuite le modèle analytique de bruit en comparant sa formulation avec
les spectres de puissance estimés à partir des données simulées avec le simulateur LISANode.

Le chapitre 5 traite du travail sur l’implémentation de LISA Dynamics dans le simu-
lateur LISANode. Nous donnons d’abord un aperçu des cadres de référence et des équa-
tions qui décrivent la dynamique des cibles LISA (c’est-à-dire la masse d’essai, le MOSA,
le vaisseau spatial). Ces équations sont cruciales pour l’implémentation de la dynamique de
LISA dans LISANode, qui est discutée dans la section suivante du chapitre. Pour simpli-
fier l’implémentation, nous linéarisons les équations du mouvement et les exprimons dans la
représentation de l’espace d’état. Nous examinons ensuite la version de LISANode pour le cas
d’une configuration fixe de MOSAs avant de modifier le code pour l’adapter à un cas simpli-
fié de MOSAs en rotation. Enfin, nous montrons les résultats de cette implémentation dans
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LISANode.

Une étude de la recherche de SGWBs est décrite dans le chapitre 6. Nous présentons
deux pipelines de génération possibles pour les données simulées en utilisant différents outils
de simulation, à savoir SGWB_data et LISANode. Ce dernier pipeline avec le simulateur
LISANode est plus intéressant pour nous car il fournit les données en séries temporelles avec
des caractéristiques réalistes telles que le bruit corrélé et/ou non stationnaire. Comme la
connaissance du bruit instrumental est essentielle pour cette étude, nous discutons en détail le
modèle de bruit utilisé dans le pipeline de génération et d’analyse des données. Le modèle de
bruit de base habituel pour l’analyse des données LISA provient du LISA Science Requirement
Document. Cependant, un terme supplémentaire doit être ajouté dans le modèle de bruit pour
tenir compte de la propagation précise du bruit TDI dans le système de métrologie optique,
selon notre étude présentée au chapitre 4. Nous utiliserons ce modèle de bruit modifié pour
générer les données de l’étude. Nous discutons également de certains modèles de SGWBs et
d’un modèle pour l’avant-plan galactique. Ensuite, nous passons en revue une méthodologie
d’analyse de nos données, utilisant la reconstruction dans de multiples intervalles de fréquence
par les codes SGWBinner, pour extraire un SGWB arbitraire étant donné un modèle de
bruit. Cette analyse est basée sur une méthode bayésienne. Comme ces variables sont quasi-
orthogonales, les données utilisées dans l’analyse sont les spectres de puissance des variables
TDI AET des simulateurs LISA pour éviter la corrélation croisée. Les données du canal
TT sont utilisées pour redéfinir les apriori de bruit avant de les appliquer dans l’analyse
SGWB pour les canaux AA et EE, qui sont plus sensibles aux ondes gravitationnelles. Enfin,
nous présentons les résultats de plusieurs analyses en exécutant SGWBinner sur des données
simulées, y compris le cas de l’utilisation de différents modèles de bruit dans la génération des
données et dans l’analyse des données.

Le dernier chapitre donne les conclusions et les études futures sur les sujets traités dans
cette thèse.

Mot-clef associés: onde gravitationnelle, LISA, interférométrie, retardée (TDI), sim-
ulation, LISANode, propagation du bruit, dynamique de LISA, fond stochastique d’ondes
gravitationnelles (SGWB)
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Chapter 1

Gravitational wave astronomy

In this chapter, we give an overview of gravitational waves (GWs) from the point of view
of both theory and experiment. The first section addresses the theoretical framework of the
GWs, including their derivation from General Relativity theory and their effect on matter. In
the second section, we introduce the principle of GW detection and review some current and
future detectors contributing to the GW astronomy. The last section gives brief descriptions
for some GW radiation sources, mainly those that are detectable by the future space-based
detector Laser Interferometer Space Antenna (LISA). In the scope of this thesis, we will focus
on the stochastic gravitational wave backgrounds.

1.1 Gravitational waves

This section briefly presents the fundamental physics behind the GWs and their properties.
The material presented in this chapter is based on the references [109, 133, 56]. In those
references, ones can find detailed explanations and proofs for the mathematical treatment
presented in this section.

1.1.1 Limitations of Newtonian theory of gravity

Although the gravitational force in Newton’s Law of Universal Gravitation can explain the
physics of various phenomena with great precision, it cannot explain some astronomical ob-
servations, for example, the precession of the perihelion of Mercury.

In addition, the causality of the gravitational interaction has been questioned for a long
time, even by Newton himself. Newton’s equation indicates that the gravitational force in-
stantaneously affects two massive objects at any distance without mediation. Newton was also
puzzled, as he wrote [116]: “It is inconceivable that inanimate brute matter should, without
the mediation of something else which is not material, operate upon and affect other matter

1
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without mutual contact... That one body may act upon another at a distance through a vac-
uum without the mediation of anything else, by and through which their action and force may
be conveyed from one another, is to me so great an absurdity that, I believe, no man who has
in philosophic matters a competent faculty of thinking could ever fall into it.”

Furthermore, Newton put the origin of gravitation aside by his famous dictum “hypotheses
non fingo”. The relevant passage in [117], English translation of 1729 by Francis Motte, was:
“I have not been able to discover the cause of those properties of gravity from phenomena,
and I frame no hypotheses; for whatever is not deduced from the phenomena is to be called a
hypothesis, and hypotheses, whether metaphysical or physical, whether of occult qualities or
mechanical, have no place in experimental philosophy.”

Several theories were proposed to explain the origin of gravitation. In some theories,
the gravitational interaction is propagated via some form of mediation, such as the aether.
However, none was proven to be the correct one. The experiments built by Michelson et al.
to measure the velocity of the aether relative to the Earth’s rotation proved that there was no
such mediation [137].

Interestingly, those experiments also indicated that the speed of light is constant relative
to any inertial reference frame, which is one of two postulates of the Special Relativity theory
proposed by A.Einstein [64]. Following the development of Special Relativity, Einstein found
General Relative theory [62], which applies not only to inertial frames but also to non-inertial
ones, e.g. accelerated frames. In the context of General Relativity, gravitation is interpreted
as the curvature of spacetime, which depends on the mass and energy of the matter content.

1.1.2 General Relativity

In General Relativity theory, the 3 space dimensions and the time are treated equally and
combined into a 4-dimensional set called spacetime. An individual point in spacetime is called
an event, expressed in (t, x, y, z). In flat spacetime, the interval or proper distance between
any two events is defined by

ds2 = −cdt2 + dx2 + dy2 + dz2, (1.1)

where c is the speed of light. In the general case, we can use the definition of the metric tensor
and the geometrized units, in which c = 1, to rewrite this equation as

ds2 = gµνdx
µdxν , (1.2)

where xµ indicates t, x, y, z for µ running from 0 to 3, gµν = ηµν = diag(−1, 1, 1, 1) is Minkowski
metric in the case of flat spacetime. The formula uses the Einstein summation convention, i.e.
duplicated indices in superscripts and subscripts are sum over.
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In the presence of a massive object or energy, spacetime is no longer flat, and the interval
cannot be defined by the Minkowski metric. Instead, we need to compute the metric tensor gµν
from the curvature of spacetime. That curvature drives the motion of a test particle around
the object. Any test particle will follow a free-falling trajectory in the curved spacetime
in the shortest distance path, called geodesic. This geodesic is not a straight line in the
curved spacetime. With this toolset, we can interpret the motion of a test particle around
a massive object by classical gravitational force as its geodesics in the curved spacetime.
The gravitational interaction is given by the curvature of spacetime locally. Therefore, it is
no longer considered an instantaneous interaction. General Relativity also predicts that the
speed of the propagation of the interaction is identical to the speed of light, as we will derive
later. The means of the propagation of the gravitation interaction, i.e. gravitational waves,
is an analogy of electromagnetic waves in the electromagnetic interaction [63]. To summarise
this correlation between spacetime and gravitation, we use the paraphrase of John Wheeler’s
quote: “The matter defines the curvature of spacetime, and spacetime tells the matter how to
move.”

Using this theory, one can explain and compute the precession of the perihelion of Mer-
cury with the highest precision. The theory has also been tested by several astronomical
observations, such as the bending of light from a far-away star when it travels nearby the
Sun. Furthermore, the gravity theory’s causality problem is also solved since the speed of
gravitational interaction is now limited, equal to the speed of light, as we will see later. The
gravitational waves were also predicted but not observed at that time. About 100 years later,
this prediction of Einstein’s theory of gravity was confirmed by direct detection. Nevertheless,
we are looking for more tests to challenge the correctness of General Relativity and many
modified theories of gravity, which have been developed to explain more phenomena such as
the accelerated expansion of the Universe.

To express the curvature of spacetime mathematically, we first define Christoffel’s symbols
from the covariant derivative ∇µ of a vector field V ν , given as:

∇µV
ν = ∂µV

ν + Γν
µσV

σ (1.3)

Γλ
µν =

1

2
gλσ (∂µgνσ + ∂νgσµ − ∂σgµν) . (1.4)

The covariant derivative is a generalization of the total derivative in the 4-dimensional space-
time, which gives the connection relating vectors in the tangent spaces of nearby points [56].
Conventional General Relativity uses the Christoffel connection or Levi-Civita connection.
The derivation of this symbols uses the two specific properties: torsion-free Γλ

µν = Γλ
νµ and

metric compatibility ∇ρgµν = 0.
Then, we compute the Riemann tensor from the Christoffel symbols as

Rα
βµν := ∂µΓ

α
βν − ∂νΓ

α
βµ + Γα

σµΓ
σ
βν − Γα

σνΓ
σ
βµ. (1.5)
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Riemann tensor of a flat spacetime is null, Rα
βµν = 0. In the study of the curvature of

spacetime, we also use Riemann tensor contraction, called Ricci tensor, defined as:

Rαβ := Rλ
αλβ, (1.6)

and similarly Ricci scalar reads:
R := gµνRµν . (1.7)

With these mathematical objects, we can write down the field equations for General Rel-
ativity, called Einstein’s field equations,

Rαβ − 1

2
Rgαβ + Λgαβ = κTαβ. (1.8)

There are 10 coupled differential equations extracted from Eq.(1.9), instead of 16 because
Rαβ, gαβ, Tαβ are symmetric. We can solve these equations to get metric tensor gµν for a
given matter content encoded in the stress-energy tensor Tµν . Constant κ can be determined
by matching Einstein’s field equations with Newtonian’s gravitational field equations so that
General Relativity can capture the physics of classical gravity theory. The constant Λ remains
arbitrary. Historically, this constant was introduced in the first version of Einstein’s field equa-
tions to ensure a solution for a static Universe. It was then removed due to the observation of
expanding Universe discovered by Hubble. Finally, it was reinstated to explain the accelerated
expansion of the Universe. Here, we neglect the constant Λ and use the geometrized units,
c = G = 1, to get the form of Einstein’s field equations as follows:

Rαβ − 1

2
Rgαβ = 8πTαβ. (1.9)

Since the gµν are the components of the metric tensor in some coordinate system, 4 degrees
of freedom among 10 gµν can be fixed by the choice of the reference frame as the equations
(1.9) are coordinate-invariant. Therefore, there are only 6 dependent differential equations to
be solved to characterize spacetime geometry independently on the coordinates.

1.1.3 Solution of Einstein’s field equations in weak-field regime:
Gravitational Waves

Einstein’s field equations are non-linear: the Ricci tensor and scalar include the second deriva-
tives of the metric tensor. Therefore, solving these equations is challenging. In fact, very few
cases provide the exact analytical solutions, for example the Schwarzschild metric describing
a non-rotating spherical black hole and the Friedmann–Lemaître–Robertson–Walker metric
to describe a homogenous isotropic and expanding Universe. Even in the case in vacuum, to
describe the gravitational waves propagating on spacetime far away from the source, which is
indicated by Tµν = 0, the solutions are not easily worked out.
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The absence of matter leads to a flat spacetime. A weak gravitational fields curves space-
time to be nearly flat. Therefore, we can use perturbation approach to solve the Einstein’s
field equations in the weak gravitational field regime. In particular, one can find coordinates
for which the metric tensor is given by:

gµν = ηµν + hµν , (1.10)

where |hµν | ≪ 1 is the pertubation of the flat Minkowski metric ηµν = diag(−1, 1, 1, 1).

Expanding equation (1.9) at first order in hµν , and using the trace-reversed perturbation

h̄αβ := hαβ − 1

2
ηαβhµνg

µν , (1.11)

we could obtain:

2h̄µν + ηµν∂
ρ∂σh̄ρσ − ∂ρ∂ν h̄µρ − ∂ρ∂µh̄νρ = −16πTµν . (1.12)

where 2 is the D’Alambertian or wave operator,

2f = ηµν∂µ∂νf =

(
− ∂2

∂t2
+∇2

)
f =

(
− ∂2

∂t2
+

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
f. (1.13)

We can further simplify equation (1.12) by choosing Lorenz gauge[56] for the coordinate frame,
in which

∂ν h̄µν = 0, (1.14)

and then the Einstein’s field equations take the linearized theory form

2h̄µν = −16πTµν . (1.15)

The equation describing gravitational waves far away from the source is the homogeneous
equation deduced from (1.15) by choosing Tµν = 0:(

− ∂2

∂t2
+∇2

)
h̄µν = 0. (1.16)

This equation is a wave equation with speed of propagation equal to the speed of light, c = 1

in our conventions. The solution of (1.16) is the superposition of monochromatic plane waves
of the form

h̄αβ = Aαβ exp(ikµx
µ), (1.17)

where Aαβ is the wave amplitude, and kµ is the wave vector. One can show that kµ is a null
four-vector, kµkµ = 0, tangent to the photon worldline.

Within the Lorentz class of gauges (1.14), we can further use the gauge freedom to restrict
the degrees of freedom of Aαβ as

Aµ
µ = gµνA

µν = 0 and Aµνkν = 0. (1.18)
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These constraints together are called the transverse-traceless (TT) gauge conditions. The first
equation in (1.18) implies h̄TT

µν = hTT
µν so that we can omit the bar notation on trace-reversed

perturbation from now on. From these conditions, we can translate to the constraints on the
perturbation hαβ in TT-gauge as follows:

hii = 0, ∂ih
ij = 0, h0µ = 0 (1.19)

Hence, we have only 2 independent components remaining for Aαβ , which represent the phys-
ical degrees of freedom of GWs and later we will see that they are associated with the polar-
ization of GWs. One should notice that the TT-gauge choice is a consequence of the gauge
invariance of the Einstein’s field equations (1.9). In the other word, the physics does not
change in another reference frame, and the TT-frame is used just because it is convenient in
order to extract the physical information of the gravitational waves, e.g. their polarization1.
We can choose coordinates so that a GW propagates along the z direction kµ = (ω, 0, 0, ω),
where ω is the angular frequency of the GW. Then the solution of the gravitational wave
equations (1.16) in transverse-traceless frame is given by

hTT
µν (t, z) =


0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0

 cos [ω(t− z)] (1.20)

where h+, h× are the polarization states of the GW with the basis formed by unit vectors
(û, v̂) living in the plane perpendicular to the wave propagation direction, i.e. the z-axis. The
tensor basis for Aµν is:

e+ij = ûiûj − v̂iv̂j =

1 0 0

0 −1 0

0 0 0

 ; e×ij = ûiv̂j + ûjv̂i =

0 1 0

1 0 0

0 0 0

 . (1.21)

1.1.4 Effect of gravitational waves

Here, we examine the effect of GW on matter. Consider a free particle initially at rest in
TT-gauge, it obeys the geodesic equation [133]:

d

dτ
Uα + Γα

µνU
µUν = 0, (1.22)

where Uα = dxα

dτ is four-vector velocity, τ is the proper time. Since the particle is initially at
rest U i

τ=0 = 0, its initial acceleration is

dU i

dτ

∣∣∣∣
τ=0

= −
[
Γi
00

dt

dτ

dt

dτ

]
τ=0

. (1.23)

1The TT-gauge cannot be chosen in the vicinity of the source, but we still have two polarization states for
the GW in general [68].
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In TT-gauge reference frame, (1.19), we have

Γi
00 =

1

2
hiµ (2∂0h0µ − ∂µh00) = 0. (1.24)

This result indicates that the particle initially at rest will remain at rest forever regardless of
the passing gravitational waves. This is an artifact of the TT-gauge: the coordinates are chosen
so that they wiggle in spacetime as the GW is passing, and the initially at rest particle remains
attached to the same point in the coordinates. However, to access the physical information,
we need to look into some coordinate-invariant quantities, for instance the proper distance
(1.2) between the two particles. In the setting leading to equation (1.20), the proper distance
reads

ds2 = gµνdx
µdxν =

(
ηµν + hTT

µν

)
dxµdxν

= −dt2 + dz2 + {1 + h+ cos [ω(t− z)]} dx2

+ {1− h+ cos [ω(t− z)]} dy2 + 2h× cos [ω(t− z)] dxdy. (1.25)

From the above expression, we see that the effect of the h+ polarization state is on the x, y
directions of the plane perpendicular to the gravitational wave propagation vector, and GW
will stretch and contract spacetime in both directions in returns. On the other hand, h×
changes spacetime in the cross term of the two directions x, y. This effect is similar to the h+
one, if we rotate the coordinates of x, y by an angle of π/4. That justifies our initial notations
for the two polarization states of GW. The illustration of the two polarization states of GW
is shown in figure 1.1.

Let’s consider that one particle is initially at rest at the origin of the coordinate system, and
a similar one is at the location (ϵ, 0, 0) nearby the first one. The coordinate distance between
the two particles is constant, △x = ϵ, in the TT-frame even with a passing GW. Assuming
that the coordinate distance ϵ between the two particles is very small, one can obtain (see for
example section 9.1 in [133] for a detailed derivation):

∆s ≡
∫

|ds2|1/2 ≈ ϵ
√
1 + h+ cos(ωt) ≈ ϵ

(
1 +

1

2
h+ cos(ωt)

)
, (1.26)

where the final equality is the Taylor expansion with h+ ≪ 1. It appears that the proper
distance varies with time as the GW passes. Therefore, one can measure the proper distance
between two test particles following their geodesics in spacetime to detect GWs. This is
the theoretical idea behind the experimental measurement of GW experimentally that we
introduce in the next section. The equation (1.26) also indicates that the effect of GW on
the proper distance is proportional to the initial separation between the test particles. The
bigger the initial distance is, the bigger proper distance changes due to the passage of GWs.
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Figure 1.1: Illustration for the effect of a GW on a circle of test particles, taken from [133].
(a) The initial circle of test particles before the GW traveling along z-axis reaches it. (b) The
distortion of the circle by the effect of the h+-polarization state of the GW, in two pictures
for different times corresponding to two phases of the GW separated by 180o. (c) Similar as
(b) for the h×-polarization of the GW.

Therefore, GW detectors are huge devices, in order to maximize the effect of GW2. Last
but not least, the effect is extremely small because of the tiny perturbation of spacetime
due to GWs. The typical GW amplitude observed by detectors on Earth is of the order of
h+/× < 10−20. Therefore, one needs extremely sensitive detectors in order to search for the
GWs, and to deal with potential noises which can blur such tiny amplitude signals.

1.2 Gravitational wave detection

1.2.1 General overview

Although many achievements have been obtained in astronomy with electromagnetic waves, as
the observable spectrum band broadened with decades, there are some events in the Universe
which cannot be observed with electromagnetic detectors.

Gravitational waves can open a new window for astronomy, since a large fraction of as-
trophysical and cosmological events/objects can emit these signals. According to the current
astronomical observations, only 4% of the mass-energy of the Universe is in charged particles
that can emit or absorb electromagnetic waves, and the remaining 96% cannot radiate electro-

2Note that, in our derivation of (1.26), we assume that the initial separation between the two particles
is small enough for the metric tensor not to change significantly. Hence, this equation is not always valid to
characterize precisely the measurements in GW detectors.
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magnetic signals. However, all these objects are coupled by gravity, and some of them could
radiate GWs. With the observation of GWs, we can enrich our knowledge of the Universe,
either finding unknown and unexpected events/objects, or investigating already known ones,
or testing the theory of gravity, Etc. Moreover, gravitational waves can carry information
that the electromagnetic ones cannot, since GWs are hardly influenced by matter during their
propagation. Consequently, GWs can give us the chance to look deeper into the history of
the Universe in the early times before the recombination epoch, which is not observable with
electromagnetic waves.

In order to directly detect the tiny effect of GWs, two types of detectors have been de-
veloped: bars and interferometers. The bar detectors are based on the resonance effect on
solid masses that are influenced by the incoming GW. However, the interferometric detectors
have better sensitivity so that we will not discuss bar detectors in detail in this thesis. On
the other hand, we will briefly introduce pulsar timing, which is searching GWs at very low
frequency band. In the following, we will present the principles of GW detectors, and some of
their representatives.

1.2.2 Measuring distances with light

As we have discussed in section 1.1, the effect of a passing GW is the variation of the proper
distance between particles in spacetime. We can use this effect to detect GWs. In particular,
we can use light to measure the distance between two free-falling test particles, which are
following their own geodesics in spacetime. By measuring the time of arrival of electromagnetic
signals, e.g. laser beam, from one particle to the second one, one can monitor the effect of the
passage of GWs on the variation of the light time of arrivals.

The detailed derivation of the variation of the time of arrival due to the passage of GW
can be found, for example, in chapter 9.2 of [133]. We examine a laser beam sent from a
test particle at the origin of a TT-gauge reference frame to another one separated from the
first by a distance L, and returning back to the origin, during the passage of a gravitational
wave. Considering only the h+ polarization, as in equation (1.26), the differential (the rate of
change) of the time of arrival w.r.t. the time of emission reads:

dtreturn

dtstart
= 1 +

1

2
[h+(tstart + 2L)− h+(tstart)] , (1.27)

where tstart is the time of the laser beam emission at the origin, and treturn is the time we
receive it after propagating in the round trip3. The relation between the rate of change of the

3tstart is the time when the first crest of the electromagnetic wave of laser beam is emitted, and treturn is
the time when crest returns back after the round trip.
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time of arrival of the laser beam and its frequency,
dtreturn

dtstart
=
νreturn

νstart
, leads to the equation

νreturn − νstart

νstart
=
h+(tstart + 2L)− h+(tstart)

2
, (1.28)

where νreturn, νstart are the frequencies of the laser beam at the reception and emission times,
respectively. Therefore, we can detect the effect of GWs by measuring the change in frequency
of a laser exchanging between the two test particles when they are following their own geodesics.
This the detection principle is applied for most of the modern GW detectors.

The equation (1.28) can be expressed in a more general setting as shown in chapter 3.2.6
of [40]. In particular, one can consider a laser beam sent from one test particle to another
one separated by a distance L, but the two particles are located in a generic coordinates. The
sender point is x⃗0(t0) and the receiver one is x⃗1(t1), where t0, t1 are respectively the sending
and receiving times. The unit vector linking the two particles is n̂(t1) = ||x⃗0(t0) − x⃗1(t1)||.
The relative fluctuation frequency attributed to the variation of the time of arrival due to the
passage of a GW propagating along the unit vector k̂ is given by

νreturn(t1)− νstart(t0)

νstart(t0)
≈ 1

2
(
k̂ · n̂(t1)

) {H [t1 − L− k̂ · x⃗0(t0)
]
−H

[
t1 − k̂ · x⃗1(t1)

]}
,

(1.29)
where H(t) is the deformation of spacetime along the laser link induced by the passage of GW,
given as

H(t) = [h+(t) cos(2ψ(t))− h×(t) sin(2ψ(t))] ξ+(û, v̂, n̂(t))

+ [h+(t) sin(2ψ(t)) + h×(t) cos(2ψ(t))] ξ×(û, v̂, n̂(t)), (1.30)

where ψ is the polarization angle, and the antenna pattern functions ξ+, ξ× are defined within
a right-handed system (û, v̂, n̂) as4

ξ+(û, v̂, n̂) = (û · n̂)2 − (v̂ · n̂)2 , (1.31)

ξ×(û, v̂, n̂) = 2 (û · n̂) (v̂ · n̂) . (1.32)

1.2.3 Interferometer detectors

One possibility to detect GWs using the measurement principle presented previously is via
spacecraft tracking [67]. The interplanetary spacecraft responds as the transponder to the
radio signals sent from Earth. The signals received by the spacecraft are amplified and sent
back to the ground tracking station on Earth. The measurement of the return time provides
the distance between the spacecraft and the ground tracking station. Therefore, one can detect

4Remind that n̂ is the unit vector linking between the two test particles.
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GWs by measuring the variation of the return time, as shown in Eq.(1.27). However, even
assuming that one can solve practical issues in spacecraft tracking, such as discriminating the
effects of GWs from the ones of light refraction in plasma and ionosphere, the clock stability
can limit the accuracy of the measurement. In particular, the current best clock has stability
of the level of 10−19, while the amplitude of GWs, which we would like to detect on Earth, is
of 10−20 or below.

In order to solve the problem of clock stability, one can use a Michelson interferometer,
illustrated in figure 3.2. It is composed of a stable laser beam passing through a beam splitter
which sends two half-power beams in two perpendicular arms. The two beams then have
correlated phases. They travel along their arms and are reflected off mirrors at the end of the
arms, then are brought back into the interferometer. The interference allows to measure the
difference between the two armlengths so one can detect GWs that stretch and contract the
distances, as shown in Eq.(1.26) for the h+ polarization. In the interferometer detector, one of
the two beams effectively plays the role of clock reference to perform the measurement of the
light arrival time, so the limitation of the clock stability can be solved. On the other hand, the
laser frequency fluctuations lead to a noise, called laser frequency noise, in the interferometric
measurement. If the two arms of the interferometer have the same or almost equal lengths,
the laser frequency noise is significantly suppressed in the interferometer. We will discuss this
noise and its reduction further in section 3.2.1.

1.2.4 Inteferometric observatories

Interferometric detectors are currently the most sensitive instruments in operation to search for
GWs. Ground-based interferemeters are the Laser Interferemeter Gravitational Wave Obser-
vatory (LIGO), Virgo (Virgo), and Kamioka Gravitational Wave Detector (KAGRA). LIGO
has two observatories located at Hanford and Livingston, in the United States. They both use
the Michelson interferometer, with Fabry-Perot cavities to increase the effective arm-lengths
for the laser beams before the interference. The physical length of each arm is about 4 km. The
Virgo detector, located in Cascina, Italy. It has the same design of LIGO but with smaller
physical arm-length, about 3 km similar to KAGRA, located underground at the Kamioka
observatory, in Japan. The first direct GW detection was announced by the LIGO/Virgo
collaboration after enormous efforts to enhance the sensitivity of the detectors during several
years. On the 14th of September 2015, they detected the signal named GW150914 with the co-
incidence in both LIGO observatories. The signal is compatible with the GWs generated from
the merger of a binary system of two black holes, with masses of about 36 and 29 solar masses.
The final black hole after merger has mass of about 62 solar masses. About 3 solar masses of
energy from this merger were radiated as GWs. This extraordinary discovery was awarded the
Nobel prize in Physics in 2017. In the following years, the LIGO/Virgo collaboration contin-

http://www.ligo.caltech.edu/
http://www.ligo.caltech.edu/
https://www.virgo-gw.eu/
https://gwcenter.icrr.u-tokyo.ac.jp/en/
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ued announcing GW detections of many events, including black hole binaries mergers, neutron
star-black hole binaries mergers and neutron star binaries mergers. Currently, LIGO/Virgo
finished their third operation run and will be ready for the fourth operation run together with
KAGRA in December 2022.

In the coming decades, the Indian Initiative in Gravitational-wave Observations (INDIGO)
will join the ground-based GW observatories network. We also expect to develop a third gen-
eration of GW observatories, with projects such as the Einstein Telescope in Europe and the
Cosmic Explorer in United States. With an increasing number of detectors in different loca-
tions, one expects to constrain better the location of the GW radiating source by triangulation.
Moreover, multiple detectors can allow to discriminate instrumental glitches from GW signals
if they are not detected coincidentally by other detectors. With different orientations of mul-
tiple detectors, one can also better determine the polarization of the passing GWs, which is
not feasible with a single Michelson interferometer.

The ground-based observatories have some limitations. First of all, the seismic noises
and other gravitational disturbances from the environment (for example human activities,
atmospheric variations, ...) are dominant at low frequency, so the GW signals with f < 10Hz

cannot be detected. The interferometer detectors use staged suspension and pendulums to
isolate the mirrors from the ground vibrations. The mirrors play the role of the free-falling
particles so they are the references to measure the proper distance as described in section
1.1. These mechanical systems act as a low-pass filter, but they are limited in suppressing
significantly the seismic noise at low frequency. At high frequency, above 200 Hz, the shot
noise dominates. This noise is due to the quantum effect of counting the photons reaching
the photodiode. The random fluctuations of the incident power due to counting the photons
could lead to misleading GW signals in the interferometric measurements. Increasing the laser
power reduces the shot noise but it raises another noise, related to the thermo-mechanical
coupling between laser beams and the optical devices.

Some of above limitations of the ground-based detectors can be removed by placing the
instrument into space. Hence, the earth-based effects such as seismic noise. Moreover, the
armlengths of the interferometer can be longer in space, so the sensitivity of the detector is
shifted into a lower frequency band compared to the ground-based detectors. For example,
an armlength of about a million km gives the most sensitive observational frequency band
around mHz. There are many potential GW sources generating signals in this band, as we will
introduce in section 1.3. Therefore, the space-based GW observatories are complementary to
the ones on ground, so one can broaden the GW observational spectrum. One of the future
space-based detectors is the Laser Interferometer Space Antenna (LISA). Due to technological
challenges and the time it takes to build an instrument of such a high precision, it is expected
to be in operation in the middle of the 2030s. This thesis is oriented to the LISA detector,

http://www.gw-indigo.org/tiki-index.php
https://www.lisamission.org/
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so we will describe it in more detail in chapter 2. Other proposed space-based detectors are
TianQin [105], TaiJi [85], and the DECi-hertz Interferometer Gravitational wave Observatory
(DECIGO) [93]. The TianQin and TaiJi missions probe the GWs in the same frequency band
as LISA, while DECIGO operates in the frequency band from 0.1 to 10 Hz, to fill the gap in
frequency between other space-based GW detectors and the ground-based ones.

1.2.5 Pulsar timing

Another way to detect GW at low frequency, about 10−9 Hz, is to use the signal from pul-
sars [140]. A pulsar is a highly magnetized rotating neutron star, which emits electromagnetic
waves in radio frequency from its magnetic poles. Each time the magnetized jet points toward
the Earth, the radiated electromagnetic signal is observed as a pulse. The pulses are extremely
regular due to ultra-stable rotation rate of the pulsar, so that we can use them as a reference
clock. Using an array of calibrated pulsars, it is possible to detect GWs passing through
spacetime between these pulsars and the Earth by looking for correlated irregularities in the
times of arrival of the pulses from multiple pulsars observed by on-ground radio telescopes.
Currently, there are three main pulsar timing array (PTA) collaborations (European Pulsar
Timing Array, NANOGrav and Parkes Pulsar Timing Array) joint into the International Pul-
sar Timing Array (IPTA). They collect the data of several radio telescopes around the world
to search for GWs. At the time of writing this thesis, no GW signal has been detected by
PTAs with sufficient confidence, but there are upper bounds on the amplitude of the GW
signals in the PTAs frequency band, and most importantly, the evidence for a common red
signal [57, 33, 17]. In the coming years, accumulating data, using better calibrated pulsars,
improving of the PTAs sensitivity, and developing new data analysis methods will allow to
detect GWs in such a low frequency band. We will present some sources which emit GWs in
that frequency band in the next section.

1.3 Gravitational wave sources

1.3.1 Principles of GW generation

To derive the GW generation by a source, one solves for the linearized Einstein’s field equa-
tions (1.15) with non-vanishing mass-energy tensor Tµν . The detailed derivation can be found
in [56], [133].

For simplicity, we assume here that the source is isolated, far away for the observer’s
location, and slowly moving. For example an isolated binary system, rotating with a slowly-
varying angular frequency Ω. The center of mass of the binary system is at spatial distance L
in the chosen coordinate frame, which has the origin at the observer’s location. R characterizes
the size of the binary source. If the binary system assumed rotates in a circular orbit, R is the

http://ipta4gw.org/
http://ipta4gw.org/
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radius of this orbit. The slow-motion approximation implies that the typical velocity inside
the source region, which is the source angular frequency multiplied with the size of source
Ω ·R, is small.

At the observer’s location, which is far away from the source at a distance of L so we
can use TT-gauge coordinates, and have h̄TT

ij = hTT
ij , the metric perturbation tensor is given

by [56]:

hij(t, x⃗) =
2

L

d2Iij
dt2

(t− L), (1.33)

where we define the quadrupole moment tensor as

Iij(t) =

∫
T 00(t, x⃗)xixjdV. (1.34)

Some remarks are in order following equation (1.33). First of all, the metric perturbation
tensor does vanish if quadrupole moment tensor is null. In particular, the source with spheri-
cally symmetric mass distribution, which has zero-quadrupole moment, cannot emit any GW.
Moreover, since the metric perturbation tensor does not depend on terms of order less than
the quadrupole, there is no dipole GW emission from a GW source in contrast to the case
of electromagnetic radiation. Within the theory of linearized gravity, the conservation of the
linear and angular momenta justify this conclusion. The amplitude of the GWs generated
by a source is decreasing as the inverse of the distance L from the observer to the source.
This amplitude is proportional to Newton’s gravitational constant, which is assumed to be the
universal constant, G = 6.674 × 10−11m3.kg−1.m−2. At the beginning of this section we set
G = 1 so it does not appear in (1.33). Last but not least, equation (1.33) gives the dominant
component of radiation of GWs, i.e. the quadrupole approximation. The higher order moment
tensors, e.g. octupole, can contribute to the GW generation.

Let us consider a binary system of point particles, with the same mass M , rotating in a
circular orbit of radius R with almost constant angular frequency Ω. The orbital plane of the
system is in the plane Oxy such that at the beginning, the two particles are aligned along the
x-axis. The corresponding energy density is given by

T 00(t, x⃗) =Mδ(z) [δ (x−R cos(Ωt)) δ (y −R sin(Ωt)) + δ (x+R cos(Ωt)) δ (y +R sin(Ωt))] ,

(1.35)
where δ is Dirac delta function, such that

∫∞
−∞ δ(x)f(x)dx = f(0) for an arbitrary function

f(x). Substituting equation (1.35) into the quadrupole moment tensor (1.34) and then into
equation (1.33), we obtain the following result for the two polarization states of GWs generated
by that binary system (see for example section 7.5 in [56]):

h+(t, x⃗) = −8M

L
Ω2R2 cos [2Ω(t− L)] and h×(t, x⃗) = −8M

L
Ω2R2 sin [2Ω(t− L)] . (1.36)
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From the above equations, we note that the GWs generated by a binary system source, with
the orbital frequency forbital =

Ω
2π , have frequency fgrav = 2forbital.

In the non-relativistic case, when the binary system consists of two objects with masses of
m1 and m2, one can apply the Newtonian approach to derive the angular frequency:

Ω = 2πforbital =

(
Mtot

4R3

)1/2

, (1.37)

where Mtot = m1 + m2 and we assume the binary system is rotating in a circular orbit of
radius of R. Therefore, the monochromatic GW signal generated by a non-relativistic binary
system has the frequency

fgrav =

(
GMtot

4π2R3

)1/2

, (1.38)

where we restored the explicit factor of G to facilitate the comparison with the value from the
experiments.

In the following subsections, we will review some GW radiation sources both in cosmology
and in astrophysics, the typical GW frequencies emitted by these sources, as well as the
detectors which could detect these signals. The figure 1.2 gives an overview of the GWs
spectrum, the main sources and the detection systems. The material in the following sections
is mostly extracted from the LISA mission proposal [16], literature books [133, 56], and the
lecture notes [129].

1.3.2 Galactic binaries

From the astronomical observations, we know there are many compact galactic binary systems.
In particular, we expect that a few tens of millions of Galactic Binaries (GBs) in our Galaxy,
the Milky Way, are emitting GWs. There are various types of GBs, composed of mostly
white dwarfs, but also of neutron stars and SOBHs. The masses of these objects are less than
a thousand solar masses. During the inspiral phase, the gravitational radiation signals are
continuous and quasi-monochromatic in the source frame [115].

These GW signals are mostly in the LISA and LIGO/Virgo frequency bands, from about
few mHz to hundred Hz, depending on the masses of the objects in the system and on how
far they are separated (as expressed in equation (1.38)). The GW signals from GBs far from
merger are weak and so their Signal-to-Noise Ratio (SNR) are low. Therefore, we cannot be
detected individually all of GBs, and their GW signals attribute to a confusion background or
stochastic gravitational wave foreground (see Figure 1.3). Some louder (higher SNR) signals,
from heavy GBs and/or close to merger phase, can be better characterized. Some GBs also
emit electromagnetic (EM) radiations, for example if they include pulsars. Hence, they are
also detectable by EM wave detectors such as Gaia and Large Synoptic Survey Telescope

http://www.lsst.org/lsst
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Figure 1.2: The gravitational wave spectrum with possible sources and detectors. Image
from NASA Goddard Space Flight Center website, https://science.gsfc.nasa.gov/663/
research/index.html.

(LSST) [95, 97]. Along then, there are known GBs, which are called verification binaries.
Since these verification binaries emit GW signals in the LISA frequency band, one can use
them to check the performance of the instrument.

As presented in section 1.3.1, the detected GWs from a binary system could provide infor-
mation on its intrinsic properties such as the mass, orbital frequency, size, Etc. In addition,
we can constraint the external parameters such as the distance of the source to our observa-
tory and the sky location of the source. In the case of LISA, we expect to detect and resolve
about 25 000 individual GBs. With sufficiently long observations, LISA can constraint the
sky localization of these GW sources and provide information on the distribution of GBs in
the Galaxy. These information turn out the formation and the evolution of GBs. Moreover,
the joint observation of gravitational and electromagnetic waves can be useful for studying the
physics of the compact binary systems, such as the tidal forces that brings the bodies of the
system closer over time in the inspiral phase before the merger.

1.3.3 Stellar-origin black hole binaries

Stellar Origin Black Hole (SOBH) binaries emit the GWs in several frequency bands, either
around the mHz with quasi-monochromatic signals detectable by LISA or at higher frequency,

https://science.gsfc.nasa.gov/663/research/index.html
https://science.gsfc.nasa.gov/663/research/index.html
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with transient signals during the late inspiral and merger phases, which are observed by
ground-based observatories. In their inspiral phase, the SOBH binaries of about tens to
hundreds solar masses can emit GWs in the LISA band for years. We expect to detect and
resolve these signals during the LISA operating duration, which will allow to constrain their
parameters, especially the sky localization, eccentricity, and even the time of coalescence with
a good precision [16]. For a subset of events, it might be possible for the triggering of alerts to
the ground-based GW detectors by few months or weeks before the merger for observing the
higher frequency GWs emitted during the merger phase. In addition, the EM wave detectors
can also be re-pointed at the coalescence to probe the potential EM counterparts. Although
the latter are not expected for the SOBH binary mergers, in contrary to the neutron star
binary mergers, for example GW170817 [2]. The joint observations of GWs in either multi-
band or multi-messenger astronomy will be a great opportunity to study the environment
close to SOBH binaries and disentangle their alternative formation channels, as well as to
test General Relativity and other theories of gravity, and possibly to constrain cosmological
parameters [6].

1.3.4 Supermassive black hole binaries

Supermassive black holes are characterized by the masses of millions to billions solar masses.
According to astronomical observation, we expect that almost every large galaxy has a su-
permassive black hole at its center. Several EM observations [132, 7], indicate that there is
a supermassive black hole (SMBH), named Sagittarius A*, at the center of the Milky Way.
Recently, the Event Horizon Telescope was able to capture the image of that black hole [11]
after the first image of the SMBH at the center of the M87 galaxy in 2019 [10].

The origin of SMBHs is still not well-known. Although, there are models on how they grow
in size, for instance by accretion of matter in active galactic nuclei, or by the merger with other
black holes [151, 96, 119]. The merger of two massive black holes could follow the collision
of galaxies in galaxy clusters. The transient GW signals emitted during the late inspiral and
merger phases of SMBH binaries have high SNR and can be observed in the LISA frequency
band, lasting from months to days down to hours (see figure 1.3). Few tens events per year
are expected [94]. In addition, GWs radiated by SMBH binaries with even higher masses, of
the order of 109 solar masses, can be detected by pulsar timing arrays [140].

Thanks to their high SNR, the luminosity distance and the localization of the events can
be extracted from the GW data with high accuracy, possibly identifying the galaxy where the
event has occurred. Then, we can estimate the redshift of the source if the EM radiation of
the galaxy is also detected. The redshift and the luminosity distance from multiple events are
the inputs to estimate the Hubble constant and other cosmological parameters. In addition,
the detailed motion of objects in a SMBH binary merger can be very interesting for testing
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the theory of gravity in the strong-field regime.

With the detection of GWs from SMBH binaries at high redshift, we expect to trace their
growth in the cosmic history, especially the formation and the merger history which helps to
elucidate the cosmic matter structure [16].

Figure 1.3: The LISA expected sensitivity with the signal of detectable GW sources in the unit
of dimensionless characteristic strain. The total sensitivity indicated in the dashed black line
includes the instrumental sensitivity noise curve, in green line, and the confusion foreground
from the unresolved galactic binaries, in the grey shape. This figure is taken from [16].

1.3.5 Extreme mass-ratio Inspirals

Another interesting sources emitting GWs in the LISA frequency band are extreme mass-ratio
inspiral (EMRIs). They correspond to a small object (typically a black-hole or a neutron
star) of a few to hundreds solar masses, orbiting around a massive black hole with a mass of
the order of, for example, a few millions solar masses. The orbit of the small object is very
complex and hard to compute. The event rate of EMRIs is highly uncertain, from few to few
thousands events per year [34]. These sources are very interesting, in particular to understand
the dynamics of dense nuclear clusters and to test General Relativity since the small object is
mapping spacetime around the massive black hole.
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1.3.6 Stochastic Gravitational Wave Backgrounds (SGWBs)

1.3.6.1 SGWBs of astrophysical origin

One of the sources of SGWBs is the superposition of GW signals which are weak and/or too
numerous to be resolved individually. Detailed discussions about the astrophysical origin and
the cosmological origin of SGWB can be found in [106]. We already mentioned one of the
possible SGWB detectable by space-based GW detectors coming from the large number of
unresolved compact galactic binaries, c.f. section 1.3.2.

In the LIGO/Virgo frequency band, the low SNR gravitational radiation from binary
systems consisting of small mass objects or SOBHs and/or neutron stars, from distant mergers,
will hardly be resolved individually. From the first LIGO/Virgo run, the estimated total rate
of mergers for the SOBH binaries is about 1 event per minute or few events per hour [1] and the
rate for the neutron star binary merger is predicted to be roughly one event per 15 seconds [5].
The duration of the SOBH merger signals is of a few seconds, which is much smaller than
the average duration between successive mergers. Hence, the GW signals from these events
are separated by periods of silence. On the other hand, the duration of neutron star merger
signals is about 100 s, so that these signals overlap in time. Therefore, in LIGO/Virgo detector
we expect to observe the SGWB from SOBH binary mergers as the popcorn noise, while the
SGWB from neutron star binary mergers is the continuous background [3].

The GW background from SOBH and neutron star binaries in their inspiral phase could
also be detected in the LISA frequency band. In this band we also expect to observe the
GW background generated by compact white-dwarf binaries in the Milky Way [92]. This is
one of the guaranteed GW signals for the LISA mission [16]. In fact, this confusion signal is
expected to be stronger than the instrumental noise, as illustrated in figure 1.3, so that we
call it galactic foreground and treat it as an additional noise source when extracting louder
sources in the LISA frequency band.

The inspiral and merger phases of SMBH binaries are generating the GWs at very low
frequencies, from 10−9 to 10−6 Hz [136]. We expect to detect these signals as an overall
stochastic background and maybe resolve some individual systems with high SNR, by pulsar
timing arrays in the near future.

1.3.6.2 SGWBs of cosmological origin

In addition to the astrophysical sources presented above, there are theoretical predictions of
SGWBs of cosmological origin in the early Universe. Since the GWs interact weakly to the
matter they pass through, information about the events occurring in very early Universe,
which are inaccessible through EM signals, could be imprinted in SGWBs. Therefore, SGWBs
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can offer the opportunity to look deeper in the Universe history to understand better how it
was evolving in its earliest ages.

One possible source of cosmological SGWB is Inflation, a phase of rapid expansion of the
Universe. The theory of Inflation has been proposed to solve the problems of horizon and
flatness of the hot Big Bang model (see chapter 12 of [133] for more detail). During that
period, the quantum fluctuations in the geometry of spacetime, expanded to the macroscopic
scales, could lead to a stationary SGWB [106]. This relic gravitational wave background
could influence to the B-mode polarization of the Cosmic Microwave Background (CMB)
radiation [135]. Besides the effort to search for this signal with CMB observatories, this
type of signal could be detected by GW detectors in different frequency regions since the
relic gravitational radiation predicted from the standard Inflation theory spreads over many
frequencies (see figure 2 in [52]).

Another possible sources of SGWB are first order phase transitions in the Early Universe.
The phase transitions in cosmology are the transition of regions of the Universe from a state to
another, which is more energetically favorable. In quantum field theory, the phase transitions
is performed, for example, by a scalar field ϕ(t), like the Higgs field, or a set of them. The
effective potential, deduced from the Lagrangian of this scalar field by ignoring the dynamical
terms, can have several local minima depending on the temperature of the Universe at that
moment. The global minimum of the effective potential corresponds to the vacuum expectation
value (VEV) of the scalar field. At the critical temperature Tc, other local minima become
degenerate with the global one. At T < Tc, the phase transition occurs: from the vacuum
state which is energically favorable at temperature T > Tc, to another one more favorable at
lower temperature T < Tc. We usually call the latter the “true” vacuum state and the former
the “false” vacuum state.

The phase transition manifests a spontaneous symmetry breaking, a feature of the gauge
theory. An example of spontaneous symmetry breaking is the Goldstone-Higgs mechanism,
which breaks the electroweak symmetry to provide the masses of gauge bosons and fermion
particles [58]. If a potential barrier separates the two minima, the scalar field at the false vac-
uum state can transit to the true vacuum state by quantum tunneling or thermal fluctuations.
This phase transition occurs out of the thermal equilibrium, and is classified it as a first-order
phase transition.

A first-order phase transition proceeds through the nucleation of bubbles in the thermal
plasma (cosmic fluid) at a temperature below the critical value. Inside the bubbles, the scalar
field is in the true vacuum state. The bubbles then expand due to the different pressure
between the interior and exterior of the bubble walls. Eventually, they collide with each other
if the speed of bubble expansion exceeds the expansion rate of the Universe and the whole
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Universe transits to the true ground state after the phase transition completes.

The spherically symmetric bubble expansion cannot generate gravitational waves (a spher-
ically symmetric mass distribution cannot emit GWs, as mentioned in section 1.3.1). However,
the collision of the bubbles and their interaction with the thermal plasma can produce GWs
via several processes [55, 52, 53]:

1. collisions of bubble walls and shocks (if any) in the plasma. The gradient energy of the
bubble collisions is partially released into the gravitational waves. The GW spectrum
from bubble collisions can be worked out, for example, with numerical simulations using
the envelope approximation [86].

2. sound waves in the bulk fluid (plasma). The percolation induces bulk motion in the
plasma, in the form of sound waves. The bulk flow is due to the coupling of the scalar
field to the plasma particles, considered as the friction. With sufficient large friction, the
bubble wall reaches a terminal velocity and the latent heat driving the bubble expansion
is also converted into kinetic energy of the bulk motion. When they collide, the sound
wave fronts create a non-zero anisotropic stress-energy tensor that generates GWs. The
GW contribution of this process to the global GW power spectrum can be worked out
with numerical simulations [83, 84].

3. magnetohydrodynamic turbulence in the plasma after the collisions of bubble walls.
Besides the sound waves, the bulk motion due to the percolation can be chaotic and
vortical if the Reynolds number of the plasma is extremely high (indeed, it is of the
order of 1013 at 100 GeV [51]. Therefore, we expect magnetohydrodynamic turbulence
in the plasma to occur. This can lead to another GW source during the phase transition.
Some studies of the GW contribution of magnetohydrodynamic turbulence, such as [51,
49], provide the expected GW spectrum for this process.

The expected spectral shape for these SGWBs is usually broken power laws with a maxi-
mum depending on the energy scale of the phase transition. For many models, this peak is in
the LISA frequency band, see figure 1.4. There can be several phase transitions in the early
Universe, such as the electroweak phase transition and the quantum chromodynamics phase
transition. The typical energy scale for the electroweak phase transition is of the order of
100 GeV [55, 52]. The quantum chromodynamics phase transition takes place at about 200
MeV [52]. Other Beyond Standard Model (BSM)-motivated phase transitions with an energy
scale of up to thousands TeV could also be detectable by LISA [16].

Another possible source of SGWBs is associated to a network of cosmic strings, which are
topological defects moving in the Universe [52]. This signal also has a broad frequency range
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and could be peaked at any specific frequency depending on the parameters of the cosmic
string network.

1.3.6.3 SWGB properties

The stochastic backgrounds of gravitational radiation have several properties that can be used
to infer the source generating them.

1. The first property for characterizing the SGWB is the angular distribution of the GW
power over the sky. For example, cosmological SGWBs, generated during phase transi-
tions or Inflation, are theoretically predicted to be statistically isotropic, similarly to the
CMB. We will present the arguments leading to this property when characterizing the
SGWB later on. The GW sources generating cosmological backgrounds are anisotropic,
following their spatial distribution in the early phases of the Universe, but the average
GW power for different realizations of the source is isotropic. On the other hand, some
astrophysical SGWBs are not isotropic, even statistically. For example, the confusion
background generated by galactic white-dwarf binaries, which is one of the important
sources of SGWBs for LISA, has a preferred direction on the sky. The GW power of this
background is concentrated in the direction of the Milky Way, with the main emission
coming from the Galactic bulge.

2. The stochastic backgrounds could also differ from one another in the temporal distri-
bution and the amplitude of the signals. For instance, the confusion background from
white-dwarf binaries ,which would be detected by LISA, has the modulated amplitude
with a 6-month period due to the cartwheeling motion of the whole constellation around
the Sun, so that the antenna pattern of LISA will point toward the center of our Galaxy
twice a year.

3. Finally, the spectral shape could be used to distinguish the SGWBs of different sources.
As illustrated in figure 1.4, the SGWBs from first order phase transition in the early
Universe have a particular shape linked to some fundamental properties of the Universe.

For the mathematical description of the SGWB, we remind that the individual signals
contributing to the background are either too weak, and/or too numerous, and/or with too
small correlation scale, so that we cannot characterize them individually. Hence, the combined
signals leading to the SGWB should be treated as a set of random variables. Then, one
describes the SGWB statistically, using the ensemble average over different realizations of
the background. Since we have only one observable Universe, we use the ergodic hypothesis
of cosmology: the different realizations of the background correspond either to the different
signals at different spatial locations averaged over a large enough region on the sky or to the
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Figure 1.4: Power spectra of SGWB in two different scenarios of first order phase transition
compared to the estimated sensitivity curve of LISA, for the red line in both subfigures. The
left-hand plot is for the Higgs portal scenario [55]. The green dash line represents the GW signal
from sound waves while the blue dotted curve is the GW signal from magnetohydrodynamics
turbulence. The right-hand plot shows the case of a phase transition connected to the radion
stabilization of Randall-Sundrum model [55]. Image from [52], see there for a more detailed
description.

Figure 1.5: Simulated time-series data for different GW stochastic signals from astrophysical
sources, comparing with the white noise signal. Image from [130]. The authors of [130] used
the overlapped GW signals for a sufficiently large number of individual events, either neutron
star binary mergers or SOBH ringdown for producing the SGWBs, as shown in the second
column. The distribution of the amplitude of the signal is Gaussian, as shown in the third
column. The power spectra computed from the combined time-series signals are different for
each type of source, and can be distinguished from the power spectrum of a white noise signal.
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different signals in the same sky location but observed for a long enough time. This hypothesis
requires two conditions: the almost homogeneous and isotropic Universe, and the causality of
the GW sources. The first condition is frequently used in cosmology from the observations in
the large scale Universe. The second one indicates that the typical size of the region of causal
contact at the time of action of GW source generating SGWBs was much smaller than the
causal horizon today5 [52].

Therefore, the SGWB of sources operating in the early Universe is generally considered
to be statistically homogeneous and isotropic, unpolarized and Gaussian. We can write the
combined signals from sources contributing to the SGWB in the TT frame in the following
form [129]

hab(t, x⃗) =

∫ ∞
−∞

df

∫
d2Ωk

∑
A=+,×

hA(f, k̂)e
A
ab(k̂)e

i2πf
(
t− k̂x⃗

c

)
, (1.39)

where hA(f, k̂) are the Fourier coefficients of the plane wave expansion, k̂ is the unit vector
along the direction of the propagation of the plane wave, A = +,× indicates the polarization,
eAab(k̂) are the polarization tensors defined from two orthogonal unit vectors (̂l, m̂) in the plane
orthogonal to k̂, as shown in figure 1.6.

With the assumption of statistically homogeneous and isotropic, and unpolarized back-
ground, the ensemble average of the second-order moments of the Fourier coefficients reads:

⟨hA(f, k̂)h∗A′(f ′, k̂′)⟩ =
1

4
P(f, k̂)δ(f − f ′)δAA′δ2(k̂, k̂′), (1.40)

where P(f, k̂) is the strain power spectral density per unit solid angle Ωk̂, so that the strain
power spectral density of the SGWB is given by

Sh(f) =

∫
d2Ωk̂P(f, k̂). (1.41)

With the further assumption that the background is Gaussian, all cubic or higher order mo-
ments are either identical to zero or presented in terms of the second-order moment. Then,
the quadratic expectation values of the Fourier coefficients is sufficient to fully characterize
statistically the SGWB.

For convenience, we typically express the strain power spectral density of a SGWB as [52]:

Sh(f) =
3H2

0

4π2
Ωgw

f3
, (1.42)

where H0 = 100 h km s−1Mpc−1 is the Hubble constant, and h encodes the experimental
uncertainty of the Hubble constant at the time of observation. Ωgw(f) is the normalized GW

5The second condition is not fulfilled during the inflationary period, when the Universe is predicted to
expand exponentially. However, the gravitational radiation produced in this period is still intrinsically stochas-
tic [52].
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Figure 1.6: Coordinates and unit vectors for the description of a GW source. Image from [129].

energy density spectrum defined as

Ωgw(f) =
1

ρc

dρgw

d log f
, (1.43)

where ρgw is the total energy density in GWs, ρc =
3H2

o
8πG is the critical energy density today.

The GW energy density spectrum depends on the type of GW source contributing to the
background, and in simple cases, it can be formulated as a power law. For example, the
energy density spectrum of the SGWB generated by the inspiral phase of binary systems is
Ωgw(f) ∝ f2/3, see section 3.4 in [129] for a detailed derivation. The strain power spectral
density for this type of SGWB from (1.42) is then Sh(f) ∝ f−7/3, as illustrated in figure 1.5.

We will discuss more possible shapes for the SGWB energy density spectrum, and hence
its strain power spectral density for the case of the LISA detector, in chapter 6.

Due to their stochastic nature, the SGWBs are similar to an effective source of noise in
the detector. This leads to an important challenge in the detection of stochastic backgrounds,
i.e. to distinguish the signal behaving as noise from the actual instrumental noise. Some
possibilities to extract the SGWB from the measurement data have been investigated such as

1. The first way is to have good enough characterization of the instrumental noise, including
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its amplitude and spectral shape, so that any excess noise in the data can be interpreted
as the SGWB. This is how Penzias and Wilson detected the CMB as an excess of noise
in their radio antenna, not related to any known noise source. However, it is extremely
challenging to know the noise amplitude and spectral shape precise enough, especially
since the SGWB can be weaker than the noise. Furthermore, in the case of LISA, we
generally do not know the spectral shape of all noise sources. However, it might be
possible to use the GW null channels, i.e. ome specific Time Delay Interferometry (TDI)
combinations [126, 112], to reduce the contribution of the signal and better characterize
the noise before extracting the GW signals from other channels. In the chapter 6, we will
demonstrate how the noise characterization can affect to the data analysis of SGWBs
with LISA simulated data.

2. Another possible way is to use the data from multiple detectors if they have uncorrelated
noises. In this case, one looks for to the common disturbances of due to the same SGWB
in multiple data streams. The signal in the data is modulated by the physical separation
and relative orientation of the different detectors. Effectively, the random output of
one detector is used as the template for the data analysis of the other one to search
for the common signal. This is the best option for the network of ground-based GW
detectors to search for SGWBs. Interestingly, the SNR of the signal extracted from the
cross-correlation is proportional to the square root of the number of data samples, or
of the observation time. In other words, even though the SGWB is weak compared to
the instrumental noise, one could still access it if the cross-correlation measurement is
performed for a long enough time.



Chapter 2

LISA introduction and instrumental
model for simulation

This chapter briefly introduces the space-based gravitational wave detector, Laser Interferom-
eter Space Antenna (LISA). In particular, we present the current configuration of LISA to
detect GW, as well as the noises that could influence the measurements during the mission.
Then, we discuss the LISA instrumental model, which helps understand the propagation of
noises and GW signal in the LISA instrument and the interferometric measurements. Finally,
we introduce a LISA simulator, LISANode, used to generate simulated data for most projects
in this thesis. In addition, we present some works that contribute to developing the LISANode

simulator in the noise implementation, such as correlation and non-stationarity, which are
interesting in the realistic LISA configuration.

2.1 LISA constellation and orbit

LISA will consist of 3 spacecraft forming an equilateral triangle with armlengths of about 2.5
million kilometers. The orbital set-up is optimized so that the rate of change of the distance
between spacecraft is less than ±8 m/s for the whole mission duration (about 4 to 10 years).
In addition, the opening angle of the constellation triangle varies around its mean value 60o

by less than ±1o with the maximum rate of 1.2 × 10−2 deg/day [72]. This constellation will
be trailing behind the Earth between 50 and 65 million kilometers in heliocentric orbit. The
constellation is rotating in a cartwheel motion with a one-year cyclic period (see figure 2.1).

In the current design, all spacecraft are launched by a single Ariane 6.4 launcher, and they
will be positioned to their final orbits after about 15 months. After that, the test-masses inside
each spacecraft are released into their free-falling state. The spacecraft will be in a drag-free
state with its position and attitude controlled using the measurements of the position and
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Figure 2.1: LISA constellation and its orbits, from [31]. The constellation trails the Earth
by about 19 − 23o, corresponding to about 50 − 65 million kilometers from the Earth. The
constellation plane tilts by about 60o w.r.t. the Earth’s ecliptic plane. Each spacecraft moves
around the Sun with different orbits, so the whole constellation is in a heliocentric orbit with
cartwheel rotation.

the attitude of test-masses, the wavefront sensor measurements for the incoming laser beam,
and the sun sensors. These test-masses are the reference points for measuring the spacecraft
distances, which is used to monitor the variation of spacetime due to GWs. The next section
discusses the measurement concept in detail for that purpose.

2.2 Concept of measurement

Each spacecraft of the LISA constellation contains two test-masses. They are the reference
points for monitoring the tidal deformation of the whole constellation due to gravitational
waves passing through. For that, we measure the light travel time between test-masses along
the same arm by measuring the optical phase variation in each spacecraft via laser interfer-
ometry. Inevitably, this measurement is limited by the noise in the optical measurements and
any disturbances on the test-masses themselves. Therefore, the spacecraft are used as shields
for the test-masses, which follow their geodesics, so-called free-falling motion. It is important
to notice that this free-falling motion of the test-masses is only left along the sensitive inter-
ferometry axes, which are parallel to constellation triangle sides and change over time. Then,
the spacecraft follows the test-masses in those sensitive axes, so call drag-free motion, by µN
thrusters. Meanwhile, the test-masses are kept in the center of their housing by applying
suitable forces and torques with a control loop system. This control system, called Drag-Free
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Attitude Control System (DFACS), is one of the key technologies for the LISA mission, and
it has been demonstrated fruitfully by LISA Pathfinder (LPF) mission [32]. We will discuss a
bit detail about DFACS in subsection 2.4.

In order to mitigate the jitter noise of the spacecraft motion w.r.t the test-masses, the
distance changes between test-masses are measured by split interferometry. In principle, the
total distance between the two test-masses on the arm spacecraft 2 - spacecraft 3 is split into
three parts:

• distance from test mass, often proof mass (TM) 2 to the optical bench in spacecraft 2,

• distance from the optical bench in spacecraft 2 to the one in spacecraft 3,

• and distance from the optical bench in spacecraft 3 to the TM 3.

These optical pathlength measurements use heterodyne laser interferometers to extract the
differences in frequency of the interference beams, called beatnote. Due to the significant
distance between spacecraft, the incoming beam in one spacecraft has low power when it
reaches the receiving spacecraft. Consequently, it cannot be reflected to perform the return
path. In the mission proposal [16], the OBs in the spacecraft will act like a transponder, which
is transmitting a new fresh high-power laser beam phase-locked to the incoming one with a
fixed offset frequency. Eventually, one laser in the whole constellation is used as the primary
laser, and the others are phase-locked to it with some offset frequencies. In order to ensure
the beatnotes within the readout frequency ranges of the photodiodes, the offset frequencies
are changed after a certain period following a predefined frequency planning [79].

By combining these measurements along six constellation links in the on-ground data
post-processing, we can suppress the spacecraft motion jitter noise. Further post-processing
algorithms such as TDI will be applied to remove the other dominating laser frequency noise.
A common time frame for all data will also be established in post-processing, called the clock
calibration process. Since TDI is one of the critical features for the LISA mission, and our
works in this thesis are highly based on it, we will describe it carefully in chapter 3.

2.3 Payload overview

This section gives a brief overview of the instrumental architecture of LISA. This design has
been studied and presented in European Space Agency (ESA) technical note [72] for the start
of Phase A of the mission, i.e. the preliminary design phase. We note that it is not the final
design but the preliminary baseline as the current best understanding of the LISA instrument.

http://lisapathfinder.esa.int
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Overall, all three spacecraft of the LISA constellation are identical. Each carries two
MOSAs and the other necessary support and interface structure. Each MOSA points to one
of the other two distant spacecraft. It is movable to track the variation of the vertex angles
of the constellation triangle, 60o ± 1o, due to the orbital motion as described in section 2.1.

Each MOSA is the assembly of a telescope, an Optical Bench (OB), a Gravitational Ref-
erence Sensor (GRS) and a support structure.

• The OB hosts all the necessary optical devices for the interferometric measurements.
The design of the OB is based on the experience gained in the LPF mission. We adapt
it for the LISA interferometric measurement system, presented in section 2.5.

• Due to the large distances between spacecraft, the transmitting beams among spacecraft
will diverge, and the power per unit area decreases proportionally to the square of travel
distance. We use a telescope to convert the small diameter beam (2.24 mm) on the
OB into the large diameter of the telescope (300 mm) for transmitting the beam to the
distance spacecraft and vice versa for also receiving the beam from that one. That will
help limit the transmit beam’s divergence and increase the reception area for catching
the received one.

• The GRS carries the TM within an electrode housing surrounded by mechanical and
electrical equipment. One of its functions is to monitor the position and attitude of the
TM, to provide the forces and torques for sufficient compensation of the translational
and angular motion of the TM in non-sensitive interferometric measurement axes. In
addition, the GRS can shield the TM from the stray forces to keep it in the free-falling
motion along the sensitive axis. These functions are critical for the DFACS, as described
in section 2.4.

• The supporting structure helps to maintain these above objects mounted in correct
alignment in the MOSA, in the order from inside the spacecraft to out the space: GRS,
OB and telescope.

2.4 Drag-free attitude control systems

One of the critical technologies for the LISA mission is maintaining the test-masses in free-
falling motion in their interferometric sensitive axes. In addition, we need to control the
positions and attitudes of the test-masses and the spacecraft to ensure the spacecraft follows
the test-mass in the sensitive axis and the test-mass is rigidly attached to the spacecraft
in other degrees of freedom. This problem is worked out by Drag-Free Attitude Control
System (DFACS), which was demonstrated partly in the LPF mission [32], [31].
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There are sensors around the test-masses within the electrode housing of the GRS to
monitor its position and attitudes. The DFACS uses the measurements from these sensors in
a closed-loop control system to command µN thrusters and steer the spacecraft in the test-
mass free-falling trajectory. On the other hand, this system also applies the necessary forces
and torques on the TM in non-sensitive interferometric axes to keep the TM at the center of
the housing of the GRS. These forces and torques are controlled by an onboard computer and
driven by electrostatic actuators. Thanks to its local measurements, the DFACS suppresses
spurious forces contributing to the armlength variations while preserving the gravitational
wave effect.

The key technologies associated with the DFACS and GRS have been successfully demon-
strated on the LPF mission [18, 20, 22, 25, 26, 27, 28, 31, 32]. In LPF, the DFACS has
multiple working modes:

• suspension/differential mode to control the electrostatic forces applied on the TM to
compensate for the differential acceleration between two TMs;

• common/drag-free mode to keep the spacecraft in drag-free motion with commanded
forces/torques applied via the micro-thrusters;

• attitude mode to support the controller of the spacecraft attitudes w.r.t. inertial Galilean
frame with the information of the star trackers.

These DFACS modes will be adapted for LISA. The main significant difference are the fol-
lowing.

• The suspension mode along the sensitive axis is not necessary in LISA since two TMs of
the long-arm measurement are in free-falling mode and their perspective spacecraft are
drag-free in this direction.

• The spacecraft attitude for the LPF mission is controlled by the information of the star
trackers; in the LISA we will use the differential wavefront sensing of the incoming laser
beams as the reference

• About the coupling of the TM to the spacecraft motion due to the force gradients at
their nominal positions, in LPF the TMs are coupled to the same spacecraft but in LISA
each TM is coupled to its own spacecraft.

The LPF demonstrated the LISA top-level test-mass acceleration noise requirements and
the other functional requirements of GRS. However, some aspects still need to be studied to
understand and ensure the performance of the DFACS, such as sensing and actuation noises,
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more realistic configuration of LISA (orbits, jittering MOSAs w.r.t. two more distant space-
craft) including the non-stationary effects such as tilt-to-lengths, glitches (spurious transients),
thermal instability and gas leaking (for Brownian motion), Etc. Therefore, it is essential to
study the performance of the DFACS and to simulate them. In this thesis, we investigate the
moving MOSAs impacts on the DFACS, as described in chapter 5.

2.5 Interferometry measurement system

2.5.1 LISA interferometric measurements

To monitor the changes in the distance among spacecraft due to the GWs, we use the exchanged
laser beams to measure distances between TMs by split interferometry, which is mentioned in
section 2.2. In addition, we need some interferometric measurements to reduce the dominating
noises in the post-processing steps. In the current LISA data architecture, there are three main
optical interferometric measurements and two other auxiliary ones in each MOSAs:

• The Inter-Spacecraft Interferometer (ISI) measurement is the interference between the
distance laser beam and the local one.

• The Test Mass Interferometer (TMI) measurement is the interference between the laser
beam in the adjacent MOSA and the local one in the same spacecraft (S/C). Before
interfering, the adjacent laser beam will be redirected to bounce off the TM in the local
MOSA.

• The Reference Interferometer (RFI) measurement is the same interference as the TMI,
but the adjacent laser beam does not bounce off the local TM.

• Two auxiliary measurements are the sideband ISI and sideband RFI. These data are
necessary for the clock noise reduction algorithm, but it is out of the scope of this thesis.

All those measurements will be performed in the OB of the MOSA. The construction
techniques for the optical bench with sufficient alignment accuracy and pathlength stability
requirements for the LISA mission have been demonstrated in LPF [32]. However, in the LISA
case, we have two identical OBs for each spacecraft, so we need to adapt the experience gained
from LPF to study the mechanisation of the series production in that OBs.

Each OB has a laser source at 1064 nm with excellent frequency stability. The laser is
distributed on the OB via several beam splitters and optical devices to provide the beams
for several interferometric measurements, as described above. Part of the laser beam of each
OB is exchanged to the adjacent one to do the TMI and RFI measurements. This exchange
is performed by the bi-directional backlink using an optical fibre. The OBs interacts with
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the telescope and the TM contained in the GRS via some optical interfaces. The design of
these interfaces is optimized to minimize the backscattered light from the transmitting beam
to the received one and to have high stability of the optical path length w.r.t the temperature
fluctuations [16].

All the interferometric measurements are performed in photodiodes, which are quadrant
devices with integrated pre-amplifiers implemented on OB. Then the generated heterodyne
beatnotes are read by the phasemeter. It is essential to extract the optical path length variation
between two interfering beams and the angle between their wavefronts since the latter will be
helpful for the alignment procedures and integration in the optical metrology system. These
angular measurements are performed using the differential wavefront sensing (DWS) technique.
By comparing the average phase over four areas of the Quadrant photodiode (QPD), we can
reconstruct the misalignment between the wavefronts of two incoming beams at the photodiode
since there is a phase shift between the signals recorded in the different areas [80]. The DWS
information will also be used as the input for the DFACS for controlling the TM and spacecraft
attitude, as well as the on-ground calibrations for reducing Tilt-To-Length (TTL) couplings
effect [120].

2.5.2 Frequency planning

The beatnotes of the different interferometers need to be within photodiode-phasemeter band-
width, which is approximate from 5 to 25 Mhz. However, these beatnotes vary due to the
Doppler shifts in the distant long-arm beam. To handle this problem and maintain the beat-
notes in the detection range, all the lasers of the constellation are phase-locked to one chosen
primary laser using control loops with a fixed offset frequency.

According to the current design, each spacecraft contains two laser sources and receives
beams from distant spacecraft. Therefore, each local laser can be locked by either the adjacent
laser beam using the RFI or the distant beam. This distant beam can be either the one arriving
on the same OB as the laser source to be locked (locking via ISI) or the one arriving on the
adjacent OB (locking via ISI and RFI). The last possibility is the so-called frequency-swap
laser locking scheme. We have several laser locking schemes depending on the chosen primary
laser and the topology of the locking strategy. The set of offset frequencies for locking all
locked lasers and their evolution over the mission duration is called the frequency plan.

The computation for the frequency plan is complex because we need to find 5 offsets for 5
locked lasers to control the values of different beatnote frequencies. These offsets depend on
the LISA orbit because the laser beams accumulate the Doppler shifts during the propagation.
Therefore, the frequency planning will update the set of offset frequencies after a certain period
(every few weeks) during the mission to ensure that all beatnotes are within the detection
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bandwidth. This problem is discussed in detail in [79]. We will apply one of the laser locking
schemes to the study of noise propagation in chapter 4.

2.5.3 Onboard processing

Phasemeter

All the beatnotes are processed by the phasemeter. They are converted from the analog signal
provided by the photodiode to the digital one, using an Analog-to-Digital Converter (ADC).
The core of the phasemeter, digital phase locked loop (DPLL), reads the phase and frequency
of the beatnote.

The principle of DPLL is to generate a digital replica of the input signal of which phase and
frequency can be accessible. It is sketched in figure 2.2. A numerically controlled oscillator
(NCO) inside DPLL generates a sine or cosine wave signal, which is then mixed with the
input signal in a multiplier. The combined signal goes through a low-pass filter to remove
the harmonic part of the signal frequency (2f). After that, the input signal mixer with the
sine wave is used as the error signal for the servo, a proportional-integral (PI) controller, to
extract the instantaneous signal frequency. This result is stored in PIR. Following that, the
PA integrates the instantaneous frequency to get the total phase as well as the fractional part
to feed the sine/cosine LUT for generating the replicated signal. When the loop is closed and
locked, the input and NCO sine signal have the same frequency and 90o shifted in their total
phases so that the error signal in the PI controller has a zero on average.

The main outputs of the DPLL are the frequency and the phase (total and fractional),
which are in digital form as the values stored in PIR and PA, respectively. On the other
hand, the error signal and the signal amplitude are also available from the DPLL. The signal
amplitude comes from the mixer of the input signal with cosine wave generated by NCO.

ADC jitter noise correction

As mentioned in previous part, the interferometric heterodyne beatnotes are digitized by
ADC. For the time reference, each spacecraft hosts a single ultra-stable oscillator (USO)
to trigger all ADCs. Any imperfection in the ADC triggering by the USO will corrupt the
following digitized signal and be inherited in other processing steps, including the digital blocks
that exist in DPLL. This distortion leads an additional noise, considered as the ADC jitter
noise [36], which violates the LISA requirement [103].

Unfortunately, it cannot be removed by any known on-ground post-processing algorithm.
Hence, we correct it onboard by generating a reference signal with the USO, called the pilot
tone, which is sampled together with the beatnotes by the ADC. The phase of this pilot
tone is tracked by a DPLL. Since the pilot tone has a stable constant frequency, its phase
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Figure 2.2: Schematic for DPLL, from [80]. The input analog signal from the ADC mixed to
the sine/cosine wave signal generated by NCO, providing the quadrature signal Q(t) and in-
phase signal I(t). In both, the harmonic part of 2f-frequency is suppressed by low-pass filters.
The quadrature signal Q is then used to feed the PI controller to extract the instantaneous
signal frequency, stored in PIR, which is converted to phase by the PA. The fractional of the
integrated phase is then used by LUT to generate the sine/cosine wave signal for the mixers.
The outputs of the DPLL are the quadrature Q(t), the in-phase signal I(t), the phase and
frequency of the input signal stored in PIR and PA, respectively. Q(t) is the error signal of
the control loop, while I(t) contains the input signal amplitude information.

evolution could be used as the reference to correct the distortion in the digitized signals in other
DPLLs due to the ADC jitter. As illustrated in figure 2.3, the input signal, e.g. beatnote, is
digitized by a jittering ADC at non-equidistant intervals even with the assumed perfect USO.
Consequently, the replica digital signal, output of ADC, has shifts in the phase record, which
could be misinterpreted as contributions from gravitational wave signals. A pilot tone, e.g.
well-known sinusoidal signal, is generated and digitized by ADC in parallel with the signal.
It is used as the reference signal to correct the time jitter in the phase record by comparing
the replica signal of the pilot tone with its well-known shape. Hence, we can reconstruct the
input signal in digital format.
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Figure 2.3: Schematic for the ADC jitter noise correction using pilot tone, taken from [37].

Clock jitter noise

On the other hand, the USO also has its own jitter, usually known as clock jitter noise. This
noise will degrade the data points triggered by the ADC since it uses USO as the time reference.
Furthermore, the USO in each spacecraft has a drift, making it difficult to synchronize all the
LISA measurements. In other words, the data recorded in each spacecraft could have different
time stamps with differential clock noise.

The solution for this problem is to use sidebands on the exchanging laser beam among
spacecraft, which are modulated with the amplified clock noise imprinted by the Electro-
Optical Modulator (EOM). Then, we can measure the differential phase noise between USOs
of all spacecraft and use it for correct clock noise. The detail of this technical solution is
described in [40, 76].

Ranging estimation

The dominant noise in the LISA measurement is laser frequency noise. The baseline algorithm
for suppressing this noise is Time Delay Interferometry (TDI). We will discuss more detail
about the laser frequency noise and TDI algorithm in chapter 3. Accordingly, TDI needs
additional information about the absolute distances between spacecraft. One way to get this
information is to imprint a unique pseudo-random noise (PRN) code in the beams exchanged
among spacecraft, see section 3.6.4 in [76] for a detailed description. Some algorithms can be
applied in post-processing to improve the distance estimation up to a few centimeters, such
as Time Delay Interferometry Ranging (TDIR) [144].
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Frequency distribution

For an overview picture of all processing discussed previously, we show in diagram 2.4 the
links of all the processing blocks with their associated signals and sampling frequencies in one
OB. This diagram is based on the original one from [76], and one can find a more detailed
description in [37]. The values of the frequency placed in some blocks might be changed as
the time the LISA mission evolves.

EOMLocal laser
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Adjacent EOM
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ISI

Distant 

spacecraft

Pilot Tone

DAC

PRN Timer

Anti-aliasing filters  Downsampling
Telemetry data
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RFIQPDsADCDPLLsDLLs

Phase/frequency of IFO
measurementsAbsolute rangings

Adjacent Laser Test-mass

Figure 2.4: Diagram of main onboard processing with frequency distribution in one OB. The
signal links represented in red, blue and black lines are associated with laser (optical), analog
(electrical) and digital signals, respectively.

Accordingly, the timing signal produced by a single USO assumed at 10 MHz is fed to a
Frequency Distribution System (FDS) to generate two electronic signals at 2.401 and 2.4 GHz.
These signals are used to drive the EOM of two OBs in the spacecraft. EOMs convert them
into the phase modulation of the local laser beam to generate sideband beatnotes.

The 2.4 GHz signal is also used as the time reference for other signal processing steps. In
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particular, the ADC will trigger data at 80 MHz, a divider of 30 from the 2.4 GHz timing signal.
This 80 MHz sampling frequency is applied for most onboard processing of the phasemeter,
i.e. DPLLs and delay-locked loop (DLL)s. In addition, it is used by a Digital-to-Analog
Converter (DAC) to convert PRN code from digital to analog signal and a timer to provide
the time stamps for all phasemeter measurements. On the other hand, a 75 MHz signal,
a divider of 32 from the 2.4 GHz timing signal, is used as a time reference to generate a
pilot tone. This pilot tone is combined with the beatnotes measured by QPDs before being
converted from analog signal to digital one by ADC.

The output of DPLLs could be the phase or frequency of the interferometric measurements
with the ADC jitter correction by using pilot tone, as discussed previously.

Since 80 MHz data is enormous to be delivered to the Earth, we need to downsample
them onboard before the telemetry. The onboard computer will apply an antialiasing filter to
the data before downsampling them to avoid the effect of aliasing when decimating data [40,
43]. Eventually, the data are sampled at 4 Hz and sent to the Earth for on-ground data
post-processing with a daily communication schedule [16].

2.6 Noises

Concerning the complexity of the LISA mission, we expect that many noise sources could
critically influence the GW detection. This section will review the dominating noises, their
(potential) shape and level. Most of the content of this section is referenced by [82] and [38].
We classify the considered noises into two big groups:

• The suppressed noises, which are the most dominant noise sources, should be reduced
by some post-processing algorithms. They are laser frequency, clock jitter, spacecraft
jitter, and tilt-to-length effect noises.

• The non-suppressed noises are secondary noises, so it is unnecessary to suppress them
in data post-processing. However, studying these noises is still crucial since they con-
tribute significantly to the LISA sensitivity after the dominating noises are suppressed.
In particular, there are test-mass acceleration noise, optical path-length noise, readout
noise, ranging noise, backlink noise, Etc.

2.6.1 Laser frequency noise

The first noise source is related to the instability of laser frequency. As described in 2.3, the
laser source in the spacecraft generates a 1064 nm wavelength laser beam, so its frequency
is about 282 THz. However, this frequency fluctuates by several MHz due to the quantized
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mechanism of the laser. The shape of this frequency fluctuation is complex, based on the study
for spacecraft-qualified laser source [141]. The laser is pre-stabilized using a stable cavity to
reduce the frequency fluctuations. According to the requirements of the LISA mission, the
laser frequency noise is considered as white noise with the absolute frequency stability in
amplitude spectral density (ASD) of [82]:

√
Sp = 30

Hz√
Hz

√
1 +

(
2× 10−3Hz

f

)4

, (2.1)

where the factor uOMS(f) =

√
1 +

(
2×10−3Hz

f

)4
is the common factor for noises in the optical

metrology system in order to allow a relaxation of the performance model at low frequency [82].
In LISANode simulator, which we will described in section 2.8, the laser frequency noise is
implemented according to this model, with approximated absolute frequency stability at 28.8
Hz√
Hz

[38].

2.6.2 Clock jitter noise

As discussed in section 2.5.3, the USOs are used to generate the time reference signal for all
onboard processing. The instability and drifts of the USOs in all the spacecraft affect the data
triggering by ADC, which contributes a noise in the LISA measurements. This noise is called
clock jitter noise, or clock noise for short.

In LISANode simulator, we model the clock noise as [38]:

q̇i(τ) = Ṅ q
i (τ) + y0,i + y1,iτ + y2,iτ

2, (2.2)

where

• qi is the clock timing jitter of the USO in spacecraft i.

• τ is the spacecraft proper time;

• N q
i (τ) is the random jitter noise for the USO in spacecraft i, generated as a flicker noise

with following PSD, in fractional frequency derivative unit,

SṄq
i
(f) =

(
6.32× 10−14

)2 1

Hz
f−1. (2.3)

• y0,i is a constant deterministic frequency offset for the USO in spacecraft i. The three
default values used in simulation for the 3 spacecraft are 5× 10−8, 6.25× 10−7,−3.75×
10−7.

• y1,i is a constant deterministic frequency linear drift for the USO in spacecraft i. The
three default values used in simulation for the 3 spacecraft are 8×10−16s−1, 1×10−14s−1,−6×
10−15s−1.
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• y2,i is a constant deterministic frequency quadratic drift for the USO in spacecraft i.
The three default values used in simulation for the 3 spacecraft are 3× 10−24s−2, 2.25×
10−23s−2,−3.75× 10−23s−2.

2.6.3 Spacecraft jitter noise

The spacecraft jitter noise is the residual motion of the spacecraft w.r.t inertial space in the
LISA frequency band. It appears in multiple measurements (ISI and TMI), and is largely
reduced by intermediary steps in the TDI algorithm (see chapter 3).

2.6.4 Tilt-to-length

The Tilt-To-Length (TTL) noise is related to the misalignment of the laser beam in OMS,
both in the ISI and in the TMI. In the ISI, this is about the tilt of the normal vector of the
wavefront of the incoming beam with the drag-free axis of the test-mass inside MOSA. While
in the case of TMI, it is due to the disagreement of the normal vector of the bouncing beam
from the adjacent MOSA and the drag-free axis of the test-mass [120]. The model for this
noise is complex and out of the scope of this thesis.

2.6.5 Test-mass acceleration noise

Due to several spurious forces/disturbances, the test-mass is not perfectly free-falling in its
sensitive axis as we proposed for the reference points for GW detection. We can list some of
them as follows:

• The local gravitational gradients due to the imbalance of the spacecraft and MOSA mass
distribution at the test-mass location could carry out a spurious force on the test-mass.
This imbalance of mass distribution has many contributors. One is the gravitational
fluctuation due to the thermal-elastic deformation of the spacecraft and test-mass, which
depends eventually on temperature and pressure fluctuations.

• The elastic force gradients or “stiffness” coupling the test-mass to the motion of the
surrounding objects such as GRS, OB, MOSA and spacecraft [82].

• The residual molecules in the vacuum chamber, containing the test-mass, create Brow-
nian noise to the test-mass. This noise is strongly dependent on the temperature and
pressure in the chamber, and its level decreases over time by the residual gas damping in
the spacecraft. This effect is the motivation for a study of non-stationary noise, which
is described in sections 2.8.2 and 4.2.4.
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• The cosmic rays could charge the test-masses. Hence, it is sensitive to the average
stray electrostatic field in electrode housing by, for example, the stray forces from GRS
actuators. This effect leads to electrostatic fluctuations of the test-mass. However, this
noise could be mitigated by a discharging system to neutral the test-mass charge [25].

• As we described in section 2.4, the actuators provides some forces and torques to con-
trol the position and attitude of the test-mass inside GRS w.r.t. the spacecraft in
non-sensitive axes. The imperfection or any noise in the actuators could lead to the
disturbance on the test-mass.

• Radiation pressure noise from the laser beam bouncing on the test-mass. The exchange
momentum of test-mass and the EM field of the laser can lead to the spurious force on
the test-mass.

The experimental shape for the test-mass acceleration noise of the LISA mission is still under
investigation. However, we could use the experience gained from the LPF about the test-mass
acceleration noise. From the LPF data, we construct the possible test-mass acceleration noise
in PSD as [82, 103]:

Sδ(f) =
(
2.4× 10−15

)2 m2

s4Hz

[
1 +

(
0.4× 10−3Hz

f

)][
1 +

(
f

8× 10−3Hz

)4
]
. (2.4)

We can neglect the last factor, which contributes mostly at the high frequency, to simplify the
implementation. Therefore, the test-mass acceleration noise that we adopt to implement in
LISANode is given by

Sδ(f) =
(
2.4× 10−15

)2 m2

s4Hz

[
1 +

(
0.4× 10−3Hz

f

)]
. (2.5)

2.6.6 Optical path-length noise

This noise category accounts for all contributions to the optical path-length variation in the
MOSAs, either inside the OB or in the telescope. Most of them are due to temperature
fluctuation. Hence, the optical path-length noise is sometimes called thermo-mechanical noise.
This noise occurs in many parts of MOSA such as point-ahead angle mechanism (PAAM)
piston, OB baseplate, interferometer waveplates, OB mirror, test-mass, GRS window, Etc. [82].

These noises are white noise with the relaxation factor, given in ASD as

√
SNop = A

√
1 +

(
2× 10−3Hz

f

)4

, (2.6)

where the noise level depends on the laser beam to which they contribute. For the telescope
optical path-length noise, we set:
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• in the incoming laser beams at the telescope received by the spacecraft: A = 10−15 m√
Hz

,

• in the outgoing laser beams at the telescope sent by the spacecraft: A = 2× 10−15 m√
Hz

,

• we also give an common mode noise in both incoming and outgoing laser beams to ac-
count for the fully-correlated noise in two beams: A = 1.5×10−15 m√

Hz
. Some correlation

scenarios of telescope optical path length noise are addressed in section 2.7.6 and used
for the study of noise propagation in chapter 4.

For the overall optical path-length noise in the OB, we set:

• for the local beams in the TMI, A = 4.24× 10−12 m√
Hz

,

• for the local beams in the RFI, A = 2× 10−12 m√
Hz

,

• for the other beams, A = 10−15 m√
Hz

,

These values are partially provided by LISA Performance Model [82], and some unknown ones
has been chosen insignificant (about femtometers) in the simulation to avoid the overall shape.
They will be updating based on LISA instrument design and testings in the next phase of the
LISA mission.

The TTL is also an optical path noise, and implemented in the current version of LISANode.
However, it is excluded in the simulation used in this thesis.

2.6.7 Readout noise

This terminology covers all noise terms related to the readout process in the OMS, including
readout noise (photoreceiver and phasemeter noises), optical noises (shot noise, stray light,
Relative Intensity Noise (RIN)...) and thermal noises.

The main expected contributors to the readout noise are listed below.

• The noise from the front-end electronics of the photoreceiver.

• The shot noise is due to the quantum statistical property of the weak power interference
beams. The number of photons received by the photodiodes is infinitesimally varying
with the Poisson distribution. This fluctuation is proportional to the reciprocal of the
square root of the number of photons, which eventually depends on the power of the
laser beams. Shot noise is one of the dominant noise sources in the overall readout noise
of the ISI since the power of the received beam is low, about hundreds of pW (300 pW
in the current performance model [82]).
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• The stray light from the scattering of laser beams in the optical bench or the telescope
could end up a phase noise in the interferometric measurements.

• The RIN corresponds to the instability of the laser beam power. This noise comes from
the laser cavity vibration, fluctuations in laser gain medium, Etc. RIN typically peaks
at the relaxation oscillation frequency of the laser, i.e. the heterodyne frequency, and
then falls off in the higher frequency band.

In LISANode simulator, we have implemented the overall readout noise in ASD as the white
noise, given by ASD [38] √

SNro = A

√
1 +

(
2× 10−3Hz

f

)4

, (2.7)

where noise level A depends on the interferometric measurements,

• inter-satellite interferometer: A = 6.35× 10−12 m√
Hz

,

• sideband inter-satellite interferometer: A = 1.25× 10−11 m√
Hz

,

• test-mass interferometer: A = 1.42× 10−12 m√
Hz

,

• reference interferometer: A = 3.32× 10−12 m√
Hz

,

• sideband reference interferometer: A = 7.9× 10−12 m√
Hz

,

and uOMS(f) =

√
1 +

(
2×10−3Hz

f

)4
is the relaxation factor for the noises in the optical metrol-

ogy system.

2.6.8 Backlink noise

As mentioned in 2.5.1, two OBs are connected by a bi-directional backlink to exchange the
local laser beams. In the current LISA instrumental baseline, an optical fibre is used so the
MOSA can freely rotate w.r.t. each other. However, the differential path of the two direction
links in the fibre could add up noises to the TMI and RFI measurements, which is known as
non-reciprocity of the backlink. It eventually carries out a residual path-length noise in the
measurements.

In LISANode simulator, we implemented the non-reciprocal backlink noise in ASD as follow:

√
SNbl = 3× 10−12

m√
Hz

√
1 +

(
2× 10−3Hz

f

)4

. (2.8)

Note that we used the same noise level for backlink noise for both RFI and TMI but in fact it
will be slightly different. Moreover, two backlink noises in optical measurements in different
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MOSAs in the spacecraft are certainly correlated. We will examine some correlation scenarios
for the backlink noise in chapter 4.

2.6.9 Ranging noise

The absolute distances among spacecraft are the input for the TDI algorithm, described in
chapter 3. We use PRN codes imprinted in the exchanged laser beam in the LISA constellation
for the ranging estimation, as mentioned in section 2.5.3. Consequently, the error in this
estimation contributes to the data processing as ranging noise. Currently, we use an ad-hoc
model for studying the ranging noise and for LISANode implementation. This model takes
account for a systematic bias NR,o, for example, by cable transmission delays, and for a
stochastic Gaussian white noise NR,ϵ, as follows

NR(t) = NR,o +NR,ϵ(t), (2.9)

where the bias could be a few nanoseconds (default value in LISANode is NR,o = 0 s), and the
amplitude spectral density of the stochastic ranging noise is√

SNR,ϵ = 3× 10−9
s√
Hz
. (2.10)

2.6.10 Noise unit conversion

As we can see, the noises are usually expressed in different units. In order to use them
(comparison, linear or quadratic sum for the noise budget, simulation, Etc.), we need to
convert them into the same unit. The relation between the PSD of the noise in acceleration
unit of m2.s−4.Hz−1, and the one in displacement (length unit) of m2.Hz−1 is

Sacc,m(f) = Sacc,m.s−2(f)×
(

1

2πf

)4

m2.Hz−1. (2.11)

The conversion for the PSD in displacement and in relative frequency units of Hz−1 is

S δν
ν
(f) = Sm(f)×

(
2πf

c

)2

Hz−1. (2.12)

2.7 Instrumental model

In this section, we will give a detailed model for the propagation of the laser beams in the
LISA constellation and the onboard processing in spacecraft.

2.7.1 Laser model

First, we start with the model for the electromagnetic (EM) field of the laser beam. In classical
principle, an EM is represented by two three-dimensional vectors for the electric and magnetic
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fields. For simplicity, we use the plane wave approximation to consider only the amplitude of
the EM field. Any effect of the imperfect wavefront of the EM vector field in the interferometer
will be considered by equivalent longitudinal path-length variations. Furthermore, since the
electric and the magnetic fields have a close correlation, i.e. one can determine the amplitude of
the magnetic field from the electric one (see for example [70]), we can use only the electric field
for modelling the laser beam. Hence, in our simplified model, the laser beam is represented
by an electric field given by

E(t) = E0(t) exp [jΦ(t)] = E0(t) exp [j (2πν0t+ ϕ(t))] , (2.13)

where the reference time is the spacecraft proper time. Φ(t) is the instantaneous total phase
of the laser beam, in radian unit, which includes the nominal phase 2πν0t = ω0t and the phase
deviation ϕ(t). We can deduce the instantaneous frequency from Φ(t) via the relation:

ν(t) =
1

2π

dΦ(t)

dt
= ν0 +

1

2π

dϕ(t)

dt
, (2.14)

where ν0 is the central or nominal laser frequency, a constant at 281.6 THz.

The information of the laser beam can be represented as its total phase or, equivalently, its
instantaneous frequency. In the LISANode simulator, we use the frequency to express the laser
beam since the phase is increasing quickly in time and hence more complicated to be imple-
mented. In addition, the evolution of the instantaneous frequency is driven by the frequency
planning and Doppler effects when exchanging beams between relative moving spacecraft.
Consequently, the instantaneous frequency has a large frequency offset of about MHz, by the
sideband modulation of about 2.4 GHz, and by interested GW signal imprinted in the frequency
shift of a few hundreds of nHz. Furthermore, the instrumental noises and their residuals after
post-processing algorithms also contribute to the total instantaneous frequency, in order of
hundreds nHz. In order to avoid the limitations of the numerical precision in the simulation,
we express the total instantaneous laser frequency variable in two time-dependent components
representation, the large frequency offsets νo(t) and the small frequency fluctuation νϵ(t), by
the following relation [38]:

ν(t) = ν0 + νo(t) + νϵ(t). (2.15)

Hence, the amplitude of an electric field reads

E(t) = E0(t) exp

j2π t∫
t0

ν(τ)dτ

 . (2.16)

In the case of stable laser frequency, it is convenient to use the timing jitter x(t) in second
or fractional frequency deviations y(t) to express the information contained in the laser beam,
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as defined by

x(t) =
ϕ(t)

2πν0
(2.17)

y(t) =
ν(t)− ν0

ν0
=

ϕ̇(t)

2πν0
= ẋ(t), (2.18)

so that

Φ(t) = 2πν0(t+ x(t)) (2.19)

ν(t) = ν0(1 + y(t)). (2.20)

2.7.2 Laser beam propagation

Let us consider a laser beam propagating from one spacecraft to another. Assuming the
propagation in the perfect pointing from spacecraft A to spacecraft B, the received beam at
spacecraft B as a phase (for details, see sections 3.4.3 of [40] and 5.5.1 of [76]):

ΦB(τB) = ΦA(τB − τAB(τB)), (2.21)

where τB is the proper time of the co-moving reference frame with spacecraft B, and τAB is
the light travel time between both spacecraft (proper pseudo-range). In fractional frequency
deviation, we can show [76] that

νB(τB) ≈ νA(τB − τAB(τB))(1− τ̇AB(τB)). (2.22)

Then since τ̇AB ≪ 1, we can simplify it to

νB(τB) ≈ νA(τB − τAB(τB)). (2.23)

For convenience, we will use the notation of delay operator acting on a time-series signal as

DABνB(τB) = νB (τB − τAB(τB)) . (2.24)

In the study of this thesis, we assume that the independent spacecraft proper times have
already been converted to the global one such as Barycentric Coordinate Time (TCB), as we
will discuss further in section 3.1. Hence, the standard notation t is used for the time reference.
The following subsections focus on how we construct the beams that participate in the IFO
measurement. Most of the materials in these parts are extracted from our to-be-published
article [127].
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2.7.3 Notation and convention

We follow the convention for the LISA constellation proposed by LISA Consortium [102]. The
indexing is summarized on figure 2.5. Spacecraft are indexed 1, 2, 3 clockwise when looking
down at their solar panels. Each of them hosts two MOSA which include the test-mass and its
housing, the optical bench and the telescope. A laser source is associated with each MOSA.
MOSAs on each spacecraft are indexed with two numbers ij:

• The first number i is the index of the S/C the MOSA is mounted on, i.e. the local S/C.

• The second number j is the index of the S/C the MOSA points to.

All subsystems of the MOSA, such as OB, the associated laser and the optical measurements,
are indexed according to this MOSA. There are 3 main IFO measurements in each MOSA:
ISI, TMI and RFI, which are respectively denoted as isi, tmi, rfi.1

SC 1SC 2

SC 3

TM 32 TM 31

TM 13

TM 12TM 21

TM 23
OB 12

OB 23 OB 13

OB 31
OB 32

OB 21

LA 31

LA 13

LA 12LA 21

LA 23

LA 32

MOSA 31

MOSA 13

MOSA 12MOSA 21

MOSA 23

MOSA 32

D 
32

  ⃗

D 12  ⃗

⃖ 
D 

23

D 13  ⃗

⃖ D 31

⃖ D 21

Figure 2.5: LISA constellation convention. The MOSA hosted on SC1 pointing at SC2 is
labeled MOSA12. Each element hosted on this MOSA and the associated laser source will
share the same indexes. For example the noise due to the laser associated to the MOSA12 will
be labeled p12.

1To feed the clock noise reduction algorithm, we also need the sideband measurements in the ISI and the
RFI [77].
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We define Lij(t) as the light travel time from S/C j to S/C i, in seconds. Here, the time
reference t is the time when the beam arrives at the spacecraft i. For the propagation of light,
we denote the propagation delay operator2 by Dij , so that Diju(t) = u(t − Lij(t)) for any
time-series u(t). We also use the TDI delay operator Dij , such that Diju(t) = x(t − L̂ij(t)),
where L̂ij(t) is the estimate of the light travel time Lij(t). For nested delay operators, we
use the short hand notation di1i2...in ≡ di1i2di2i3 . . . din−1in , where d could be D or D. In
general, those delay operators are not commutative since light travel times evolve with time.
If we use the commutator notation of [A,B] = AB − BA then [Dij ,Dmn]u(t) ̸= 0 when
(i, j) ̸= (m,n). But if delay times or armlengths are assumed to be constant, delay operators
become commutative. We will use this approximation to simplify the computation process
later on.

Another process we indicate using an operator is the action of the anti-aliasing filters, which
are used to prevent power folding in the band of interest during decimation. Its operator is
denoted as F , such as Fu(t) = (f ∗ u)(t), where the asterisk stands for the convolution of
time-series u(t) with the filter kernel f(t).

The GW signal measured in the ISIij , caused by the accumulated delay of the beam
received on S/C i from S/C j due to a GW, is labelled Hij .

The wavelength of laser associated to MOSAij is λij and its frequency is denoted as νij =
c/λij . We also define the frequency of the laser beam received by MOSAij from MOSAji as
νi←j . Due to the Doppler shift along the link Lji, νi←j ̸= νji. The laser frequency ν is the
sum of nominal frequency (carrier or sideband – THz), an offset frequency (Doppler and laser
locking – MHz) and small fluctuations (noises and GWs – nHz to Hz), following equation
(2.15) as discussed in section 2.7.1.

The interferometric signals in LISA are the heterodyne beatnote frequencies, i.e., the fre-
quency differences between the frequencies of associated beams (offsets and small fluctuations).
Their signs are (beatnote polarities) θisi and θrfi for isi and tmi / rfi signals, respectively.{

θisi
ij = sign(ωi←j − ωij),

θtmi
ij = θrfi

ij = sign(ωik − ωij),
(2.25)

where ω = 2πν, (i, j, k) matches every permutation of (1, 2, 3). In general, θisiij ̸= −θisi
ji but

θrfi
ij = −θrfi

ik .

For the noise notation using in the beams, The laser frequency noise is the dominant
noise source in LISA, and suppressed by TDI post-processing algorithm (see section 3.2.2).
Other noises that are not suppressed by TDI or other post-processing algorithms are classified

2Technically, since the measurements will be expressed in relative frequency fluctuation units, Dij is a
Doppler-delay operator Diju(t) = (1− L̇ij(t))u(t− Lij(t)) (see section 7.2 of [76]).
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unsuppressed noises. Unsuppressed noises are subdominant (for example with respect to laser
frequency noise or clock noise) but once these dominant noises have been suppressed, they
contribute to the LISA noise budget. It is therefore necessary to study their propagation
through TDI.

The measurements will be either in phase or frequency, or a mixture of both. The final
choice is not yet made. Since the noises we are interested are expressed as small fluctua-
tions (phase or frequency), we will assume that the measurements are in relative frequency
fluctuations. It is also the unit used for most of the GW analyses.

We will denote the LISA instrumental noises as follows:

• pij : laser frequency noise (free-running or locked, see 2.7.7) of the laser on MOSA ij;

• δij = δ⃗ij .n̂ji/c : projection of test-mass ij jitter noise vector δ⃗ij onto the sensitive axis.
n̂ji is the reference axis for the MOSA ij, i.e., from test-mass to OB (see figures 2.5
and 2.6). We assume that all measurements are in fractional frequency units. The test-
mass jitter noise is expressed in velocity (m/s), so we need the factor 1/c (see [40] for
the detailed derivation);

• ∆ij = ∆⃗ij .n̂ji/c: projection of MOSA ij jitter noise vector ∆⃗ij onto the sensitive axis
(longitudinal axis);

• Nop
α,ij : generic optical path (OP) noise term due to optical path fluctuations on OB ij.

α refers to:

– TX/isi: OP noise on the beam transmited to the distant S/C induced by the
sending S/C;

– RX/isi: OP noise on the beam received from the distant S/C induced by the
receiving S/C;

– tmi: OP noise on adjacent beam in the TMI measurement;

– rfi: OP noise on adjacent beam in the RFI measurement;

– loc/isi: OP noise on local beam in the ISI measurement;

– loc/tmi: OP noise on local beam in the TMI measurement;

– loc/rfi: OP noise on local beam in the RFI measurement.

• N ro
x,ij : readout noise for the x measurement of OB ij, x ∈ {isi, tmi, rfi};

• µxij→ik: backlink noise for measurement x, x ∈ {tmi, rfi}. This noise is dominated by
straylight in the optical fibre connecting two MOSAs of the same S/C (from OB ij to OB
ik, (i, j, k) is the every combination of (1, 2, 3)). In general, this noise is non-reciprocal,
i.e. µxik→ij ̸= µxij→ik.



50 Chapter 2. LISA introduction and instrumental model for simulation

OB12OB21
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Figure 2.6: Conventions for direction of beams and motions for MOSA 12 and MOSA 21.
Note that the unit vector along x-axis of local reference frame for MOSA 12 is n̂21, inverse
the two indices w.r.t MOSA convention.

2.7.4 Beam modeling

In order to model the interference measurement, we start by modeling the beams that interfere
in terms of combination of noises. The main six beams of the three interferometers in the
MOSA 12 are described as

bisi,21→12 = D12

[
p21 +Nop

TX/isi,21 −
1

c
n̂12.∆⃗21

]
+H12 −

1

c
n̂21.∆⃗12 +Nop

RX/isi,12 (2.26a)

btmi,13→12 = p13 + µtmi
13→12 +Nop

tmi,12 (2.26b)

brfi,13→12 = p13 + µrfi
13→12 +Nop

rfi,12 (2.26c)

bisi,12→12 = p12 +Nop
loc/isi,12 (2.26d)

btmi,12→12 = p12 +
2

c
n̂21.(∆⃗12 − δ⃗12) +Nop

loc/tmi,12 (2.26e)

brfi,12→12 = p12 +Nop
loc/rfi,12, (2.26f)

where

• bisi,21→12 is the beam from MOSA 21 received by MOSA 12,

• brfi,13→12 and btmi,13→12 are the beams propagating from MOSA 13 to MOSA 12 through
the backlink, which respectively contribute to RFI and TMI measurements.

• bx,12→12 are the local beams of the MOSA 12 with x ∈ {isi, tmi, rfi}.

In the current design, the local beam of the tmi, btmi,12→12, is bouncing on the test-mass.
The sign convention is such that if the test-mass moves towards the OB, i.e. δ⃗12 points in the
positive direction which is n̂21, the optical path on the beam btmi,12→12 decreases. If the OB
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moves away from the test-mass, i.e., ∆⃗12 points in the positive direction, the optical path on
the beam btmi,12→12 increases while it decreases on bisi,21→12.

The beams in MOSA 13 are constructed in the same way. One can easily write them from
the formulae of MOSA 12 by replacing index 2 by 3 everywhere. The beams in other the
MOSAs can be deduced by circular permutation of indices (1 → 2 → 3 → 1).

2.7.5 Interferometer measurement

Using those beams, we can construct the 3 main IFO measurements, for example in the MOSA
12, as follows 

isi12 = F
[
θisi
12 (bisi,21→12 − bisi,12→12) +N ro

isi,12

]
tmi12 = F

[
θrfi
12 (btmi,13→12 − btmi,12→12) +N ro

tmi,12

]
rfi12 = F

[
θrfi
12 (brfi,13→12 − brfi,12→12) +N ro

rfi,12

]
.

(2.27)

As indicated before, the measurements are expressed in relative frequency fluctuation units.
In phase units, these equations are similar, with additional conversion factors.

2.7.6 Correlations

Even though, the impact of correlations has been discussed in early TDI studies [139]. In most
studies, as for example [128, 100, 16, 103], the LISA Instrument noise performance are assessed
as uncorrelated single link contribution from optical measurement system and test-mass ac-
celeration. This assumption simplifies the calculation of noise propagation but may induce
non-negligible errors in the estimation of LISA performances. To quantitatively estimate the
deviation from the ideal case, we will consider some generic scenarios of correlation in this
study. Furthermore, we can split the noises into two parts, the correlated and uncorrelated
terms, and derive their transfer functions separately.

One obvious correlation scenario is related to the thermo-mechanical OP noises in the
telescope3. Since the same telescope is used for both sending and receiving beams, it will
imprint an identical noise at the ISI beam, located at both end of a link. The optical path
noise on the emitted beam NOP

TX/isi,ij and the received beam NOP
RX/isi,ij in the telescope of

MOSA ij are fully correlated:
NOP

TX/isi,ij = NOP
RX/isi,ij . (2.28)

Another correlation scenario is related to test-mass acceleration noise. The two test-masses
share the same S/C and thus will likely have correlated source of noises like temperature

3While the optical path noise enters in the ISI measurements in the same way as the MOSA jitter noise, it
is not canceled in the TDI algorithm, which is described later in chapter 3, because it does not appear in the
TMI measurement.
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driven noises (stiffness, symetric outgassing), cross-talk of S/C jitter, coupling with local and
interplanetary magnetic fields or local gravity field fluctuation. We express it by the following
correlation relation

δ⃗ij .n̂ji = γ δ⃗ik.n̂ki, (2.29)

where γ is the correlation factor and (i, j, k) can be any permutation of (1, 2, 3). γ is 1 in the
case of fully-correlated noise, or -1 in case of anti-correlation. We will derive the propagation
of the fully-correlated acceleration noise in section 4.2.4. In addition, we also give the result of
transfer function for other correlation scenarios such as anti-correlated acceleration noise, fully
correlated and anti-correlated adjacent (same S/C) interferometer noise, and fully-correlated
optical path noise at the same telescope.

2.7.7 Frequency planning - laser locking scheme

The inter-satellite separation distance varies in time due to orbital dynamics. As a conse-
quence, the laser beam coming from the distant S/C is frequency-shifted by about 10 MHz
according to the Doppler effect. The laser frequencies used for the interferometric measure-
ment are slightly offset. There is a time evolution of the beatnote between the two beams used
to measure phase shift via heterodyne interferometry.

The optical measurement system tracks the beatnote frequencies in the range of 5 to 25
MHz, which is not compatible with free running lasers and Doppler-shifted beams. To acco-
modate this constraint, we lock the lasers by controlling the frequency of a laser (therefore the
beatnote frequencies) such that they remain equal to a pre-programmed reference value [79].
We use the RFI measurement to phase-lock a laser with its adjacent laser in the same S/C
(local locking), and the ISI signal to lock the local laser to the distant laser (distant lock-
ing). In the end, 5 of 6 lasers will be locked on the primary laser. In this study, we assume
that laser frequency control works perfectly so the locking beatnote offset, laser frequency
offset plus the Doppler shift if it is distant locking, is exactly equal to the desired value. We
also do not consider the beatnote offset in the IFO measurement, as discussed in subsection
2.7.5. The constraint equation of the beatnote fluctuation is used without filter since the
laser locking control loop operates at high frequency before measurements are filtered and
downsampled [76].

In this study, the configuration N4-32 (cfg_N2c in [79]) has been used4. A schematic of this
phase-locking is shown on figure 2.7. The constraints on the beatnote fluctuations (without
anti-aliasing filter, denoted by ��@@F , since the locking is done by a closed-loop before the IFO

4We used N4-32 because it was the preferred configuration when this study started. Currently the pre-
ferred configuration is N1-12 but this does not change the final results which are independent of the locking
configuration.
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measurements are read by phasemeter and then processed in the anti-aliasing filter) are

isi�ZF21 = 0, (2.30a)

rfi�ZF31 = 0, (2.30b)

isi�ZF13 = 0, (2.30c)

rfi�ZF12 = 0, (2.30d)

isi�ZF23 = 0, (2.30e)

which yields the following formulation for the 5 locked laser frequency fluctuations:

p23 = θisi
23N

ro
isi,23 + bisi,32→23 −Nop

loc/isi,23, (2.31a)

p31 = θrfi
31N

ro
rfi,31 + brfi,32→31 −Nop

loc/rfi,31, (2.31b)

p13 = θisi
13N

ro
isi,13 + bisi,31→13 −Nop

loc/isi,13, (2.31c)

p12 = θrfi
12N

ro
rfi,12 + brfi,13→12 −Nop

loc/rfi,12, (2.31d)

p21 = θisi
21N

ro
isi,21 + bisi,12→21 −Nop

loc/isi,23. (2.31e)

2.8 LISANode simulator

Since LISA is planned to be launched in the next decades, to study the feasibility of its in-
strument and the performance of the related data analysis methods, some simulators have
been developed to generate data as realistic as possible. We can list some of them such as
SyntheticLISA by M.Vallisneri et al. [148], LISASimulator by N.Cornish et al. [131], LISACode
by A.Petiteau et al. [125], LISANode by J-B.Bayle et al. [45], LISA Instrument by J-B.Bayle,
M.Staab et al. [42], Etc. Currently, the LISA simulation is mostly using LISANode. This
software, written in Python and C++, generates time-series data of interferometric measure-
ment data (L0 data). It has been used with collaborative development tools such as GitLab,
Wikis, and Continuous Integration. Therefore, it is user-friendly for adjusting the configura-
tion, adapting new features, and testing some units of the full implementation. In this section,
we will briefly introduce LISANode, its architecture and the implementation philosophy. Then,
we present some new features we contributed to the LISANode simulator during this PhD.

2.8.1 Software Architecture

According to the initial functional requirements of the LISA simulation, a simulator should:

• have optional arguments at the beginning of the simulation, such as time duration, switch
on or off for each noise component, noise level, Etc.;
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Figure 2.7: Frequency planning configuration N4-32 (cfg_N2c in [79]). The primary laser is
32 with frequency fluctuations p32. The other lasers are locked via RFI measurements (31 and
12) or via ISI measurements (13, 21 and 23).

• be able to set up a complete configuration for the whole mission simulation duration,
including the different sampling frequencies for each subsystem which is described in 2.5;

• be able to implement complex artifacts such as non-linearity, non-stationary, Etc.;

• be able to take the input data from files for such as the pre-calculated orbit, glitches,
gravitational waves, Etc. and also to give outputs in open format files, such as binary
or text;

• be open-source software which can be run with different operating systems.

In order to fulfill these requirements, LISANode has been generating LISA raw data in
the time domain, with the time-series output for different pre-defined sampling rates. The
data stream, or signal, goes through the simulation via smaller blocks called nodes, which
support generating or transforming the signal. Each node has some parameters, inputs and
outputs. These nodes then could be connected by propagating the outputs (whole or partial)
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of one node to one or many of the inputs of the others. Therefore, each simulation could be
represented as a graph and visualized by LISANode itself.

A node is built based on a physical process to generate the outputs from the inputs, with
some defined parameters. The model for the physical process could be simple like mathematical
operations or more complex like random number generator, filters, node to delay time-series
data, Etc. They are called atomic nodes, which are implemented in C++ within subclass
Node.

By connecting some atomic nodes, we can build a complicated graph for a subsystem in
LISA, such as a telescope or optical bench or for functionality like a noise generator with a
specific shape. As the same as the subclass Node, the subclass Graph has its own parameters,
inputs and outputs. In addition, a graph could be connected to nodes and other graphs
to make more complex ones. This nested architecture is robust to adapt the instrumental
development of LISA mission and create different abstraction levels of the simulation system.
In particular, we can start with a simple physical model as a graph/node for implementing a
system and then split it into smaller nodes/sub-graphs to adapt to a more advanced model.
The node and graph connections are programmed in Python.

Each node/sub-graph in a simulation graph has a different name, even though some of
them could be built for the same atomic node or sub-graph. Hence, the inputs and outputs of
the node/sub-graph will be well-defined and extracted.

When LISANode runs for a simulation graph, first, it unwraps the graph into compound
nodes, which are only atomic ones. Then, it checks the graph consistency, schedules the
execution of each atomic block, and compiles it into an executable in C++. Finally, we run
the executable to produce the output data with the optional argument via command lines.

The top-level graph simulation of LISANode is LISA , which gives the outputs of in-
terferometric measurements (beatnotes) and other auxiliary measurements such as Measured
Pseudo-Range (MPR), DWS angles, and timer deviations. LISA is constructed by connect-
ing 3 sub-graphs Spacecraft , in each of which we simulate the onboard physical processes.
The positions of all spacecraft are either read from a prepared file, generated by the outsources
for a realistic model, or generated by LISANode itself for a simple model of orbits such as the
ones with polynomials armlength variation. All the beams are exchanged among spacecraft
by LaserLinks graph. This graph delays the sent laser beams by the light travel time along
the associated link to simulate the laser propagation in space. It connects the delayed laser
beams to the spacecraft as the receiving signals.

Each Spacecraft graph is constructed by several smaller sub-graphs, including two

OpticalBench , two Telescope , one OnboardT imer , one Phasemeter , one ADC , one

OnboardComputer , and other auxiliary sub-graphs.
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The OpticalBench graph is the central block for simulating the beatnote measurements,
and generating the instrumental noises like test-mass acceleration noise, backlink noise, optical
path-length noises in OB, DWS and readout noise. The laser beam generated within this
OB simulated graph could be locked according to the laser locking scheme defined in the
configuration. The telescope optical path-length noise is added to the incoming and outgoing
beams of the OB in the Telescope sub-graph.

The OnboardT imer graph gives the information of the onboard clock times, including
clock noise. On the other hand, the laser beam phases and the beatnote measurements are
time-stamped at the spacecraft proper time, which is different from the onboard clock time
by time-stamping error implemented as a white noise. All of these times can be expressed as
the functions of the Barycentric Coordinate Time (TCB), which is the reference frame of the
simulator.

An auxiliary graph PseudoRangingMeasurement will use the output of onboard clock
times and the time deviations from the associated spacecraft proper time to measure the
distances among spacecraft. This graph adds a generic measurement error as the ranging
noise.

In the Phasemeter , we simulate the readout process by the phasemeter with the time
stamps from the USO. In the current simulation model, we rescale the beatnote frequency
offset by the accumulated clock offsets and add the clock jitter noise to the beatnote frequency
fluctuation. Then, the ADC graph re-samples the Phasemeter outputs from the spacecraft
proper time to the onboard clock time since the ADC is sampling the data at the time triggered
by the USO, or onboard timer.

Finally, the signals are propagated through an anti-aliasing filter and then decimated in
the OnboardComputer graph. The implemented anti-aliasing filter is a Kaiser filter [46],
and its coefficients are computed at the beginning of the simulation. The effects of this filter
on the data processing have been studied in [43, 40]. According to the frequency distribution
system illustrated in figure 2.4, the analog signals are sampled by the phasemeter at the high
frequency of 80 Mhz. Then, they are downsampled at 4 Hz before sending to the Earth. In
the simulator, we use the sampling rate of the signals in the physical and most of the onboard
processing at the DFACS sampling rate, which is 16 Hz, to optimize the memory of data
productions. After the decimation, the data is downsampled to 4 Hz as the requirement.

The detailed description for LISANode architecture and its instrumental model could be
found in [40, 38]. The instrumental model and the implementation in LISANode presented in
this thesis could be different in the near future since this simulator is a living project.

In the next subsections, we will demonstrate how the LISANode works, by examining some
specific implementations.
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2.8.2 Correlated noise

In this part, we first introduce the implementation of the backlink noises in the LISANode and
then describe how they can be correlated according to different scenarios.

All of the noises implemented in LISANode are generated by a pseudo-random generator
based on Mersenne Twister algorithm [108]. It can generate a very long period sequence
of random numbers concerning the method rand() in the C++ standard library. Like any
pseudo-random generator, it needs a seed as a random number to be initiated. In general,
we can take a random number of the device when we start the simulation, such as the local
time in the computer. In LISANode, we can indicate the seed number of the noise generator.
If two seeds of generators for two separated noise blocks are identical, these noises will be
fully-correlated.

The pseudo-random number generator provides a noise realization in time series as a
stationary Gaussian signal for a given amplitude spectral density

√
Sn(f) and the sampling

frequency fs. Each data point of the series is drawn from a normal independent and identical
distribution.

n(t) = N(0, σ), (2.32)

where the standard deviation is computed from the amplitude spectral density. For example
in the case of white noise, the power spectral density is frequency independent Sn(f) = Sn,

then σ =
√
Sn

√
fs
2 .

For different noise shapes, we can start to generate the white noise time-series signal and
then propagate it through one or some filters to have the colored noise. This approach is the
principle for implementing backlink noise, which is modelled as equation (2.8). As illustrated
in figure 2.8, the time-series backlink noise is generated by two independent noise chains, one
is based on the first term of the ASD in equation (2.8), proportional to f , and the other is for
the second term in equation (2.8), proportional to 1/f .

The first chain starts with WhiteNoise node to generate the white noise signal. Then, the
signal is propagated through CenteredDerivative , which is a filter to generate a time-series
signal with f -proportional ASD (for unit conversion from displacement to relative frequency
fluctuations, see section 2.6.10).

Similarly, the second noise generation chain generates a white noise signal then the signal
is filtered by Integrator node to convert into 1/f -proportional noise. After that, the output
is connected to a Gain node to account for the relaxation frequency factor 2 mHz.

After that, two signals of these noise production chains are summed up in Addition node
and go through a Gain node to multiply with the overall noise level. Finally, we have another
Gain node to indicate which type of correlation to simulate. For example, if the same seed
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parameter feeds two backlink noise generators, they are fully correlated as the default. If we
set up the input parameters in correlation Gain nodes as 1 and −1 for each noise generator,
respectively, the two noises are anti-correlated.

BacklinkNoise

noise_f
WhiteNoise

derivator
CenteredDerivative

input

result

noise_1_over_f
WhiteNoise

integrator
Integrator

input

result

addition
Addition

a

result

gain_1_over_f
Gain

input

result

b

result

gain
Gain

input

result

correlation
Gain

input

result

result

result

Figure 2.8: Visualization of backlink noise graph by LISANode.

We will use this implementation method to study the propagation of correlated noises, pre-
sented in chapter 4. In particular, we generate the LISA data with some correlation scenarios
of some specific noises, such as test-mass acceleration noise, optical path noise in the telescope,
and backlink noise. Then, we validate our analytical formulation for the noise propagation in
LISA data processing with the simulation.
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2.8.3 Non-stationary noise

In the final part of this chapter, we consider non-stationary effect in the test-mass acceleration
noise. Its associated implementation will be given shortly based on that study.

As mentioned in section 2.6.5, we recognized the decreasing of Brownian noise level due
to the gas depletion in the vacuum chamber of the GRS as well as the whole spacecraft. The
Brownian motion depends on the pressure, which is eventually proportional to the number of
molecules in the chamber. In figure 2.9, the average ASD of the differential test-mass accel-
eration, ∆g, measured during LPF mission decreases over time. This differential acceleration
corresponds to the acceleration noise of one test-mass divided by

√
2. Since the test-mass

acceleration noise is dominant at low frequency, we will use the result of the average ASD of
∆g in the frequency band of 3− 8 mHz for setting the parameters of the non-stationary noise
model.

We model the above non-stationary behavior of the test-mass acceleration noise by evolving
the noise level of the amplitude spectral density of test-mass acceleration noise in equation (2.5)
as a function in time. In particular, we express the gain of the time-varying noise level Aδ(t)

w.r.t. Astationary
δ = 2.4× 10−15

m
s2
√

Hz
by

Gain(t) = A0e
−αt, (2.33)

where A0 =
Aδ(t=0)

Astationary
δ

and α are the coefficients to account for the decreasing Brownian noise.
They are both computed from the average amplitude spectral density trend of the test-mass
acceleration noise measured in LPF mission, shown in figure 2.9, in the frequency band of 3−8

mHz. The calculated values are A0 = 0.9999999966666666 and α = 7.995087128451548 ×
10−7.5

To implement this effect in LISANode, we assume that the noise produced by the pseudo-
random generator is still valid for time-varying variance. The normal distribution in the
generator is no longer identical since the variance is computed from varying amplitude spectral
density:

σ(t) =
√
Sδ(t)

√
fs
2
, (2.34)

where
√
Sδ(t) = Gain(t)×Astationary

δ is the amplitude spectral density of the test-mass accel-
eration noise at the time t, fs is the sampling frequency of the generated noise data.

We start with the implementation of stationary test-mass acceleration noise, illustrated
in figure 2.10. In the LISANode, the test-mass acceleration noise formulated in equation (2.5)
has two components, after unit conversion (see section 2.6.10): one proportional to f and

5Practically, there is no significant difference by using the approximate values A0 = 1, α = 8 × 10−7. We
introduce the the high precision number here to be consistent with the values we set in the simulator.
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Figure 2.9: Result of differential test-mass acceleration measured by LISA Pathfinder (LPF),
taken from [32]. Figure (a) shows the square root of the average amplitude spectral density of
∆g in the 3 − 8 mHz and 0.1 − 0.4 mHz frequency bands evolving in mission duration. The
average spectral density is calculated in a specific frequency band by S̄ = 1

f2−f1

∫ f2
f1
S∆g(f)df .

Figure (b) gives the quasistatic value of ∆g as a function of time. We will use the result of the
average spectral density of ∆g in the frequency band of 3 − 8 mHz to deduce the parameter
for non-stationary test-mass acceleration noise implemented by LISANode.

http://lisapathfinder.esa.int
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the second to f2. Hence, two associated noise production chains are built for these two
components. Both chains start with a noise generator in WhiteNoise node. Each generated
signal goes through delicate filters to have either f - or f2-proportional shape. Then, we sum up
both components and multiply the resultant with a correlation gain similarly to the backlink
noise implementation described in section 2.8.2.
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Figure 2.10: Visualization of test-mass acceleration noise graph by LISANode in the stationary
scenario.

For the non-stationary scenario, the amplitude spectral density decreases over time, as dis-
cussed at the beginning of this subsection. We still have two separate noise production chains,
but now the noises generated by NonStationaryWhiteNoise node to have the time-varying
variance, as illustrated in figure 2.11. The initial noise level gain and exponential coefficient
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are fed to the Expression node to construct the varying gain modelled in equation (2.33).

Then it is connected to each NonStationaryWhiteNoise to generate non-stationary noises.
After the node Expression , the graph is the same as the one of the stationary case, except
for the correlation gain before providing the final result noise signal.

Figure 2.11: Visualization of test-mass acceleration noise graph by LISANode in the non-
stationary scenario. This graph is produced by a specific branch of LISANode in an old version,
so that there are some nodes/classes removed.

For verifying our implementation, we simulate the TestMassAccelerationNoise graph
for 30 × 104 seconds and split the output into 30 data segments. We compute the spectral
density of each data segment and take the average in the frequency band of 3 − 8 mHz.
After that, we compare it to the analytic curve of time-varying amplitude spectral density
of the test-mass acceleration noise,

√
Sδ = Gain(t) × Astationary

δ , with the gain expressed in
equation (2.33). The result shown in figure 2.12 indicates a good matching. In the future, we
want to test the data analysis methods to extract the GW information with the impact from
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such as this non-stationary effect.

Figure 2.12: Result of non-stationary test-mass acceleration noise implementation in LISANode.
The data are generated for 3e5 seconds and split into 30 smaller chunks. Then, we compute
the average spectral density within the frequency band of 3−8 mHz for each chunk i. The red
cross points in the plot are the average spectra for each data chunk. We compare those with
the analytic non-stationary test-mass acceleration noise model, indicated in the blue curve.
This analytic model is constructed by equation (2.5) and equation (2.33).



Chapter 3

Time-Delay Interferometry

This chapter reviews the pipeline used in LISA data processing of the raw data (L0) to L1 data
in the pipeline. The pipeline includes some data processing algorithms to reduce the domi-
nant noises in the L0 data. In particular, we focus on the Time Delay Interferometry (TDI)
algorithm used to suppress the laser frequency noise, which is presented in the second section
of this chapter. In the final section, we examine the performance of TDI on experimental data
generated by LISA-On-Table electronic simulator.

3.1 Initial noise reduction pipeline

The LISA raw measurements cannot be used to extract the GW information since the data are
contaminated by many noise sources, as described in section 2.6. One of the dominant noises
is the laser frequency noise, which is several orders of magnitude higher than the detection
level of GW in the LISA frequency bandwidth. Therefore, this requires some dedicated post-
processing algorithms to mitigate the noise in the data, such as the TDI algorithm to suppress
the laser frequency noise and, additionally, the spacecraft jitter noise. We will introduce TDI
in the next section. Moreover, the data are sampled in all spacecraft on their own reference
times, called the spacecraft proper time. Hence, we need to transform the data to the global
reference frame, such as the Barycentric Coordinate Time (TCB), to accurately reduce the
noises, extract the source parameters and allow for the multi-messenger observation. This
process sometimes is called clock synchronization.

All these processing steps are packed in the pipeline, named Initial Noise-Reduction Pipeline
(INREP). This pipeline transforms the raw data, measured and telemetered by the LISA
spacecraft, to the data which we can directly analyze for searching GW signals. The first data
set is called level 0 (L0) data, and the latter is level 1 (L1) data. The full INREP is still under
development, so some post-processing blocks, as described in this thesis, could be changed

64
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or even reformulated in future. Some possible pipelines for INREP are illustrated in figure
3.1 [78]. In the following, we give one of the possible INREP pipelines, which has been studied
recently. This pipeline suppresses two important noise sources such as laser frequency noise
and clock noise [77, 43]. It has been tested and validated on simulated data from LISANode

and/or LISA Instrument. In addition, the pipeline is expected to reduce the longitudinal
spacecraft jitter noise and TTL effects, as well as synchronize the data in TCB.

According to the instrumental model introduced in section 2.7, the raw data measured
in LISA spacecraft will be given in either total phase or total frequency. However, the data
would be expressed in some formats that are optimized to telemeter to Earth. Hence they
need to be converted to physical units before any further processing step. The format for the
raw telemetry data is still not yet decided, so we assume that this conversion has been done
before the data go through the INREP. Accordingly, we get the data in a physical unit, and
assume the data expressed in the total frequency as we simulate in LISANode. In addition,
we postulate the values of all variables are given as double precision floating point type. The
impacts of the physical units and the precision numerical programming type have been studied
recently [41] and need further investigation.

The first block of our considered INREP is the ranging noise reduction since the TDI
algorithm needs as input the spacecraft distances. The Measured Pseudo-Range (MPR) men-
tioned in section 2.5 will be used. To reduce the ranging measurement noise, the technique
called Time Delay Interferometry Ranging (TDIR) would be applied [144]. Moreover, the
pseudo-ranging measurements could suffer from a constant systematic bias, as modelled in
section 2.6.9. We expect to identify and suppress this bias by estimating the optimal delays
using the TDI algorithm itself with TDIR technique [144].

Then, we can combine the ISI measurements with the RFI and TMI measurements to
establish the measurement of the virtual link between two test-masses along with the laser
link connecting two spacecraft. This is the split interferometry we introduced in section 2.2.
The advantage of this method is to remove the spacecraft jitter motion w.r.t. the inside test-
mass. The number of free-running lasers of the LISA constellation is reduced by half using the
RFI measurements (see section 3.2.2. These steps are carried out as the intermediary steps in
the TDI algorithm.

The next step is to suppress the dominant laser frequency noise, which is the core step
in the TDI algorithm. We combine the raw measurements in a specific way to construct
virtual equal photon path interferometer measurements, so the laser frequency fluctuations are
suppressed to be below the requirements. There are several possible TDI combinations with
different levels to adapt better to some LISA configurations, for example, second generation
of Michelson combination for the breathing armlengths given by realistic orbits, presented in
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the section 3.2.2.

Then, the clock noise and the TTL effects are reduced by some algorithms. The clock noise
reduction algorithm has been studied and applied successfully to the simulated data [77], while
the TTL subtraction strategy is still under investigation [120]. These algorithms are probably
carried out after the TDI block, but the order of chain is unclear when this thesis is writing.
The main challenge of TTL subtraction in post-processing is to define the coupling coefficients
of the beam tilt into the phase readout, which is imprinted in the raw measurement data.
That would be complicated since the impact of TTL coupling is tiny compared to the laser
frequency noise in the raw onboard measurement data. As a consequence, the calibration to
determine the TTL coupling has to work with the TDI variables, which is in the complex
combination of delayed raw measurements.

Finally, we convert the reference frame of the outputs from the three independent spacecraft
proper time reference to the global one like the TCB. There are several ongoing studies
on this conversion. In some current studies, this kind of calibration could be worked out
by combining the onboard measurements with the on-ground observation in a Kalman-like
optimal filter [152].

Figure 3.1: Schematic of possible INREP pipelines. Credits: Jean-Baptiste Bayle and Olaf
Hartwig.

3.2 Time-Delay Interferometry

3.2.1 Principle of Time Delay Interferometry (TDI)

As described in section 2.5, the laser beams are exchanged among spacecraft to interfere
with the local laser. The ISI measurement imprinted the effect of GWs is, in fact, a one-
way IFO measurement, which is the interference between a local laser beam and a distant
one. We can assume each one-way IFO measurement as a Michelson interferometer with
different armlengths, as illustrated in figure 3.2. The heterodyne beatnote of the Michelson
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interferometer is given by, considering only laser frequency fluctuation of the sources p(t),

y(t) = p

(
t− L1

c

)
− p

(
t− L2

c

)
≈ ∆Lp

(
t− L1

c

)
, (3.1)

where in the second step, we use the Taylor expansion for ∆L = (L1 − L2)/c, assuming that
it is small, so the highest frequency of the signal we want to measure is fmax ≪ 1/∆L. It is
obvious that unless the two armlengths in the Michelson interferometer are equal, the laser
frequency fluctuation does not cancel out. Let us see how big it is in the case of one-way IFO
measurement for a single laser link in LISA. The armlength mismatch is approximately equal
to the nominal armlength of the triangle of LISA constellation, i.e. 2.5 million kilometers.
The amplitude spectral density of the beatnote in fractional frequency units is then√

Sy(f) ≡
1

ν0
⟨y∗(t)y(t)⟩ = ∆L

ν0

√
Sp(f), (3.2)

where ν0 = 282 THz is the nominal frequency of the laser sources using in LISA. The stability
of the laser in LISA design is required

√
Sp(f) ≈ 30 Hz√

Hz
, c.f. (2.1) without relaxation factor.

Therefore, the order of amplitude spectral density of the laser frequency fluctuation, what we
call laser frequency noise from now on, is about 10−13 in strain sensitivity, about 8 orders
of magnitude higher than the typical GW signal expected to be detectable by LISA, about
10−21.

In the full configuration of LISA, the laser frequency noises in the two interference beams
are generally different.1 Considering only laser frequency noise, the one-way measurements
for ISI signals are read from the general expression (2.27) as

isi12 = D12p21 − p12 ; isi13 = D13p31 − p13;

isi23 = D23p32 − p23 ; isi21 = D21p12 − p21;

isi31 = D31p13 − p31 ; isi32 = D32p23 − p32.

(3.3)

An idea to suppress the laser frequency noise is to have a linear combination of these mea-
surements with some applied delay operators so that all the noise terms will be cancelled out.
The general combination M is written as

M =
∑

i,j={1,2,3}
i ̸=j

Fij (D12,D23,D31,D13,D32,D13) isiij , (3.4)

1According to the LISA design, six laser beams in the constellation will be in a locking scheme, presented in
section 2.5, so that only one laser frequency noise of the master laser source remains in all IFO measurements,
assuming the locking is perfect.
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Figure 3.2: Schematic of a Michelson interferometer. A laser beam from the source is split at
the beam splitter to have two different arms, traveling along L1 and L2, respectively and then
returning back to interfere altogether at photo-diode (PD). Image from the thesis of Markus
Otto [118]

where Fij (D12,D23,D31,D13,D32,D13) are the polynomial functions of delay operators. These
functions could be solved algebraically with the constraint M = 0 (see section 3.2.1 in [118]
for detailed derivation and relevant references of this problem).

Several possible combinations fulfill the requirement of M = 0 with some specific condi-
tions. For example, with the non-flexing (or fixed) armlength of LISA so that Lij are constant,
a possible combination is

X = (1−D121) isi13 − (1−D131) isi12 − (1−D131)D12isi21 + (1−D121)D13isi31, (3.5)

where we used the notation for a nested delay operator Dijk = DijDjk, i.e. multiple delay
operators applied to one signal in a specific order, which was introduced in section 2.7.3. The
expansion of X1 (the index of 1 will be explained later) via one-way ISI measurements (3.3)
is then

X1 = D12131p13 −D13121p12 = D12D21D13D31p13 −D13D31D12D21p12. (3.6)

We will see later that the frequency noises of lasers in different MOSA but in the same
spacecraft can be reduced to one single noise term by using the RFI measurements. With
p12 = p13 = p, we can see from equation (3.6) that X1 = 0 if all armlength Lij are constant.
Indeed, as we mentioned in section 2.7.3, the delay operators are commutative with constant
armlengths, so that the previous result is obvious.
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From a geometrical point of view, the result shown by equation (3.6) can be illustrated
in figure 3.3a. Therefore, the combination of suitable nested delay operators applied on IFO
measurements, which gives the same photon path length for two laser frequency noises in
the same spacecraft, can significantly suppress the laser frequency noise. One can check
that this combination does not annihilate the GW imprinted in IFO measurements (see, for
example, section 3.2.2 of [118]). This is the basic idea of the Time Delay Interferometry (TDI)
algorithm, which is currently the baseline technique to suppress laser frequency noise down to
the requirement of the LISA mission.

(a) X1 (b) X2

Figure 3.3: Illustration for combining two virtual photon paths to suppress laser frequency
noise, in TDI Michelson X combination. Sub-figure (a) is for the first generation of Michelson
combination, while sub-figure (b) is for the second generation one. In subfigure (a), the laser
frequency noise p12 imprinted in the laser beam from MOSA 12, travel in the virtual photon
path from spacecraft 1 → 2 → 1 → 3 → 1. The noise p13 travel in a similar photon path but
with a reversed direction. The photon path in subfigure (b) could be interpreted similarly as
(a). Credit: Jean-Baptiste Bayle, in [40].

The combination (3.5), called Michelson combination, is one of possible TDI combinations.
Since there are three spacecraft in LISA constellation, there are three Michelson combinations
X,Y, Z. The Y1, Z1 combination could be deduced from the expression (3.5), by index permu-
tation. We will discuss more TDI combinations which could be applied on LISA in the next
section 3.2.2.

On the other hand, the Michelson combination in (3.5) cannot suppress the laser frequency
noise in the case of flexing armlengths which is the realistic configuration in the LISA mission.
In this case, the delay operators are not commutative so we need a new combination for laser
frequency noise reduction. The TDI combination applied for the case of fixed armlengths is
classified as the first generation of TDI, so we have used the subscription index of 1. For the
case of flexing armlengths, we introduce the second generation of TDI. As the same idea for
the first generation construction, we tailor the ISI measurements with suitable nested delay
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operators so that the next generation of TDI Michelson combination (3.5) is given by

X2 = (1−D12131) [(isi13 +D13isi31) +D131 (isi12 +D12isi21)]

− (1−D13121) [(isi12 +D12isi21) +D121 (isi13 +D13isi31)] . (3.7)

The expansion with one-way ISI measurements, (3.3), reads

X2 = D131212131p13 −D121313121p12. (3.8)

The illustration for the virtual photon path of this equation is shown in figure 3.3b. This
second generation of the TDI combination can reduce the laser frequency noise up to the first
order of armlength derivative L̇ij(t) [43]. This is the generation of TDI we will focus on in
this thesis.

Moreover, the construction of the TDI combination we discussed above is only a step in
the Time Delay Interferometry (TDI) algorithm, a part of the INREP pipeline presented in
section 3.1. In fact, the goal of this algorithm is not only to suppress the laser frequency noise
but also to reduce the number of free-running lasers and the spacecraft jitter noise. In the
next subsection, we will present the full TDI algorithm and its detailed formulation.

3.2.2 Formulation

The TDI formulation involves several steps, which give yield the TDI variables. The first step
is to suppress the spacecraft motion (also dubbed optical bench displacement, so called MOSA
jitter) noise ∆ij .

ξ12 = isi12 − θisi
12θ

rfi
12

λ12
λ21

tmi12(t)− rfi12(t)

2

−θisi
12θ

rfi
21

D12 [tmi21(t)− rfi21(t)]

2
, (3.9)

ξ13 = isi13 − θisi
13θ

rfi
13

λ13
λ31

tmi13(t)− rfi13(t)

2

−θisi
13θ

rfi
31

D13 [tmi31(t)− rfi31(t)]

2
. (3.10)

The logic behind this step is to extract the motion of the spacecraft and the test-mass by
combining TMI and RFI, then subtract it from the ISI so that only the spacecraft motion
disappears. Then, we can build the second set of intermediary variables to reduce the number
of laser noises by half using the RFI measurements, as

η12(t) = θisi
12ξ12(t) +

D12

[
θrfi
21rfi21(t)− θrfi

23rfi23(t)
]

2
, (3.11)

η13(t) = θisi
13ξ13(t)−

θrfi
13rfi13(t)− θrfi

12rfi12(t)

2
. (3.12)
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From the intermediary variables ηij , we can build the TDI combination that reduce laser
noise. Several TDI combinations exist [76, 111, 113, 147].

In this thesis, we focus on the second generation Michelson variables X2, Y2, Z2, where each
of the two virtual beams of the TDI Michelson [147], visits both distant spacecraft twice. We
compute X2 as

X2 = (1−D12131) [(η13 +D13η31) +D131 (η12 +D12η21)]

− (1−D13121) [(η12 +D12η21) +D121 (η13 +D13η31)] .

(3.13)

The other two Michelson combinations Y2 and Z2 are derived from this equation by circularly
permuting all indices.

Another interesting TDI combination is the quasi-orthogonal AET [126], which is the
optimal combination constructed from Michelson combinations. The advantage of this com-
bination is that we can minimize the effect of the correlation of secondary instrumental noises
in the final TDI variables. In mathematical words, the covariance matrix of this TDI combi-
nation is diagonal, so we say these variables are orthogonal. However, this is valid only for the
case of ideal configuration: all armlengths are equal and same type noises in different MOSAs
have the same statistical characterization. If these assumptions do not hold, the covariance
matrix is almost diagonal, with small off-diagonal elements. Hence, we have called AET the
quasi-orthogonal combinations. The formulation of the second generation AET combination
is given by 

A2 =
1√
2
(Z2 −X2)

E2 =
1√
6
(X2 − 2Y2 + Z2)

T2 =
1√
3
(X2 + Y2 + Z2)

. (3.14)

3.3 TDI testing on experimental data

In this section, we demonstrate TDI algorithm to suppress the laser frequency noise on ex-
perimental data generated by LISA-On-Table (LOT). LOT is an apparatus, which includes
an electro-optical bench in a simplified LISA configuration to generate LISA-like data. We
use LOT to generate the interferometric measurements, which are considered as the L0 data
in the LISA data pipeline. Then, we apply the TDI algorithm using PyTDI software [138] to
get the laser frequency noise-suppressed data. This work has been carried out in collaboration
with L.Vidal.
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LOT has been developed for several years by a collaborative group at APC laboratory, in
particular led by H.Halloin, P.Grunning, M.Laporte [99] and L.Vidal [150]. It is an electro-
optical simulator of LISA with the goal of testing the noise reduction method, i.e. TDI, on
experimental data, as well as the LISA-like instrument for the data acquisition chain, such as
phasemeter, filters, EOM, USO, Etc.

The instrumental model for the interferometric measurements in LOT is simplified from the
LISA configuration. Only Inter-Spacecraft Interferometer (ISI) measurements in one space-
craft are carried out in LOT. We assume the laser locking is done perfectly, and there is no
transponder mode for the laser beam sent from the distant spacecraft. Instead, we assume
the laser beams sent from the local spacecraft are reflected by ideal mirrors, return back and
interfere with the local laser beams to build the ISI measurements, as illustrated in figure 3.4.
There are no test-mass or its related simulation in LOT since we assume all test-masses are
following their geodesics and are attached rigidly to the spacecraft. The laser frequency fluc-
tuations of the lasers in two MOSAs in the local spacecraft are identical as the result of the
perfect laser locking.

Figure 3.4: Schematic of LOT interferometric measurement, with detailed description in sec-
tion 3.3 Credits: Léon Vidal [150]

.

LOT includes 4 subsystems: control/command, electronic interferometer, optical inter-
ferometer, and phasemeter. The control/command part provides the radio frequency (RF)
signals driven by Direct Digital Synthesizer (DDS)s with a mathematical model. Based on
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signal model and input parameters given for the simulation, a computer provides the demands
to DDSs to synthesize analog signals. We can add the laser frequency noise using a specific
mathematical model for the frequency of the signal. In particular, LOT uses a sinusoidal
function for the signal model:

s(t) = A(t)sin [2πf(t)t+ ϕ(t)] , (3.15)

where A(t) and ϕ(t) are set to be fixed for simplicity, f(t) = f0 +N(t) with a fixed offset f0,
and N(t) is a white noise representing for the laser frequency noise. The laser frequency noises
in the signals for the distant beams are delayed according to virtual photon paths from the
local spacecraft to the distant one and returning back to the local. In the LOT, the N(t− τ)

is obtained from interpolation of origin N(t), where the delay time τ associated with the
virtual photon path. Then the RF signals for three laser beams (local, delayed along pathway
1 → 2 → 1 and delayed along pathway 1 → 3 → 1) alternately go through the electronic
and optical interference parts. In the optical part, the RF signals are used to modulate the
beams generated by laser sources by acousto-optic modulator (AOM)s before constructing the
measurements. In the electronic part, the signals are combined in the mixer to generate the
interferometric measurements. In both two interference ways, we have the pilot tone to correct
the jittering of ADC when it triggers the interferometric data and the DPLLs to track the
phase of the signal with the same design as in LISA, shown in figure 2.4. The final subsystem
includes the phasemeter to sample the data with the time reference from the USO providing
the timing signal at 10 MHz. In addition, there are Cascaded Integrator–Comb (CIC) filters
to avoid the aliasing when we downsample the data from 40 MHz to about 38 Hz, by 20 times
2-divided decimation. The design of the filter-decimation used by LOT is written in [73]. The
data saved in the computer will be the input for the data analysis process.

In the current version of LOT, we removed the optical part and use only the electronic one,
as illustrated in figure 3.5, because the electronic interferometers are easier to work with and
more precise than the optical counterparts. Although we cannot test the interferometer data
from the optical systems, it is important to verify the alternative data from the electronic part
in LOT, and therefore in the LISA case, since they are using a similar baseline of the electronic
system in the data acquisition chain. We also emphasize that in the LOT simulator, the
gravitational wave effect is not considered at the moment. Hence, the electronic interferometers
give the same output as the optical ones, and we can test the noise reduction algorithm on
either of the two data production chains.

The LOT outputs are the time-series of interferometric measurements in the phase unit as
the output of the phasemeter, as well as the delay information, or called ranging data, from
the noise generation parameters and which are necessary for TDI algorithm. In principle, the
required ranging data is generated by the Measured Pseudo-Range (MPR) process in LISA.
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Figure 3.5: Schematic for LOT experimental setup. The detailed description is presented in
3.3. Credits: Léon Vidal.

However, in our simplified study case, the information on the delays are imprinted in other
signals generated by the DDS and are read by the phasemeter. Then the measurements and
ranging data are transformed into frequency fluctuation data by detrending the frequency
offset in the total phase. The data file is converted into a LISANode-like data format to be
used by PyTDI. Then, we compute the TDI variables from the raw L0 data and their spectral
densities. In the following subsections, we present the preliminary results of testing the TDI
algorithm on the LOT data with different configurations.

3.3.1 Static equal armlengths

For the first test, we use the simple LISA configuration with the equal and fixed armlengths.
With this configuration, the first generation of TDI is sufficient to suppress the laser frequency
noise to be below the requirements for the LISA mission. For the noise generation, we use the
following input parameters:

• The level of the signal as the laser frequency noise is
√
Sν = 100

√
2 Hz√

Hz
. We choose this

value so that this noise is about 8 orders of magnitude higher than the intrinsic noise of
the LOT. This is similar to the case of LISA where the laser frequency noise is about
8 orders of magnitude higher than the requirement. In other words, in this study, we
require that the TDI should reduce the laser frequency noise to the LOT intrinsic noise.
The formula of LOT intrinsic noise is interpolated from the LOT data.

SLOT-instrinsic-noise(f) = 32 sin2(ωL0) sin
2(2ωL0)(2.69× 10−6f−0.551)2

Hz2

Hz
(3.16)
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• The time delays for the laser links 12, 21, 13, 31 are fixed and all equal at L12 = L21 =

L13 = L31 = L0 = 2.5 × 109/c seconds, with c the speed of light. Nevertheless, we
save this information together with the measurement data in a file, and there is a small
numerical error of about 10 ns from the true value we set up to generate the delayed
signals. This is shown in figure 3.6. Consequently, this error is a systematic error for the
ranging estimation in the LISA case although we did not use any method to estimate it
in the LOT case. We expect that it is the numerical error of saving data points in the
file. The origin of that error will be investigated in the future.
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Figure 3.6: Difference between the injected values and the saved ones for the delay applied
on the signals in LOT experiment for the configuration of equal and fixed armlengths. The
difference are stable at 10 ns for a while after the start of experiment.

Then we check the propagation of the signal, i.e. the laser frequency noise, in the LOT
configuration. The analytical PSD of ISI measurement s12 is given by:

PSD[s12] = 4 sin2(ωL0)Sν , (3.17)

The PSD of the ISI measurement computed by the Welch method [153, 59] with Nuttall-type
window is compared with the above analytic formula, shown in figure 3.7.

Finally, we check the TDI algorithm applied to the LOT data by using PyTDI to compute
the first generation Michelson variables X1, Y1, Z1 from the measurement data. From the
result shown in figure 3.8, we can see that the TDI 1.0 generation is sufficient to suppress the
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Figure 3.7: The propagation of the signal through LOT via the ISI measurement. The PSD
computed from the s12 data from the LOT output is compared with the analytic curve.

dominant laser frequency noise injected in the beam signals to be about the level of the LOT
intrinsic noise, in the configuration of equal and fixed armlengths. We meet the requirement
of the noise reduction, which is 8 orders of magnitude reduction, and the residual signal at the
intrinsic noise level. At higher frequencies, there is a mismatch between the residual signal
curve and the intrinsic one. We expect that the systematic error of the delay values saved in
the LOT output file could explain that discrepancy. Unfortunately, the PSD of this ranging
bias coupling to the laser frequency noise (the formulation of the TDI propagation of this noise
can be found in INREP technical notes) shown in the red dash line in the plot cannot explain
this difference well.

3.3.2 Static unequal armlengths

We move to a more advanced case: the configuration with unequal armlengths, but still time-
independent. With this configuration, we still expect the first generation of TDI can suppress
the laser frequency noise to the LOT intrinsic level.

For the noise generation, we use the following input parameters:

• The level of the signal as the laser frequency noise is
√
Sν = 100

√
2 Hz√

Hz
, the same as in

the equal armlength case.
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Figure 3.8: TDI performance on experimental data produced by LOT in static equal arm-
length. The PSD computed from the TDI Michelson variable X, the green curve, is compared
to the PSD of the ISI measurement s12 as the blue curve, as well as the intrinsic noise in black.
The ISI measurements are generated by LOT, before being processed by PyTDI to get the TDI
Michelson variables. The intrinsic noise is extracted from LOT data without laser frequency
noise in the signal, given by the equation (3.16).

• We test two types of delay time for the distances between spacecraft, which is the
delay time to be applied on distant beams. The first one corresponds to integer delay,
which means the delay time is an integer number times the inverse of LOT sampling
frequency.The second one corresponds to non-integer delay. The first type of delay time
has no error in the interpolation for the delay operator in TDI, while the second type
has to deal with that. The integer delays are 636/(2 ∗ fs) and 644/(2 ∗ fs) seconds for
distances L12, L13, respectively, where fs = 40MHz

2×1020 is the sampling rate of LOT data.
The non-integer delays are L12 = 16.6/2 and L13 = 16.76/2 seconds.

The process of computing the TDI variables and their spectral densities is the same as
in the previous case. The results are shown in figure 3.9 for integer delay and figure 3.10
for non-integer delay. We verify that the TDI algorithm works well for laser frequency noise
suppression in both cases. The residual signal is compatible with the LOT intrinsic noise for
most of the frequency band. At high frequencies, in the non-integer case, there are some bumps
related to the interpolation error. The analytical model for this effect has not been studied
yet for the LOT, which is interesting for future tasks. We also add the reference curve for the
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LISA standard noise model to compare with the residual noise signal. This reference curve
is from the LISA Science Requirement Document [103] and consists of the most dominant
secondary noises, such as test-mass acceleration and readout noise. We note that the noise
level of laser frequency noise of LOT and LISA are different: the LOT noise level above about
1 order of magnitude higher, 100

√
2 (in LOT) vs 30 Hz (in LISA). We can conclude that the

performance to suppress the laser frequency noise on LOT is good because the residual noise
is below the other possible secondary noise sources and the noise reduction is about 8 orders
of magnitude.

3.3.3 LOT data with linear varying armlength

In the last part, we examine the more realistic configuration for the LOT, which accounts
for the varying armlengths. Nevertheless, the model for the armlength is simple as a linear
function on time. The inputs for the signal generation are given as follows:

• The level of the signal as the laser frequency noise is
√
Sν = 100

√
2 Hz√

Hz
, the same as in

the equal armlength case.

• The delays for the distances among spacecraft are given in the formula:

L12(t) = L21(t) = L0
12 + L̇12 × t, (3.18)

L13(t) = L31(t) = L0
13 + L̇13 × t, (3.19)

where the L0
12, L

0
13 are the initial delays of the virtual laser links, extracted from the first

LOT data point of the delays. The delay derivatives are parameterized by L̇12 = 5m/s
c

and L̇13 =
10m/s

c .

The PSDs of TDI variables computed from the LOT data in this configuration are shown
in figure 3.11. In this case, we do not have perfect suppression in the TDI Michelson variables
even for the second generation of TDI, which is expected to suppress the laser frequency noise
to below the secondary noise level. At very high frequencies, the bumps could be explained by
the error in the interpolation of the delay operators. While at middle and low frequencies, the
residual laser frequency noise is above the intrinsic noise level, as well as the LISA SciRD [103].
We first guessed the coupling of the CIC filter and the delay operator with the varying delays
in the TDI algorithm could explain the discrepancy. However, we rejected this hypothesis
after some tests with simple signal processing via LOT and single-delay operators. A very
recent study from Léon Vidal turns out that the effect of CIC filters and the decimation steps
in the phasemeter have a significant contribution to the TDI residual noise and could explain
this result. All details of this work are presented in his PhD thesis [150].
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Figure 3.9: TDI performance on experimental data produced by LOT in static unequal arm-
length with integer (times inverse of LOT sampling frequency) delay. The first generation
of TDI shown in sub-figure (a), while in sub-figure (b) is TDI second generation. The PSD
computed from the TDI Michelson variable X, the orange curve, is compared to the PSD of
the ISI measurement s12 as the blue curve, as well as the intrinsic noise in red dash line. We
also indicate the LISA standard noise model from LISA SciRD [103] as a reference to compare
the TDI residual signal of LOT with the secondary noise exist in the LISA case.
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Figure 3.10: TDI performance on experimental data produced by LOT in static unequal arm-
length with noninteger (times inverse of LOT sampling frequency) delay. The first generation
of TDI shown in sub-figure (a), while in sub-figure (b) is TDI second generation. The legend
for the curves is the same as figure 3.9.
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In the subsequent studies, we want to examine LOT data with the impact of changing
CIC filter and the decimation plan in LISA design. The effect of electronic devices in data
processing in both LOT and LISA will help us to improve LISA instrument design. On the
other hand, the clock jitter noise could be added in the LOT data generation to test the
performance of clock noise reduction.
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Figure 3.11: TDI performance on experimental data produced by LOT in linear varying arm-
length configuration. The first generation of TDI shown in sub-figure (a), while in sub-figure
(b) is TDI second generation. The legend for the curves is the same as figure 3.9.



Chapter 4

Noise propagation through TDI

Due to the TDI algorithm introduced in the previous chapter, the noises in the instrument
or any other sources will evolve in the spectral shape from the raw measurements to the TDI
variables. This chapter considers the TDI impact on LISA noises (mostly secondary ones) by
computing their transfer function through the TDI algorithm with the current instrumental
model. We also examine some scenarios for noise correlation in this study.

This chapter is mainly the work in the to-be-published article [127]. First, we will give an
overview of the TDI transfer function computation methodology. The beam model and IFO
measurements constructed in section 2.7 and the TDI formulation in section 3.2.2 are applied
to conduct the analytical transfer function of noises propagating through TDI. An example
of test-mass acceleration noise propagating through TDI will be presented, including the case
of laser locking and some noise correlation scenarios. Then, we summarize all the analytical
results and compare the derived analytical noise propagation model with the numerical power
spectral density of the data simulated by LISANode, presented in section 2.8.

4.1 Methodology

In this section, we introduce our method to compute the TDI transfer function of the noise
propagation, using as an example test-mass acceleration noise. Approximations for the sim-
plified result are then justified. Finally, we validate the analytical transfer functions of several
noises using the LISANode simulator.

83
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4.1.1 PSD/CSD computation

We will briefly introduce a method for calculating the spectral density, which follows the
procedure used in the software [39]. The CSD of two signals u(t) and v(t) can be defined as

Suv(f) = CSD[u, v] = lim
T→∞

1

T
ũ∗T (f)ṽT (f) ≡ ⟨ũ∗(f)ṽ(f)⟩. (4.1)

where ũ(f) is the Fourier transform of u(t) at the frequency f . uT (t) is u(t) restricted to a
time window of duration T . ũT (f) is the Fourier transform of uT (t). It is obvious to show
that Svu(f) is just the complex conjugate of Suv(f). The PSD of some stationary signal u(t)
is Suu. It describes the energy contained in the signal u(t) around the frequency f .

To compute the Fourier transform of TDI variables, we should consider the atomic block
in TDI formulation: the nested delay operator. We model the light travel times as constants,
i.e. Lij(t) = Lij . For a nested delay operator applied to a time-series signal,

v(t) = Di1i2...inu(t) = u

(
t−

n−1∑
k=1

Likik+1

)
(4.2)

, its Fourier transform is

ṽ(ω) = exp

(
−jω

n−1∑
k=1

Likik+1

)
ũ(ω). (4.3)

The PSD of the usual TDI generator (X, Y and Z) are usually compositions of a limited
set of patterns. For each term, we use (4.3) to form the Fourier transform and then compute
the PSD.

We will use the short-hand notation

L̄ij =
Lij + Lji

2
and L̄ijik =

Lij + Lji + Lik + Lki

4
. (4.4)

(4.5)

Here, the PSD computation is done for the simple nested delay operator ± (1−Dii′)u(t).
The list of all useful patterns is provided in table 4.1.

PSD [± (1−Diji)u(t)] (ω) =
〈

˜[(1−Diji)u(t)](ω)× ˜[(1−Diji)u(t)]
∗
(ω)
〉

=
〈(

1− e−jω(Lij+Lji)
)(

1− ejω(Lij+Lji)
)
ũ(ω)ũ∗(ω)

〉
= 4 sin2

(
ωL̄ij

)
Su. (4.6)

The CSD computation have some common patterns. Note that we need to respect the
order of the terms in the calculation.
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Nested delay operator PSD
± (1−Diji)u(t) 4 sin2

(
ωL̄ij

)
Su

± (1 +Diji)u(t) 4 cos2
(
ωL̄ij

)
Su

± (1−Diji)Di1i2...inu(t) 4 sin2
(
ωL̄ij

)
Su

± (1 +Diji)Di1i2...inu(t) 4 cos2
(
ωL̄ij

)
Su

±Di1i2...in (1−Diji)u(t) 4 sin2
(
ωL̄ij

)
Su

±Di1i2...in (1 +Diji)u(t) 4 cos2
(
ωL̄ij

)
Su

± (1 +Diji) (1−Dklk)u(t) 16 cos2
(
ωL̄il

)
sin2

(
ωL̄kl

)
Su

± (1−Diji) (1 +Dklk)u(t) 16 sin2
(
ωL̄ij

)
cos2

(
ωL̄kl

)
Su

± (1 +Diji) (1 +Dklk)u(t) 16 cos2
(
ωL̄ij

)
cos2

(
ωL̄kl

)
Su

± (1−Diji) (1−Dklk′)u(t) 16 sin2
(
ωL̄ij

)
sin2

(
ωL̄kl

)
Su

± (1−Diji −Dijiki +Dikijiji)u(t) 16 sin2
(
ωL̄ij

)
sin2

(
2ωL̄ijk

)
Su

(a± bDiji)x(t)
[
a2 + b2 ± 2ab cos

(
ωL̄ij

)]
Su

Table 4.1: Table of PSD for the usual patterns present in TDI time domain formulations.

1. X = ±(1 ± Diji)x(t) and Y = ± (1±Dklk)u(t). We choose one case of specific set of
signs in front of the nested delay operators, the others are easily worked out in the same
way.

CSD [XY ] = CSD [(1−Diji)u(t), (1 +Dklk)u(t)]

=
〈

˜[(1−Diji)u(t)](ω)× ˜[(1 +Dklk)u(t)]
∗
(ω)
〉

=
〈(

1− e−2jωL̄ij

)(
1 + e2jωL̄kl

)
× ũ(ω)ũ∗(ω)

〉
= ejω(−L̄ij+L̄kl)

(
ejωL̄ij − e−jωL̄ij

)
×
(
e−jωL̄kl + ejωL̄kl

)
⟨ũ(ω)ũ∗(ω)⟩

= ejω(−L̄ij+L̄kl)2j sin(ωL̄ij)2j cos(ωL̄kl)Su

= −4 sin(ωL̄ij) cos(ωL̄kl)e
jω(−L̄ij+L̄kl)Su (4.7)

2. X = ±(a± bDiji)x(t) and
Y = ± (1±Dklk)Di1i2...inu(t). We choose one case of specific set of signs in front of the
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nested delay operators, the others are easily worked out in the same way.

CSD [XY ] = CSD [(a+ bDiji)u(t) ∗ (1−Dklk)Di1i2...inu(t)]

=
〈

˜[(a+ bDiji)u(t)](ω)

× ˜[(1−Dklk)Di1i2...inu(t)]
∗
(ω)
〉

=
〈(
a+ be−jω(Lij+Lji)

)(
1− ejω(Lkl+Llk)

)
× ejω(Li1

+Li2
+...+Lin )ũ(ω)ũ∗(ω)

〉
= ejω(Li1

+Li2
+...+Lin−L̄ij+L̄kl)

(
e−jωL̄kl − ejωL̄kl

)
×
(
aejωL̄ij + be−jωL̄ij

)
⟨ũ(ω)ũ∗(ω)⟩

= −2j sin(ωL̄kl)e
jω(Li1

+Li2
+...+Lin−L̄ij+L̄kl)

×
(
aejωL̄ij + be−jωL̄ij

)
Su. (4.8)

4.1.2 Approximation justification

In the previous subsections, some assumptions and approximations are made to reduce the
complexity of the calculation. There are collected and justified here.

1. We assume that clock noise has been suppressed totally by the clock noise reduction
algorithm [77]. Therefore, we do not need to consider the sideband beams in our beam
model since they are only used for clock noise reduction [77, 76]. Since the residual clock
noise is expected below secondary noises, this assumption is acceptable in our study
case.

2. All measurements are perfectly synchronized in the Barycentric Coordinate Time (TCB).
Hence, there are no errors in time stamping the onboard measurements. This assumption
simplifies the complexity of the computation.

3. All IFO measurements are expressed as fractional frequency fluctuations around the
nominal laser frequency. We assume this nominal laser frequency is constant and equal
for all laser source, and it is equal to the nominal laser frequency, c/1064 nm = 282 THz.

4. The DFACS is ignored in this study, which means the S/C and test-masses are treated
as independent bodies. We also neglect the tilt-to-length coupling noise in the beam
model.

5. We are assuming that S/C hardware from the noise performance perspective are sta-
tistically identical. Hence, 6 test-mass acceleration noises have the same PSD, or a
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correlation noise appearing between two adjacent test-masses will occur similarly on all
S/C.

6. All armlengths of the LISA constellation are constant, and so delay operators are com-
mutative. We use this approximation frequently with unsuppressed noises because the
armlength variation is a second-order effect for these noises. Therefore, this approxima-
tion is justified in the study of unsuppressed noises.

Lij(t) = Lij ∀i, j ∈ {1, 2, 3} (4.9)

7. Mostly in the case of unsuppressed noises, we neglect ranging and interpolation errors so
the propagation delay operators and the TDI delay operators can be treated similarly,
D ≈ D. The effect of ranging and interpolation errors will contribute more significantly
in the case of suppressed noises but this is out of the scope of the article as well as this
thesis.

8. To simplify the final transfer functions, we use the approximation of equal armlengths,
which could be consider as the average armlength for long duration of the mission oper-
ation. Due to the almost equilateral configuration of the LISA constellation, we expect
the average of each armlength should be not too different.

In the simulation validation studies (see section 4.4), the first five approximations (no clock
jitter noise, synchronized measurements, constant nominal laser frequency, no DFACS and
noises of the same kind statistically similar) are made. The validity of these approximations
will not be tested here, whereas it will be for approximations 6 to 8.

4.1.3 Procedure for spectral density computation

We will now detail the calculation of the transfer functions for unsuppressed noises, using
as example test-mass acceleration noise. The propagation of other unsuppressed noises are
worked out in a similar way.

The calculation are performed in several steps:

1. If we consider laser frequency planning, laser noises from the locking scheme should be
substituted into the beam model, as shown in section 2.7.41.

1An alternative approach is shown in section 12.2 of [76]. In principle, TDI algorithm makes sure all the pij
terms are strongly suppressed, so any secondary noise terms in pij due to laser locking are suppressed alongside
the laser noise. Therefore, we expect the secondary noise levels to remain identical regardless of the locking
scheme, as verified by the explicit computation.
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2. Since most of the time, we assume that noises of different types are uncorrelated, we
can ignore all noises in the beams except for the one of interest. The LISA total noise
transfer function is then simply the sum of all individual noise transfer functions. If a
noise correlation scenario is considered, we need to apply the correlation relations and
keep only one of the correlated noises in the beam model.

3. After deriving all the IFO measurements expressed in section 2.7.5, the next step is the
computation of TDI variables, presented in subsection 3.2.2. First are the intermediary
variables, then the TDI combinations. We write the result in terms of the product of
nested delay operator applied to each noise, to ease the identification of patterns in the
next step.

4. Hence, we can use the patterns PSD/CSD presented in subsection 4.1.1 for quick compu-
tation of the spectral density of individual noise terms. The noise terms are considered
uncorrelated. The correlations are treated by introducing the same noise term in multiple
measurements.

5. We use the approximation of constant armlengths (4.9) to simplify the computation
(allowing to commute delay operators). Most of the time, the PSD XX and the CSD
XY are enough because we can use index permutation to deduce the other spectral
densities. This apply if the beams are symmetric, so it does not for the cases with
frequency planning.

6. Finally, we sum up all components and simplify the result using some approximations
presented in the end of subsection 4.1.2.

4.2 A few examples

4.2.1 Uncorrelated test-mass acceleration noise without laser locking

In this section, we only consider test-mass acceleration noise. For simplicity, we omit the time
dependency in the noise notation δ, but still remember that it is a time varying signal. We
only consider the projection of test-mass displacement noise on the sensitive axis, δij , since it
is what enters the measurements.

Without frequency planning and correlation, the formulation of the measurements in S/C
1 are: 

isi12 = 0

rfi12 = 0

tmi12 = 2 F θrfi
12 δ12


isi13 = 0

rfi13 = 0

tmi13 = 2 F θrfi
13 δ13

(4.10)
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We then compute the TDI intermediary variables. We neglect the ranging and interpolation
errors such that the two types of delay operators are equivalent, D ≈ D. Moreover, the
nominal laser wavelength for every laser source is constant and equal, i.e., λij = λ. Applying
these approximation to equations (3.9), (3.10), (3.11) and (3.12), we get

ξ12 = −θisi
12 F (D12δ21 + δ12) , (4.11)

ξ13 = −θisi
13 F (D13δ31 + δ13) , (4.12)

and then

η12 = −F (D12δ21 + δ12) , (4.13)

η13 = −F (D13δ31 + δ13) . (4.14)

The Michelson combination is computed as follows, using the constant armlength approxi-
mation (4.9) (we can commute the delay operators with themselves and with antialiasing filter
operator2).

X2 = (1−D12131) [(η13 +D13η31)

+D131 (η12 +D12η21)]− (1−D13121)

× [(η12 +D12η21) +D121 (η13 +D13η31)]

≈ (1−D12131) [(1−D121) (η13 +D13η31)

− (1−D131) (η12 +D12η21)]

= F
{
− (1−D12131) (1−D121) (1 +D131) δ13

−2 (1−D12131) (1−D121)D13δ31

+(1−D12131) (1−D131) (1 +D121) δ12

+2 (1−D12131) (1−D131)D12δ21

}
(4.15)

The Y -channel is just the index permutation of X-channel.

Y2 = F
{
− (1−D23212) (1−D232) (1 +D212) δ21

−2 (1−D23212) (1−D232)D21δ12

+(1−D23212) (1−D212) (1 +D232) δ23

+2 (1−D23212) (1−D212)D23δ32

}
(4.16)

The PSD of these Michelson variables can be worked out by collecting the Fourier trans-
forms of the auto-correlation functions of each noise in each MOSA. Assuming uncorrelated

2This is not true in the case of suppressed noises like laser frequency noise. In such cases, we need to take
into account the non-commutation of delay operators with themselves and with filter operators [43].
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noises, the cross-terms between two different noises, such as ⟨δ̃12
∗
(f)δ̃13(f)⟩, are vanishing.

We can also use results from section 4.1.1 for fast deduction. For example, the contribution
to the PSD of X-channel SXX(f) of acceleration noise in MOSA 13 reads:

PSD [−F (1−D12131) (1−D121) (1 +D131) δ13] (ω)

= 64SF (ω)Sδ13(ω) sin
2
[
ω(L̄12 + L̄31)

]
× sin2(ωL̄12) cos

2(ωL̄31), (4.17)

where SF (ω) = ⟨|F̃(f)|2⟩ and Sδ13(ω) = ⟨|δ̃13(f)|2⟩. Then, one can check that the PSD of the
X-channel for the uncorrelated test-mass acceleration noise is:

Suncorr acc tm
XX (ω) = 64SF (ω) sin

2
[
ω(L̄12 + L̄31)

]
×
{
sin2(ωL̄12)

[
cos2(ωL̄31)Sδ13(ω)

+Sδ31(ω)] + sin2(ωL̄31)

×
[
cos2(ωL̄12)Sδ12(ω) + Sδ21(ω)

]}
(4.18)

The PSD of Y -channel, Suncorr acc tm
YY , has the same form with permuted indices {1 →

2, 2 → 3, 3 → 1}. We can use the equal armlength approximations Lij = L and that all
test-mass acceleration noises share the same PSD, Sδij = Sδ, to get:

Suncorr acc tm
XX (ω) = Suncorr acc tm

YY (ω)

= 64 sin2 (2ωL) sin2 (ωL) [3 + cos(2ωL)]

×SF (ω)Sδ(ω) (4.19)

To compute the CSD between X and Y , we use the same procedure and collect the non-
zero terms that have the same noise index. Note that CSD[Y X] = CSD[XY ]∗, so we only
need to compute the CSD of XY . We can also use the CSD result from section 4.1.1. For
example, the contribution of acceleration noise in MOSA 12 to the CSD SXY reads:

CSD
[
F (1−D12131) (1−D131) (1 +D121) δ12

∗(−2) (1−D23212) (1−D232)D21δ12

]
(ω)

= −64SF (ω)Sδ12(ω) sin
[
ω(L̄12 + L̄31)

]
× sin

[
ω(L̄12 + L̄23)

]
sin(ωL̄13) sin(ωL̄23) cos(ωL̄12)

× exp
[
−jω

(
2L̄13 − 2L̄23 + L̄12 − L21

)]
(4.20)



4.2. A few examples 91

One can find the CSD of XY is given by

Suncorr acc tm
XY (ω) = −64SF (ω) sin

[
ω(L̄12 + L̄31)

]
× sin

[
ω(L̄12 + L̄23)

]
sin(ωL̄13)

× sin(ωL̄23) cos(ωL̄12)e
−jωL12−L21

2

×e−2jω(L̄13−L̄23) [Sδ12(ω) + Sδ21(ω)]

(4.21)

Assuming equal armlengths and the same test-mass acceleration noise level in all MOSAs,
we obtain

Suncorr acc tm
XY (ω) = −64SF (ω) sin

3 (2ωL) sin (ωL)Sδ(ω)

(4.22)

4.2.2 Uncorrelated test-mass acceleration noise with laser locking

To account for frequency planning, we need to derive the locked laser frequency fluctuations
as functions of the primary laser, p32, before substituting them in the beam model and IFO
measurements. We use the group of equations (2.31) and we only keep track of the test-mass
acceleration and primary laser noises,

p23 = D12 p32 (4.23a)

p31 = p32 (4.23b)

p13 = D21 p32 (4.23c)

p12 = D21 p32 (4.23d)

p21 = D321 p32. (4.23e)

Due to laser locking, the beams and IFO measurements are no longer symmetric for the
different S/C. We therefore give the IFO signals for the whole LISA constellation

• On S/C 1: 
isi12 = θisi

12F (D121 − 1)D13p32

rfi12 = 0

tmi12 = 2 F θrfi
12 δ12

(4.24)


isi13 = 0

rfi13 = 0

tmi13 = 2 F θrfi
13 δ13

(4.25)
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• On S/C 2: 
isi23 = 0

rfi23 = θrfi
23F (D213 −D23) p32

tmi23 = θrfi
23F [(D213 −D23) p32 + 2δ23]

(4.26)


isi21 = 0

rfi21 = θrfi
21 (D23 −D213) p32

tmi21 = θrfi
21F [(D23 −D213) p32 + 2δ21]

(4.27)

• On S/C 3: 
isi31 = θisi

31 (D313 − 1) p32

rfi31 = 0

tmi31 = 2Fθrfi
31δ31

(4.28)


isi32 = θisi

32 (D323 − 1) p32

rfi32 = 0

tmi32 = 2Fθrfi
32δ32

(4.29)

The next step is to compute the TDI intermediary variables ξ, η. Assuming D = D, one
can verify that

η12 = F(D123 −D13)p32 −F (D12δ21 + δ12) (4.30)

η13 = −F (D13δ31 + δ13) (4.31)

η23 = −F (D23δ32 + δ23) (4.32)

η21 = F(D213 −D23)p32 −F (D21δ12 + δ21) (4.33)

η31 = F(D313 − 1)p32 −F (D31δ13 + δ31) (4.34)

η32 = F(D323 − 1)p32 −F (D32δ23 + δ32) (4.35)

We note that, except for the terms with laser frequency noise p32, all terms in η are identical
to the case without laser locking. That is expected because the locking constraints (2.31) do
not contain test-mass acceleration noise in any term. The X-channel for laser noise only is

Xp-only
2 = F [(1−D13121)(1−D12131)

−(1−D12131)(1−D13121)] p32, (4.36)

which is cancelled out when we commute the TDI delay, i.e. constant delays assumption. In
the end, the TDI combinations X, Y and Z in the case of laser locking for the test-mass
acceleration noise are exactly the same as in the case without locking, (4.19) and (4.22).
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4.2.3 Uncorrelated readout and optical path noises with laser locking

The locking constraints (2.31) contain readout noises, N ro
x,ij , and optical path noises, Nop

loc/x,ij .
Therefore, the situation is different from acceleration noise. Expanding η12 without laser
locking, we get:

η12 = θisi
21FN ro

s,12 − θrfi
21FD12

N ro
ϵ,21 −N ro

rfi,21

2

−θrfi
12F

N ro
ϵ,12 −N ro

rfi,12

2
+ θrfi

21D12F
N ro

rfi,21 +N ro
rfi,23

2
,

(4.37)

while we get with laser locking:

η12 = θisi
12FN ro

s,12 − θrfi
21D12F

N ro
ϵ,21 −N ro

rfi,21

2

−θrfi
12F

N ro
ϵ,12 −N ro

rfi,12

2
+ θrfi

21D12F
N ro

rfi,21 +N ro
rfi,23

2

−θisi
13FN ro

s,13 + θisi
23FD12N

ro
s,23

−θrfi
31FD13N

ro
rfi,31 − θrfi

12FN ro
rfi,12 (4.38)

We observe that laser locking introduces additional terms. These terms actually vanish at the
next TDI step, when forming the variable η. Considering, for example, solely N ro

s,13, we have

η12 : −θisi
13N

ro
s,13,

η21 : θisi
13D21N

ro
s,13,

η31 : θisi
13D31N

ro
s,13

Substituting in X2 given by equation (3.13), we get

X2 = [1−D121 −D12131 +D1312121 + (D13121 −D12131)

+ (D131212131 −D121313121)] θ
isi
13N

ro
s,13. (4.39)

Assuming that delay operators commute, the terms in parentheses disappear and we are back
to the results without locking.

One can checked that we obtain the same results as for the case without locking, for all
terms of readout noises and optical path noises. Finally, we find that the results are the same
with and without locking for all unsuppressed noises.

4.2.4 Correlated acceleration noise

Finally, we consider the correlation scenario (2.29) for test-mass acceleration noise. The cor-
relation relation is

δij = γ δik, (4.40)
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for (i, j, k) = circular permutation of (1, 2, 3), with γ the correlation factor and with j ̸= k. We
substitute this in the beam model and then form the IFO measurements. Since the correlated
noises are in the same S/C, the IFO measurements remain symmetric (as in the uncorrelated
noise case). In S/C 1, we keep only the test-mass acceleration noise from MOSA 12,


isi12 = 0

rfi12 = 0

tmi12 = 2 F θrfi
12 δ12


isi13 = 0

rfi13 = 0

tmi13 = 2 F θrfi
13 γδ12

(4.41)

Then, the TDI intermediary variables η for S/C 1 are

η12 = −F (γD12δ23 + δ12) , (4.42)

η13 = −F (D13δ31 + γδ12) (4.43)

Applying the same procedure as for the uncorrelated case, we get the following expression
for the PSD:

Scorr acc tm
XX (ω) = 32

[
3γ2 + 2γ + 3 + (1 + γ)2 cos(2ωL)

]
× sin2 (2ωL) sin2 (ωL)SF (ω)Sδ(ω),

(4.44)

and, for the CSD,

Scorr acc tm
XY (ω) = −64

[
(1 + γ)2 cos(2ωL)− γ

]
× sin2 (2ωL) sin2 (ωL)SF (ω)Sδ(ω)

(4.45)

This example is a good illustration of the importance of correlation. Indeed, at low fre-
quency, cos(2ωL) ∼ 1, and the fully correlated case (γ = 1) is 1.5 times higher than the
uncorrelated case. On the other hand, the fully anticorrelated case (γ = −1) case is 2 times
lower than the uncorrelated case. We note that γ = 0 does not mean the noises are uncorre-
lated according to the expression (4.40). Therefore, equations (4.44) and (4.45) do not reduce
to equations (4.19) and (4.22) in case γ = 0.

4.3 Result of analytical transfer function

To summarize all analytical results, we list the noises with the specific correlation and the
TDI transfer function for X in table 4.2. The results are the same for Y and Z, even with
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laser locking. For all these results, the equal armlengths and equal noise level approximations
are used. We do not distinguish between the case with or without laser locking the results
are identical for the unsuppressed noises. For the sake of brevity, we introduce two common
factors in the summary table:

CXX(ω) = 16 sin2(ωL) sin2(2ωL), (4.46)

CXY (ω) = −16 sin(ωL) sin3(2ωL). (4.47)

Noise type Correlation PSD CSD

Test-mass
acceleration

None 4CXX(ω) [3 + cos(2ωL)] 4CXY (ω)

Fully-correlated at
the same S/C 8CXX(ω) −4CXX(ω)

Anti-correlated at
the same S/C 8CXX(ω) [2 + cos(2ωL)] 4CXX(ω) [1− 4 cos(ωL)]

Readout (TMI)
and
Optical Path-length
(TMI)

None CXX(ω) [3 + cos(2ωL)] CXY (ω)

Correlated adjacent
TMI noise 2CXX(ω) −CXX(ω)

Anti-correlated adja-
cent TMI noise 2CXX(ω) [2 + cos(2ωL)] CXX(ω) [1− 4 cos(ωL)]

Backlink (TMI) None CXX(ω) [3 + cos(2ωL)] CXY (ω)

Readout
(ISI and RFI)
and
Optical Path-length
(ISI and RFI)

None 4CXX(ω) CXY (ω)

Correlated adjacent
IFO noise 2CXX(ω) −CXX(ω)

Anti-correlated adja-
cent IFO noise 6CXX(ω) CXX(ω) [1− 4 cos(ωL)]

Fully correlated at
the same telescope 4CXX(ω) [3 + cos(2ωL)] 4CXY (ω)

Backlink (RFI) None 4CXX(ω) CXY (ω)

Table 4.2: Summary table of analytical TDI X,Y ,Z transfer functions for unsuppressed noises.
All results have been simplified using approximations (refer to subsection 4.1.2).

Several types of noises share the same transfer function. For some of them, it is simply
because the noises enter identically in the measurement (e.g., readout ISI and optical path
ISI).

There is another set of TDI variables, called A,E,T, constructed from X,Y,Z [126, 35]:

A =
Z −X√

2
, E =

X − 2Y + Z√
6

, T =
X + Y + Z√

3
. (4.48)

A,E,T are useful for data analysis since they have vanishing CSDs under the approximations
of equal armlengths and equal noise level for the same type noises. The PSDs for A,E,T are
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given in table 4.3. They combine the PSDs and CSDs of X,Y,Z as

SAA =
SZZ + SXX − 2Re[SZX ]

2
(4.49)

SEE =
SXX + 4SY Y + SZZ − 2Re[2SXY − SXZ + 2SY Z ]

6
(4.50)

STT =
SXX + SY Y + SZZ + 2Re[SXY + SXZ + SY Z ]

3
(4.51)

and are therefore slightly more complex. We remark that while the equal arm models derived
here are accurate enough to describe the GW sensitive channels X,Y,Z, as well as for the
quasi-orthogonal channels A and E, it was demonstrated that this assumption is insufficient for
accurately describing the behaviour of the null-channel T, in particular at low frequencies [112,
8].

4.3.1 About the propagation of suppressed noises

Although the unsuppressed noises is our main focus, for the sake of completeness, we will
summarize the status of transfer functions for the suppressed noises, i.e., noises suppressed by
TDI, as well as the additional noises induced by this suppression.

Laser frequency noise has to be suppressed by several order of magnitude by TDI, in order
to be below the required noise level [103, 65, 35] defined by the unsuppressed noises (accel-
eration, readout and OP). It has been the main focus of TDI noise reduction studies during
many years, one of the most recent studies on the topic being [43]. Because of the high level of
reduction required, the residual level is sensitive to all limiting effects from the application of
TDI: flexing filtering (non commutation between anti-aliasing filters and delays) [43], ranging
bias, stochastic ranging (imprecision in the knowledge of delays), interpolation, aliasing and
fundamental armlength mismatch (limitation due to the flexing with TDI 2.0). There are on-
going active studies on all these effects and preliminary transfer functions are already available
enabling to establish the expected level of the residual laser noise. Moreover, the residual laser
noise depends on the laser locking configuration. Only preliminary checks based on simulation
have been done and preliminary models have been developed [76], and more detailed studies
are necessary.

In principle, most effects leading to residual laser noise will also cause residuals in other
noise sources which are perfectly cancelled in an idealized situation. However, since these other
suppressed noises are several orders of magnitude smaller than laser noise, their residuals can
usually be neglected.
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Noise type Correlation SAA & SEE STT

Test-mass
acceleration

None 4CXX(ω) [3 + 2 cos(ωL) + cos(2ωL)] 32CXX(ω) sin4(ωL2 )

Fully-correlated
noises at the same
S/C

4CXX(ω) [1 + 2 cos(ωL)]2 64CXX(ω) sin4(ωL2 )

Anti-correlated at
the same S/C 12CXX(ω) 0

Readout (TMI)
and
Optical Path-length
(TMI)

None CXX(ω) [3 + 2 cos(ωL) + cos(2ωL)] 8CXX(ω) sin4(ωL2 )

Correlated adja-
cent TMI noise 3CXX(ω) 0

Anti-correlated
adjacent TMI
noise

CXX(ω) [1 + 2 cos(ωL)]2 16CXX(ω) sin4
(
ωL
2

)
Backlink (TMI) None CXX(ω) [3 + 2 cos(ωL) + cos(2ωL)] 8CXX(ω) sin4(ωL2 )

Readout
(ISI and RFI)
and
Optical Path-length
(ISI and RFI)

None 2CXX(ω) [2 + cos(ωL)] 4CXX(ω) [1− cos(ωL)]

Correlated adja-
cent IFO noise 3CXX(ω) 0

Anti-correlated
adjacent IFO
noise

CXX(ω) [5 + 4 cos(ωL)] 8CXX(ω) [1− cos(ωL)]

Fully correlated
at the same tele-
scope

4CXX(ω) [3 + 2 cos(ωL) + cos(2ωL)] 32CXX(ω) sin4(ωL2 )

Backlink (RFI) None 2CXX(ω) [2 + cos(ωL)] 4CXX(ω) [1− cos(ωL)]

Table 4.3: Summary table of analytical TDI A,E,T transfer functions for unsuppressed noises.
All results have been simplified using approximations (refer to subsection 4.1.2).

Clock noise is also reduced by TDI. While its initial level is lower than that of laser noise,
it is still a few orders of magnitude higher than the required noise level. In order to suppress
clock noise, the laser beams carry sideband modulation with a clock-derived signal, creating
so-called clock-sidebands. Interferometric measurements of these sidebands are then used in
the TDI algorithm to reduce clock noise [77].

S/C jitter noises ∆⃗ij are in theory perfectly cancelled by TDI when forming the ξij (see (3.9)
and (3.10)). In reality, this cancellation will not be perfect and some residual noise is expected.

Finally, since the application of TDI is a numerical procedure, some numerical limitations
are expected.

The estimated residuals of all suppressed noises are currently below the required level, but
some contributions are not negligible and need to be carefully studied. The laser locking will
impact will impact some of these suppressed noises and is the topic of further studies currently
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underway.

4.4 Validation with simulation

In this section, we review the procedure for the model validation, i.e. to compare the analytical
model for the noise propagation through TDI with that power spectra estimated from LISANode

simulated data3. In the final, we give the validation result for some configurations set up for
LISANode simulator.

4.4.1 Procedure for model validation

The procedure to validate the transfer function of a particular type of noise (for example
acceleration noise or readout noise) is the following:

1. We configure the simulation for the noise to be studied, with all other noises configured
to produce zeros as output.

2. From the simulated time domain data (TDI variables), we compute the PSD and the
CSD.

3. We plot together the simulated and analytical PSDs or CSDs. In addition, we add for
the analytical curve, the 99.73% confidence interval which is computed statistically by
χ2-distribution for the PSD/CSD estimations. We will discuss the estimation method
and the statistical confident interval more detail in the next subsection.

4. The simulated points outside the confidence interval are detected as the “alert” point.
The level of agreement between analytical formulation and simulated data is estimated
based on the plot and the number of “alert” point.

4.4.2 Estimation of power spectral density

In the following we describe the procedure of estimating the power spectral density for a
stochastic time series x(t) of finite length T . In particular, we use Scipy implementation of
Welch’s Method [153, 59]. The Welch’s method is summarized in the following steps. First,
the data is divided into M segments of length L and a window function w(t) is applied for
every segment. A Fourier transform is then performed for each windowed segment, giving M
independent estimates of the power spectral density as defined in (4.52). Finally, the average,

3The version of LISANode we used in this study is the version 1.2, which still contains graph for computing
TDI variables. In the current version of LISANode, this graph has been removed and we need to use PyTDI [138]
to construct TDI variables.
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expressed in equation (4.53), over the M segments is taken to reduce the variance.

Ŝ(m)(fk) =
|x̃(m)

w (fk)|2

L
(4.52)

S̄(fk) =
1

M

M−1∑
m=0

Ŝ(m)(fk) (4.53)

This procedure yields estimates of S̄(fk) at frequencies fk = ∆fk with k running from zero
to K = Lfs. The spectral resolution is given by ∆f = 1

L . In principle, one could choose to
average over many segments to yield a very precise estimate of the PSD. However, in practice,
we are faced with limited amount of data and have to trade off between low variance and high
spectral resolution.

In our studies, we aim to validate the analytical PSD models with simulated data. In order
to check whether the PSD estimates S̄(fk) are consistent with the model (null hypothesis), we
conduct an hypothesis test. We define the confidence level γ that represents the probability
that all PSD estimates are inside a given confidence interval.

γ =

K−1∏
k

P
(
S̄−(fk) ≤ S̄(fk) ≤ S̄+(fk)

)
(4.54)

We reject the null hypothesis if a single estimate S̄(fk) resides outside the confidence interval.

The confidence intervals [S−(fk), S+(fk)] can be derived from the statistics of the PSD
estimates S̄(fk). It is easy to show that S̄(fk) has an expectation value of

E{S̄(fk)} =
(|w̃|2 ∗ S)(fk)

L
(4.55)

Moreover, it has been demonstrated in [91] that νS̄(fk)
E{S̄(fk)}

is χ2
ν distributed with ν = 2M degrees

of freedom. By attributing “equal confidence” to each of the K frequency bins we can write:

P
(
S̄−(fk) ≤ S̄(fk) ≤ S̄+(fk)

)
= γ

1
K = 1− α (4.56)

where α is the probability that the estimate resides outside the confidence interval. The limits
S̄−(fk) and S̄+(fk) are constructed symmetrically such that

P
(
S̄(fk) < S̄−(fk)

)
= P

(
S̄(fk) > S̄+(fk)

)
=
α

2
(4.57)

They can be calculated by using the χ2
ν distributional property.

4.4.3 Result

For the frequency range 10−4 to 1 Hz, the simulated and analytical PSD/CSD for TDI X
have been plotted (see figures 4.1, 4.2, 4.3 and 4.4). Red lines show the analytical formulation
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expressions. The blue dashed lines represent the instrument response to the simulated single
noises for a duration about 3 × 105 s (i.e, the test-mass acceleration noise in the following
example). The green envelope highlights the 99.73% confidence interval with respect to the
analytical formulation. The probability that a single point is outside of the confidence in-
terval is around 4.5×10−7 in case of a perfect agreement between analytical formulation and
simulation.

Figures 4.1, 4.2 and 4.3 show a great agreement for the test-mass acceleration noise PSD
in all uncorrelated, correlated and anti-correlated cases.

The CSD computation shows a slight disagreement (3 % of the simulated data are not in
the 99.73% confidence interval of the analytical formulation) with the simulated data from
LISANode. It is mainly around the zeros (corresponding to sub-multiples of the link frequency
c/L). In these particular frequency regions, the computation of the CSD is more sensitive to
numerical errors and deviations from the equal armlength approximation4.
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Figure 4.1: Uncorrelated test-mass acceleration noise cross-comparison. The simulated data
(red line) at 99.73% confidence interval (green area) are in great agreement with the analytical
formulation (blue dashed line).

4The confidence interval from the CSD estimation is more complicated so we might not use the the χ2-
distribution as in the case of PSD estimation. From personal communication with Martin Staab, October
2022.
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Figure 4.2: Correlated test-mass acceleration noise cross-comparison. The simulated data (red
line) at 99.73% confidence interval (green area) are in great agreement with the analytical
formulation (blue dashed line).

4.5 Conclusion

The modeling of the noises and their propagation from the measurements to the TDI variables
are crucial for the LISA mission. Indeed, the TDI algorithm will reduce some noise sources
while leaving others largely untouched. The impact of correlations between links can either
improve or deteriorate the performance of the mission at the TDI level. We have seen this in
the particular case of test mass acceleration noise, but it is also true for tilt-to-length [120] or
thermo-mechanical noises. In addition, many noises related to the application of the algorithm
itself, such as interpolation, clock noise residual or sideband modulation noise [77] can only
be expressed at TDI level. Whether it is to establish the noise budget of the mission or to
improve our understanding and knowledge of the noise for the needs of data analysis, the use
of these TDI models is necessary.

The TDI variables are the main data used to extract GW signals. Therefore it is important
to have a good modeling of the noise PSD and CSD for the various TDI variables in order to
search for GW sources, estimate their parameters and distinguish them from the instrumental
noises. This last point is particularly important for the search for stochastic backgrounds
which can easily be confused with the noises.

A method for computing analytically the PSD and the CSD of unsuppressed noises by TDI
has been presented, as well as reasonable approximations to be used. It has been applied to
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Figure 4.3: Anti-correlated test-mass acceleration noise cross-comparison. The simulated data
(red line) at 99.73% confidence interval (green area) are in great agreement with the analytical
formulation (blue dashed line).

the main noise sources considering all uncorrelated cases, and standard cases of correlation.
The analytical expressions have been provided in tables 4.2 and 4.3 for the TDI variables
X,Y,Z, A, E and T. They have been validated against simulations for X,Y,Z. This method can
be applied to any unsuppressed noises and to any TDI variables.

The transfer functions for the unsuppressed noises with laser locking are the same as the
ones without laser locking. It is not necessarily the case for suppressed noises, but we leave this
for future works. Actually the propagation of suppressed noises is usually more complicated.
Several studies are underway and should soon in publications.
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Figure 4.4: CSD uncorrelated TM acceleration noise. The simulated data (red line) at 99.73%
confidence interval (green area) are in slight disagreement with the analytical formulation
(blue dashed line) around the zeros.



Chapter 5

LISA Dynamics

One of the key technologies for the success of LISA is the control of the different bodies in the
system while keeping the reference bodies unperturbed along the sensitive axes of the LISA
constellation. As described in section 2.2, each spacecraft in the LISA constellation contains
two test-masses, which are used as the reference points for measuring the proper distance
changes among spacecraft. The test-masses are shielded by a housing included in the GRS,
which can monitor the position of test-masses and apply the electrostatic forces on them in
specific directions.

We must keep the test-masses inside spacecraft on their own geodesics, more precisely in a
free-falling state along the sensitive axes (axes of LISA laser links) to measure the spacetime
deformation. In the meantime, the MOSAs, the spacecraft and the test-masses on other
degrees of freedom than the sensitive axis should be controlled and set at their working points
by a system called DFACS[31] introduced in section 2.2.

In this chapter, we review the concept and convention of reference frames, which is helpful
for the LISA Dynamics simulation. Then, we derive the equations of motion for LISA objec-
tives. After that, a simplified DFACS model for LISANode simulation is presented with the
extended version to account for the motions of MOSAs, which is the main work in this thesis.
Finally, we discuss some preliminary results of LISA Dynamics implementation in LISANode.
This work is conducted in collaboration with H.Inchauspé.

5.1 Reference frames

First, we introduce the reference frames, in which we derive the equations of motion for the
dynamical objects in the next section. This section is mainly based on the technical notes of
the reference frames and notations for LISA Dynamics [87] and the to-be-published article of
H.Inchauspé et al. [89]

104
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The baseline for all reference frames is the Galilean frame, which we denote as J . This
frame is assumed to be inertial, fixed w.r.t. distant stars, and the axes defined by the J2000
convention, or the international coordinate reference frame [134].

The spacecraft body frame, denoted as B-frame, is the reference frame to define the actual
attitudes of the spacecraft, w.r.t J -frame. In the following, we give the detailed axes and
origin of this frame:

• x-axis êx/Bi is the unit vector associated with the bisector to the angle between two
MOSAs axes of spacecraft i.

• z-axis êz/Bi is the unit vector normal to the solar panel plane of spacecraft i.

• y-axis êy/Bi is deduced from the two unit vectors above, by êy/Bi = êz/Bi × êx/Bi .

• The origin of this frame, called Bi, is the center of mass of the whole spacecraft i
(platform and MOSAs). Since the MOSAs could move inside the spacecraft, the center
of mass B point is not static. For convenience to study the equation of motion in the
next section, we define the center of mass S of the spacecraft platform, i.e. spacecraft
excluding MOSAs, which is static.

The MOSA body frame, denoted as H-frame, is the reference frame to define the actual
attitudes of a single MOSA, w.r.t B-frame. In the following, we give the detailed axes and
origin of this frame:

• x-axis êx/Hi
is the unit vector along which the local OMS measurement of the spacecraft

to the TM is performed. This unit vector is also along the drag-free axis. We can retrieve
this unit vector from B-frame axes by rotating êx/Bi around êz/Bi by half of the actual
opening angle of two MOSAs. In the case of fixed MOSAs, this actual opening angle of
two MOSAs is 60o.

• z-axis êz/Hi
is the unit vector normal to the solar panel plane of spacecraft i, the same

as êz/Bi .

• y-axis êy/Hi
is deduced from the two unit vectors above, by êy/Hi

= êz/Hi
× êx/Hi

.

• The origin Hi of the frame Hi is identified as the geometrical center of the housing
belonging to MOSA i. We also denote pivot point Pi for the rotation of MOSAs. On
the other hand, the center of mass of MOSA i is denoted as Qi.

The test-mass body frame, denoted as Ti-frame, is the reference frame to define the actual
attitudes of a single test-mass i, w.r.t Hi-frame. The axes and origin are:
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• x-axis êx/Ti is the unit vector normal to the x-face of the test-mass. This axis is aligned
with êx/Hi

when the test-mass is nominally oriented with the containing MOSA.

• z-axis êz/Hi
is the unit vector normal to the z-face of the test-mass, and aligned with

êz/Hi
when the test-mass is nominally oriented with the containing MOSA.

• y-axis êy/Hi
is deduced from the two unit vectors above, by êy/Hi

= êz/Hi
× êx/Hi

.

• The origin of this frame is identified as the center of mass of the test-mass i, which we
denoted as Ti.

In addition to these above coordinates, we define two target body frames for the MOSAs
and spacecraft. These target frames will be useful for linearizing equations of motion in section
5.3.2.

The spacecraft target body frame, denoted as O-frame (or B∗-frame in some contexts),
helps to define the target attitudes of the spacecraft w.r.t. J -frame. This frame has been
built as the following:

• x-axis êx/O is the unit vector along the bisector of the constellation angle at the local
spacecraft.

• z-axis êz/O is the unit vector normal to LISA constellation plane.

• y-axis êy/O is deduced from the two unit vectors above, by êy/O = êz/O × êx/O.

• The origin of this frame O is the center of mass of the spacecraft following its ideal orbit.
In other words, this coordinate system moves in spacecraft geodesics without spurious
forces.

The MOSA target body frame, denoted as H∗-frame, helps to define the target attitudes
of the MOSA w.r.t. J -frame. We construct the axes of this frame and define its origin as:

• x-axis êx/H∗
i

is the unit vector aligned to the axis normal to the incoming wavefront. In
other words, it is parallel to the wave vector of the distant beam reaching the MOSA
i. This vector could also be deduced by rotating the êx/Oi

around êz/Oi
by half of

the constellation angle at local spacecraft. In the fixed MOSAs case, we assume that
the constellation forms a perfect equilateral triangle, so the constellation angle at every
spacecraft is 60o.

• z-axis êz/H∗
i

is the unit vector normal to the LISA constellation plane, the same as êz/Oi
.

• y-axis êy/H∗
i

is deduced from the two unit vectors above, by êy/H∗
i
= êz/H∗

i
× êx/H∗

i
.
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• The origin of this frame is the same as the origin of Hi-frame, which is the geometrical
center of the housing, Hi.

5.2 Equation of motions

Given the reference frames presented in the previous section, we can derive the equations of
motion for the LISA dynamical objects: the test-masses, the MOSAs and the spacecraft. We
treat the dynamics of the three LISA spacecraft independently since they are well-separated
from each other as 2.5 million kilometers away. In addition, the potential interaction from the
distant spacecraft, such as the wavefront defects to the local one, is negligible compared to the
local contributors like the micro-propulsion noise [89]. The equations of motion of the second
test-mass inside one spacecraft can be deduced from the first ones by symmetry. Hence, in
the following equations of this section, there is no index notation for LISA dynamics objects
as indicated in figure 2.5.

Each object has two kinds of motion: longitudinal and angular displacements. Fortunately,
the longitudinal motions of spacecraft (and of MOSA as well because it is attached to the
spacecraft) can be ignored since they do not contribute to the closed-loop dynamics [89].
Therefore, we will have only four types of equations of motion for LISA Dynamics. Among
them, the longitudinal motion of TMs is the most important one, and we will go through its
derivation carefully in the following subsection. The other three equations of motion, related
to the angular motions of the spacecraft, the MOSAs and the test-masses, will be worked out
in the later subsections.

These equations of motion were derived in the PhD thesis of H.Inchauspé [90] and extended
in recent technical notes and a to-be-published article [89]. Since these equations are essential
for the LISA Dynamics implementation, we review them in detail in this section. In addition,
most of the equations of motion presented following are cross-checked and validated with a
Mathematica notebook which we have developed. We expect the notebook could help derive
the equations of motion in more complex configurations of LISA Dynamics in the future.

5.2.1 Test-mass longitudinal motion

The test-masses are shielded by the GRS so that we can reduce the external forces applied to
them as much as possible. Although some residual forces could change the motion of test-mass,
such as the gravitational gradient forces of the spacecraft [19, 32], the actuation forces from
the GRS. We collect all terms of these contributions in Newton’s equation for the longitudinal
motion of the test-mass in the following expression:

d2

dt2

∣∣∣∣
J

[⃗
rT/J

]
=
∑ f⃗T

mtm
, (5.1)
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where the TM position r⃗T/J is expressed in Galilean frame J , with the associated mass mtm.
The total forces in the Galilean frame acted on the TM are summed in the right-hand side,∑

f⃗T . In order to examine the observable/dynamical quantities in the correct frames, we will
expand the equation (5.1) by decomposing the position of the test-mass in J -frame as

r⃗T/J = r⃗T/H + r⃗H/B + r⃗B/J , (5.2)

where r⃗T/H is related to the position of the test-mass w.r.t the GRS (or MOSA in general) in
H-frame, driven by the GRS actuation forces; r⃗H/B denotes the position of the MOSA w.r.t
the spacecraft in B-frame, which could be identified as the telescope rotation; the final term
is the position of the spacecraft r⃗B/J in the Galilean frame, which depends on the micro-
propulsion forces and other external forces applied on the spacecraft. The final term of the
double time derivative of r⃗B/J in the expansion of equation (5.1) is nothing but the left-hand
side of Newton’s equation for the spacecraft translational motion::

d2

dt2

∣∣∣∣
J

[⃗
rB/J

]
=
∑ f⃗B

msc
, (5.3)

where
∑

f⃗B is the total force applied on the spacecraft.

For the other terms, the equation of dynamical quantity should be expressed in associated
reference frame rather than the Galilean one J . We use the transport theorem to transform
the time derivative in any J -frame into the one in O-frame as follows1:

d

dt

∣∣∣∣
J

[⃗
rP/O

]
=

d

dt

∣∣∣∣
O

[⃗
rP/O

]
+ ω⃗O/J × r⃗P/O, (5.4)

where ω⃗O/J is the angular velocity vector of the O-frame w.r.t J -frame, × notates the cross
product of two vectors. From now on, we use notation ω⃗A/B for the angular velocity vector
of A-frame w.r.t. B-frame, in general. Apply this theorem for the double time derivative of
r⃗H/B gives:

d2

dt2

∣∣∣∣
J

[⃗
rH/B

]
=

(
d

dt

∣∣∣∣∣
B

+ ω⃗B/J×

)(
d

dt

∣∣∣∣∣
B

+ ω⃗B/J×

) [⃗
rH/B

]
=

d2

dt2

∣∣∣∣
B

[⃗
rH/B

]
+ 2ω⃗B/J ×

(
d

dt

∣∣∣∣
B

[⃗
rH/B

])
+

d

dt

∣∣∣∣
J

[
ω⃗B/J

]
× r⃗H/B + ω⃗B/J ×

(
ω⃗B/J × r⃗H/B

)
.

(5.5)

Unfortunately, the origin of the B-frame, which is the center of mass of the spacecraft, is
not time-invariant since the distribution of mass in the spacecraft would change due to, for

1This theorem is the transformation for the time derivative of any vector from a reference frame to another
reference frame, possibly rotating w.r.t. the first one [110].
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example, MOSA and test-mass motions. Therefore, we should express our equation in some
dynamical quantities with the associated time-invariant origin reference frame. Therefore, we
decompose the r⃗H/B in terms of vectorial quantities w.r.t static points such as pivot point P
of MOSA rotation and the spacecraft platform center of mass S:

r⃗H/B ≡
−−→
BHB =

−→
BSB +

−→
SPB +

−−→
PHB. (5.6)

We work out the time derivative for each term in the following. Since all of the position vectors
are in the B-frame, we omit the B notation for simplicity.

•
−→
SP is fixed in B-frame by construction, so all the B-frame time derivative terms related
to this quantity disappear.

• The time derivative of
−−→
PH in B-frame is driven by telescope rotation. We apply the

transport theorem (5.4) to get:

d

dt

∣∣∣∣
B

[−−→
PH

]
=

d

dt

∣∣∣∣
H

[−−→
PH

]
+ ω⃗H/B ×

−−→
PH

= 0 + ω⃗H/B ×
−−→
PH ≡ ω⃗H/B × r⃗PH/B (5.7)

d2

dt2

∣∣∣∣
B

[−−→
PH

]
=

d

dt

∣∣∣∣
H

[
ω⃗H/B

]
×
−−→
PH+ ω⃗H/B ×

(
ω⃗H/B ×

−−→
PH

)
≡ d

dt

∣∣∣∣
B

[
ω⃗H/B

]
× r⃗PH/B + ω⃗H/B ×

(
ω⃗H/B × r⃗PH/B

)
,

(5.8)

where we use the identity d
dt

∣∣
B
[
ω⃗H/B

]
= d

dt

∣∣
H
[
ω⃗H/B

]
+ ω⃗B/H × ω⃗H/B = d

dt

∣∣
H
[
ω⃗H/B

]
.

• The last component,
−→
BS, is more complex. First, we use the equation of the spacecraft

center of mass to decompose it into vectors with the time-invariant (static) origins in
B-frame.

0⃗ = mS
−→
BS+mH1

−−−→
BQ1 +mH2

−−−→
BQ2

= mS
−→
BS+mH1

(−→
BS+

−−→
SP1 +

−−−→
P1Q1

)
+mH2

(−→
BS+

−−→
SP2 +

−−−→
P2Q2

)
= (mS +mH1 +mH2)

−→
BS

+mH1

(−−−→
P1Q1 +

−−→
SP1

)
+mH2

(−−−→
P2Q2 +

−−→
SP2

)
(5.9)

⇒
−→
BS = −ϵ1

(−−−→
P1Q1 +

−−→
SP1

)
− ϵ2

(−−−→
P2Q2 +

−−→
SP2

)
, (5.10)

where we denoted ϵi is the ratio between the mass of MOSA i with the total mass of the
spacecraft. Then we apply the transport theorem (5.4) to convert the time derivative
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from B-frame to H-frame. Note that
−−→
SPi for i = 1, 2 are fixed in B-frame, we obtain:

− d

dt

∣∣∣∣
B

[−→
BS
]

= ϵ1

(
ω⃗H1/B ×

−−−→
P1Q1

)
+ ϵ2

(
ω⃗H2/B ×

−−−→
P2Q2

)
(5.11)

− d2

dt2

∣∣∣∣
B

[−→
BS
]

= ϵ1

[
d

dt

∣∣∣∣
H1

[
ω⃗H1/B

]
×
−−−→
P1Q1 + ω⃗H1/B ×

(
ω⃗H1/B ×

−−−→
P1Q1

)]

+ϵ2

[
d

dt

∣∣∣∣
H2

[
ω⃗H2/B

]
×
−−−→
P2Q2 + ω⃗H2/B ×

(
ω⃗H2/B ×

−−−→
P2Q2

)]
.

(5.12)

Then combining all the terms, we get

d

dt

∣∣∣∣
B

[⃗
rH/B

]
= ω⃗H/B ×

−−→
PH

−ϵ1
(
ω⃗H1/B ×

−−−→
P1Q1

)
− ϵ2

(
ω⃗H2/B ×

−−−→
P2Q2

)
(5.13)

d2

dt2

∣∣∣∣
B

[⃗
rH/B

]
=

d

dt

∣∣∣∣
B

[
ω⃗H/B

]
×

−−→
PH+ ω⃗H/B ×

(
ω⃗H/B ×

−−→
PH

)
−ϵ1

[
d

dt

∣∣∣∣
H1

[
ω⃗H1/B

]
×
−−−→
P1Q1 + ω⃗H1/B ×

(
ω⃗H1/B ×

−−−→
P1Q1

)]

−ϵ2

[
d

dt

∣∣∣∣
H2

[
ω⃗H2/B

]
×
−−−→
P2Q2 + ω⃗H2/B ×

(
ω⃗H2/B ×

−−−→
P2Q2

)]
(5.14)

Substituting the last two equations into (5.5):

d2

dt2

∣∣∣∣
J

[⃗
rH/B

]
=

d

dt

∣∣∣∣
B

[
ω⃗H/B

]
×
−−→
PH+ ω⃗H/B ×

(
ω⃗H/B ×

−−→
PH

)
− ϵ1

[
d

dt

∣∣∣∣
B

[
ω⃗H1/B

]
×
−−−→
P1Q1 + ω⃗H1/B ×

(
ω⃗H1/B ×

−−−→
P1Q1

)]
− ϵ2

[
d

dt

∣∣∣∣
B

[
ω⃗H2/B

]
×
−−−→
P2Q2 + ω⃗H2/B ×

(
ω⃗H2/B ×

−−−→
P2Q2

)]
+ 2ω⃗B/J ×

[
ω⃗H/B ×

−−→
PH− ϵ1

(
ω⃗H1/B ×

−−−→
P1Q1

)
− ϵ2

(
ω⃗H2/B ×

−−−→
P2Q2

)]
+

d

dt

∣∣∣∣
J

[
ω⃗B/J

]
× r⃗H/B + ω⃗B/J ×

(
ω⃗B/J × r⃗H/B

)
(5.15)
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The time derivative of the last component in (5.2), r⃗T/H, is deduced by applying transport
theorem (5.4). That gives us:

d2

dt2

∣∣∣∣
J

[⃗
rT/H

]
=

d2

dt2

∣∣∣∣
H

[⃗
rT/H

]
+ 2ω⃗H/J ×

(
d

dt

∣∣∣∣
H

[⃗
rT/H

])
+

d

dt

∣∣∣∣
J

[
ω⃗H/J

]
× r⃗T/H + ω⃗H/J ×

(
ω⃗H/J × r⃗T/J

)
.

(5.16)

We can break down the angular velocity vector ω⃗H/J = ω⃗H/B + ω⃗B/J since this quantity is
additive [110], and obtain:

d2

dt2

∣∣∣∣
J

[⃗
rT/H

]
=

d2

dt2

∣∣∣∣
H

[⃗
rT/H

]
+ 2ω⃗H/B ×

d

dt

∣∣∣∣
H

[⃗
rT/H

]
+ 2ω⃗B/J × d

dt

∣∣∣∣
H

[⃗
rT/H

]
+

d

dt

∣∣∣∣
B

[
ω⃗H/B

]
× r⃗T/H +

(
ω⃗B/J × ω⃗H/B

)
× r⃗T/H +

d

dt

∣∣∣∣
J

[
ω⃗B/J

]
× r⃗T/H

+ ω⃗H/B ×
(
ω⃗H/B × r⃗T/H

)
+ ω⃗H/B ×

(
ω⃗B/J × r⃗T/H

)
+ ω⃗B/J ×

(
ω⃗H/B × r⃗T/H

)
+ ω⃗B/J ×

(
ω⃗B/J × r⃗T/H

)
. (5.17)

To simplify the equation, we can use Jacobi identity a⃗× (⃗b× c⃗) + b⃗× (c⃗× a⃗) + c⃗× (⃗a× b⃗) = 0⃗,
and cross-product property a⃗× b⃗ = −b⃗× a⃗, in practice:

ω⃗H/B ×
(
ω⃗B/J × r⃗T/H

)
+ ω⃗B/J ×

(⃗
rT/H × ω⃗H/B

)
+r⃗T/H ×

(
ω⃗H/B × ω⃗B/J

)
= 0⃗

⇒ ω⃗H/B ×
(
ω⃗B/J × r⃗T/H

)
+
(
ω⃗B/J × ω⃗H/B

)
× r⃗T/H

= ω⃗B/J ×
(
ω⃗H/B × r⃗T/H

)
. (5.18)

Hence,

d2

dt2

∣∣∣∣
J

[⃗
rT/H

]
=

d2

dt2

∣∣∣∣
H

[⃗
rT/H

]
+ 2ω⃗H/B ×

d

dt

∣∣∣∣
H

[⃗
rT/H

]
+ 2ω⃗B/J × d

dt

∣∣∣∣
H

[⃗
rT/H

]
+

d

dt

∣∣∣∣
B

[
ω⃗H/B

]
× r⃗T/H +

d

dt

∣∣∣∣
J

[
ω⃗B/J

]
× r⃗T/H

+ ω⃗H/B ×
(
ω⃗H/B × r⃗T/H

)
+ ω⃗B/J ×

(
ω⃗B/J × r⃗T/H

)
+ 2ω⃗B/J ×

(
ω⃗H/B × r⃗T/H

)
. (5.19)

Collecting all time derivatives of components in (5.2), which are derived in (5.3), (5.5),
(5.19), the equation of longitudinal motion of the test-mass (5.1) is expanded into following
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detailed form:

d2

dt2

∣∣∣∣
H

[⃗
rT/H

]
+ 2ω⃗H/B ×

d

dt

∣∣∣∣
H

[⃗
rT/H

]
+ 2ω⃗B/J × d

dt

∣∣∣∣
H

[⃗
rT/H

]
+

d

dt

∣∣∣∣
B

[
ω⃗H/B

]
× r⃗T/H +

d

dt

∣∣∣∣
J

[
ω⃗B/J

]
× r⃗T/H

+ ω⃗H/B ×
(
ω⃗H/B × r⃗T/H

)
+ ω⃗B/J ×

(
ω⃗B/J × r⃗T/H

)
+ 2ω⃗B/J ×

(
ω⃗H/B × r⃗T/H

)
+

d

dt

∣∣∣∣
B

[
ω⃗H/B

]
×
−−→
PH+ ω⃗H/B ×

(
ω⃗H/B ×

−−→
PH

)
− ϵ1

[
d

dt

∣∣∣∣
B

[
ω⃗H1/B

]
×
−−−→
P1Q1 + ω⃗H1/B ×

(
ω⃗H1/B ×

−−−→
P1Q1

)]
− ϵ2

[
d

dt

∣∣∣∣
B

[
ω⃗H2/B

]
×
−−−→
P2Q2 + ω⃗H2/B ×

(
ω⃗H2/B ×

−−−→
P2Q2

)]
+ 2ω⃗B/J ×

[
ω⃗H/B ×

−−→
PH− ϵ1

(
ω⃗H1/B ×

−−−→
P1Q1

)
− ϵ2

(
ω⃗H2/B ×

−−−→
P2Q2

)]
+

d

dt

∣∣∣∣
J

[
ω⃗B/J

]
× r⃗H/B + ω⃗B/J ×

(
ω⃗B/J × r⃗H/B

)
=
∑ f⃗T

mtm
−
∑ f⃗B

msc
(5.20)

Clearly, this equation describes the longitudinal position of a test-mass in a spacecraft
given some construction parameters such as the masses of test-masses, MOSAs and spacecraft,
housing centers, pivot points, center of mass of the platform, Etc. The inputs of the equation
are the forces applied on the test-mass (for example the actuation forces) and the spacecraft
(such as the micro-propulsion forces). The angular velocity vectors are also the inputs of the
above equation. However, they play a role as variables for other equations of motion, as in
the following subsections. Therefore, we will consider them as variables in equations.

5.2.2 Test-mass angular motion

Here, we derive the equation of the angular motion of the test-mass. Starting with the Euler
equation,

d

dt

∣∣∣∣
J

[
Itm/T ω⃗T /J

]
=
∑

t⃗T , (5.21)

where Itm/T is the inertia tensor of the test-mass w.r.t. its center of mass T , ω⃗T /J is the
angular velocity of the test-mass body frame w.r.t. J -frame,

∑
t⃗T is the total torque applied

on the test-mass. We can apply transport theorem (5.4) and note that the inertia tensor of
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the test-mass is constant in T -frame, so d
dt

∣∣
T
[
Itm/T

]
= 0, to obtain

Itm/T
d

dt

∣∣∣∣
H

[
ω⃗T /J

]
+ Itm/T

(
ω⃗H/J × ω⃗T /J

)
+ω⃗T /J ×

(
Itm/T ω⃗T /J

)
=
∑

t⃗T . (5.22)

We decompose the angular velocity vector ω⃗T /J = ω⃗T /H + ω⃗H/B + ω⃗B/J , and again apply
transport theorem to have:

Itm/T
d

dt

∣∣∣∣
H

[
ω⃗T /H

]
+ Itm/T

d

dt

∣∣∣∣
B

[
ω⃗H/B

]
+ Itm/T

d

dt

∣∣∣∣
J

[
ω⃗B/J

]
+
(
ω⃗T /H + ω⃗H/B + ω⃗B/J

)
×
[
Itm/T

(
ω⃗T /H + ω⃗H/B + ω⃗B/J

)]
+Itm/T

[(
ω⃗H/B + ω⃗B/J

)
× ω⃗T /H

]
=
∑

t⃗T . (5.23)

5.2.3 MOSA angular motion

In this subsection, we examine the equation that governs the motion of MOSA. This motion
is the rotation of the telescope attached in MOSA. This rotation is mainly due to the pointing
mechanism when we need to adjust the telescopes in all spacecraft to align with distant ones
and the jittering of the angular motion of the MOSAs. In detail, when the spacecraft rotates
by the thrust system of DFACS to follow the test-mass geodesics, the telescopes have to follow
the spacecraft rigidly in its rotation w.r.t. J -frame by a structure torque. We define this
torque applied on the telescope or precisely on the MOSA as:

t⃗struct
H =

d

dt

∣∣∣∣
J

[
Imo/Q ω⃗B/J

]
(5.24)

which is simply the Euler equation for the MOSA following the spacecraft rotation in J -frame.
We denoted Imo/Q as the inertia tensor of MOSA w.r.t. its center of mass Q.

On the other hand, there would be the relative angular motion between MOSA and space-
craft in H-frame, denoted as

∑
t⃗relH . These torques (with the structure torque we described

above) are the inputs of the following Euler equation for MOSA angular motion:

d

dt

∣∣∣∣
J

[
Imo/Q ω⃗H/J

]
=

∑
t⃗H

⇔ d

dt

∣∣∣∣
J

[
Imo/Q ω⃗H/B

]
+

d

dt

∣∣∣∣
J

[
Imo/Q ω⃗B/J

]
=

∑
t⃗relH + t⃗struct

H

⇒ d

dt

∣∣∣∣
H

[
Imo/Q ω⃗H/B

]
+ ω⃗H/J ×

(
Imo/Q ω⃗H/B

)
=

∑
t⃗relH , (5.25)

where we decompose the angular velocity vector ω⃗H/J = ω⃗H/B + ω⃗B/J and the total torque
applied on MOSA to get the second line, note that we have already defined the structure
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torque in (5.24); the final line is derived by using the transport theorem (5.4) from J -frame
to H-frame.

The MOSA inertia tensor is constant in H-frame so its time derivative in that frame will
disappear. Again decomposing ω⃗H/J = ω⃗H/B + ω⃗B/J , we get

Imo/Q
d

dt

∣∣∣∣
H

[
ω⃗H/B

]
+
(
ω⃗H/B + ω⃗B/J

)
×
(
Imo/Qω⃗H/B

)
=

∑
t⃗relH

(5.26)

5.2.4 Spacecraft angular motion

We use a similar procedure in the case of MOSA and test-mass angular motion. We derive the
equation of motion for the spacecraft rotation by starting with the Euler equation in J -frame:

d

dt

∣∣∣∣
J

[
Isc/B ω⃗B/J

]
=
∑

t⃗B. (5.27)

We want to express this equation in the spacecraft body frame B-frame like we have done
for the case of the test-mass in T -frame and the MOSA in H-frame. Unfortunately, in this
spacecraft case, the difficulty comes from the fact that the inertia tensor of the whole spacecraft
could change even in the B-frame due to the motions of the telescopes and test-masses. The
complete equations of motion for the spacecraft angular motion were worked out in [90]. Due
to its complexity and the limitation of the scope of our study, we will take the following
assumption:

Dynamics assumption 1

The motions of the telescopes and the test-masses inside the spacecraft do not change
the inertia tensor of the whole spacecraft significantly in the short time scale.

Hence, we can neglect the B-frame time derivative of the spacecraft inertia tensor in our
equations. We again use the transport theorem (5.4)to obtain:

Isc/B
d

dt

∣∣∣∣
B

[
ω⃗B/J

]
+ ω⃗B/J ×

(
Isc/B ω⃗B/J

)
=
∑

t⃗B. (5.28)

The equations (5.20), (5.23), (5.26), and (5.28) are the main objective of the LISA Dynam-
ics. The solution of those equations gives us the information of all LISA objects and will be a
part of the DFACS control loops which are essential for LISA operations. Unfortunately, these
equations are non-linear. For instance, the dynamical quantity ω⃗B/J , which is the variable
to solve in (5.28), exists in (5.20) including quadratic terms like ω⃗B/J ×

(
ω⃗B/J × r⃗T/H

)
. We

could try to solve these equations with general solvers using, for example, the Runge-Kutta
method, but this is out of the scope of this thesis. In the next section, we will introduce a way



5.3. Simulation model 115

to solve these equations with our implementation in the LISANode simulator. In particular,
we expand the equations of motion in the linearized form and write them in the state space
vector representation before implementation.

5.3 Simulation model

5.3.1 Linearisation of the equation of motion

In order to linearize the equations of motion, we use the target body frames introduced in
section 5.1 to break down the spacecraft and MOSA motions into two parts:

1. The first one is the displacement of the working point in the target frame w.r.t. J -frame,
which varies with the large margin but gradually over a long time (in years or months)
so that its effect is at very low frequencies and out of LISA frequency band.

2. The second part is related to the small fluctuation of LISA objects around their working
points, which is in LISA frequency band.

For instance, we decompose the angular velocities:

ω⃗B/J = ω⃗B/O + ω⃗O/J , (5.29)

ω⃗H/B = ω⃗H/H∗ + ω⃗H∗/O + ω⃗O/B. (5.30)

In the above equations, ω⃗O/J varies slowly in years so that we can use the annual average
for this quantity in the equations of motion. While ω⃗B/O, ω⃗H/H∗ are the LISA in-band jitter
motions of spacecraft and MOSA around their working point in target frame O and H∗,
respectively, they are treated by perturbation approach so we keep only their linear terms in
the equations of motion. The last term ω⃗H∗/O is defined by the rate change of the constellation
angle, which is also varying slowly over a long time so that we can use the annual average of
this term in the equations of motion.

In our study, to simplify the problem we use following assumption:

Dynamics assumption 2

We neglect the MOSA angular velocity, ω⃗H/B = 0⃗, in our derived equation of motion.

Hence, we do not consider the MOSA rotation as a dynamic variable in the first stage.
In particular, we neglect non-inertial forces and torques arising from the slow (out-of-band)
MOSA rotation. Hence, the equation of MOSA angular motion (5.26) no longer plays any
role. In addition, the equations of test-mass longitudinal motion (5.20) are simplified a lot in
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our limited study case. This assumption is temporary and physically unacceptable, but it is
still helpful in the first analysis stage before we advance with a complete study. Eventually,
we still consider some dominant terms due to the displacement in MOSA angular position in
other equations of motion to account for the effect of MOSAs motions. We will see that in
the subsection 5.3.3.

For convenience, especially in state space representation in the next subsection, we want
to express the vectorial quantities into specific reference frame as follows rules:

• Longitudinal displacements of test-masses are expressed in MOSA frames, i.e. Hi-frame.

• Test-mass angular velocities are expressed in their respective body frames, Ti.

• MOSA angular jitter are expressed in their respective body frames, Hi.

• Spacecraft angular velocities w.r.t. O-frame are expressed in its body frame B. While
the angular velocity of spacecraft target body frame w.r.t. Galilean frame is expressed
in O-frame.

• The force and torque vectors applied on test-masses are expressed in the MOSA target
body frame, H∗i -frame, or eventually MOSA body frame Hi-frame as explained in the
discussion following the dynamics assumption 1. For the forces and torques applied on
the spacecraft, we express them in the spacecraft target body O-frame.

As a result, we need to rotate some vectors which are represented in a preferable reference
frame, different from the one of equations of motion. We introduce some rotation matrices for
that purpose. For example, to rotate the spacecraft angular velocities, which are preferably
expressed in B-frame or J -frame, in (5.28) to be in H-frame, we express:

ω⃗B/O
H
= ω⃗ HB/O = THB ω⃗

B
B/O (5.31)

ω⃗O/J
H
= ω⃗ HO/J = THB TBO TOJ ω⃗ JO/J , (5.32)

where the rotation matrices are functions of the relative orientation of reference frames. For
instance, TBO = TBO

(
α⃗B/O

)
is the rotation matrix from the spacecraft target body O-frame to

the spacecraft body B-frame, where α⃗B/O is the Euler angles or attitude vector of the actual
spacecraft in the target spacecraft body O-frame. Its transpose matrix is TOB =

(
TBO
)T. Using

the short notation for sine (sx) and cosine (cx) functions and ZYX Cardan sequence convention
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[61], we define the rotation matrix function as follows:

T (α⃗) = T (ϕ, η, θ) =

1 0 0

0 cθ sθ

0 −sθ cθ


cη 1 −sη
0 1 0

sη 0 cη


 cϕ sϕ 0

−sϕ cϕ 0

0 0 1

 (5.33)

=

 cηcϕ cηsϕ −sη
sθsηcϕ − cθsϕ sθsηcϕ + cθsϕ cηsθ

cθsηcϕ + sθsϕ cθsηcϕ − sθcϕ cηcθ

 . (5.34)

We can also express any cross-product as a matrix product between a skew-symmetric
matrix

[
a⃗H
]× made out of vector a⃗ and target vector b⃗ as:

a⃗× b⃗
H
=
[
a⃗H
]×

b⃗H =

 0 −aHz aHy

aHz 0 −aHx
−aHy aHx 0


b
H
x

bHy

bHz

 (5.35)

With all the required material introduced above, we are ready to linearize our equations
of motion. First, let us consider the test-mass longitudinal motion, (5.20). We decompose
angular velocity as (5.29), ignore the angular velocity ω⃗H/B between H and B frames, and
apply the transport theorem for time derivative frame transformation to have:

d2

dt2

∣∣∣∣
H

[⃗
rT/H

]
+ 2

(
ω⃗B/O + ω⃗O/J

)
× d

dt

∣∣∣∣
H

[⃗
rT/H

]
+

(
d

dt

∣∣∣∣
O

[
ω⃗B/O

]
+ ω⃗O/J × ω⃗B/O +

d

dt

∣∣∣∣
J

[
ω⃗O/J

])
×
(⃗
rT/H + r⃗H/B

)
+
(
ω⃗B/O + ω⃗O/J

)
×
[(
ω⃗B/O + ω⃗O/J

)
×
(⃗
rT/H + r⃗H/B

)]
=
∑ f⃗T

mtm
−
∑ f⃗B

msc
. (5.36)

We use the dot notation to express the time derivative of vectorial quantities in the exact
frame in which the vectors are coordinated, for instance, d

dt

∣∣
H
[⃗
rT /H

]
= ˙⃗rT /H and rewrite the

equation in term of matrix representation to have::

¨⃗r HT/H + 2
[
ω⃗ HB/O + ω⃗ HO/J

]×
˙⃗r HT/H +

[
˙⃗ω HB/O + ˙⃗ω HO/J

]× (⃗
r HT/H + r⃗ HH/B

)
+
[
ω⃗ HB/O

]× [
ω⃗ HB/O

]× (⃗
r HT/H + r⃗ HH/B

)
+
[
ω⃗ HO/J

]× [
ω⃗ HO/J

]× (⃗
r HT/H + r⃗ HH/B

)
+ 2

[
ω⃗ HO/J

]× [
ω⃗ HB/O

]× (⃗
r HT/H + r⃗ HH/B

)
=
∑ f⃗HT

mtm
−
∑ f⃗HB

msc
. (5.37)

We want to express all the vectorial quantities in the related body reference frame we have
discussed previously, by using rotation matrices. Hence, the final form for the equation of
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longitudinal motion of test-mass is rewritten as:

mtm¨⃗r
H
T/H + 2mtm

[
THB ω⃗

B
B/O + THB T

B
O ω⃗

O
O/J

]×
˙⃗r HT/H

+mtm

[
THB

˙⃗ω BB/O + THB T
B
O
˙⃗ω OO/J

]× (⃗
r HT/H + r⃗ HH/B

)
+mtm

[
THB ω⃗

B
B/O

]× [
THB ω⃗

B
B/O

]× (⃗
r HT/H + r⃗ HH/B

)
+mtm

[
THB T

B
O ω⃗

O
O/J

]× [
THB T

B
O ω⃗

O
O/J

]× (⃗
r HT/H + r⃗ HH/B

)
+ 2mtm

[
THB T

B
O ω⃗

O
O/J

]× [
THB ω⃗

B
B/O

]× (⃗
r HT/H + r⃗ HH/B

)
=
∑

THT f⃗TT − mtm

msc

∑
THO f⃗OB . (5.38)

The same procedure is applied to other equations of motion. The test-mass angular motion
equation (5.23) is rewritten as follows

ITtm/T
˙⃗ω TT/H + ITtm/TT

T
B
˙⃗ω BB/O + ITtm/T

[
T TO ω⃗

O
O/J

]×
T TB ω⃗

B
B/O

+

([
ω⃗ TT/H

]×
+
[
T TB ω⃗

B
B/O

]×
+
[
T TO ω⃗

O
O/J

]×)
ITtm/T

(
ω⃗ TT/H + T TB ω⃗

B
B/O + T TO ω⃗

O
O/J

)
+ ITtm/T

([
T TB ω⃗

B
B/O

]×
+
[
T TO ω⃗

O
O/J

]×)
ω⃗ TT/H =

∑
t⃗TT . (5.39)

The spacecraft angular motion equation (5.28), worked out similarly, reads

IBsc/B
˙⃗ω BB/O + IBsc/BT

B
O
˙⃗ω OO/J + IBsc/B

[
TBO

˙⃗ω OO/J

]×
ω⃗ BB/O

+

([
ω⃗ BB/O

]×
+
[
TBO ω⃗

O
O/J

]×)
IBsc/B

(
ω⃗ BB/O + TBO ω⃗

O
O/J

)
=
∑

TBO t⃗
O
B . (5.40)

Finally, the spacecraft translational motion equation (5.3) has been rewritten in the same
way we did for the equation (5.38), from its simple form into:

msc¨⃗r
O
B/O +msc

[
˙⃗ω OO/J

]×
r⃗ OB/O

+msc

[
ω⃗ OO/J

]× [
ω⃗ OO/J

]×
r⃗ OB/O + 2msc

[
ω⃗ OO/J

]×
˙⃗r OB/O =

∑
f⃗ OB −mscT

T
O
¨⃗r OO/J (5.41)

5.3.2 State-space representation

In order to have a compact representation of our dynamical system described by the previous
equations of motion, we use the state-space model [121]. Accordingly, the system is constructed
by four matrices: the system matrix A, the input matrix B, the output matrix C, and the
feedforward matrix D, as well as two vectors: the state vector x⃗(t), and the input vector u⃗(t).
Depending on the matrices A,B and the initial state, we can have various system categories,
such as linear and non-linear systems, time-invariant and time-varying systems, Etc.
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The core of a state-space model is a set of the state-space equations, or shortly state
equations [122], which have the following form:

˙⃗x(t) = Ax⃗(t) +Bu⃗(t), (5.42)

y⃗(t) = Cx⃗(t) +Du⃗(t). (5.43)

With this formalism, the state of the system, which is expressed as state vector x⃗(t), consists
of a finite number of state variables. Given the initial values of the state vector at t0, the
input vector for t > t0, and the mathematical model for the relation between the input, state
and system itself, or matrices A,B in (5.42), the state variables could be well-determined at
any future moment t > t0. The first equation (5.42) describes the dynamical system, while
the equation (5.43) is called the observation equation. To understand better the meaning of
the two above equations, let us consider an example: the one-dimensional driven and damped
harmonic oscillation is described by the following equation of motion [110]:

¨⃗x = − k

m
x⃗− b

m
˙⃗x+

C0

m
eiω0t. (5.44)

This system can be represented in state-space model with the state vector x⃗ =

(
x⃗
˙⃗x

)
, the input

u⃗(t) = C0e
iω0t, and the state equation (5.42) reads

˙⃗x = Ax⃗+Bu⃗ =

(
0 1
−k
m

−b
m

)
x⃗+

(
0
1
m

)
u⃗. (5.45)

The A matrix contains the dynamics of the system while the B gives the influence of the
external forces or noises on the system, in this case, the driven force applied on the oscillation.
Because not all state variables are measurable or in our interest, we need to construct the
output vector y⃗(t) from the input and state vectors. Accordingly, the C matrix determines the
measurement of the dynamical system, which gives the direct relation between the dynamical
variables and the observable ones. For instance, the C matrix should include the scaling factor
of the measurement devices (such as ruler, thermometer, ammeter, sensor, Etc.) if they scale
the measured values themselves. On the other hand, the D matrix gives information on the
interaction of the measurement system with the input. In the simulation, we use separated
models for the in-loop measurements so that the noise, i.e. sensing noises, will be added via
these blocks later, see figure 5.1.

From the above example, we see that the state vector helps to transform a differential
equation of order 2 into two differential equations of order 1. Indeed, the state vector is
constructed such that the dynamical differential equation of n order governing the system
could then be written as n differential equation of order 1. Hence, they are easier to program
in a simulator [122].
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Back to our LISA dynamics equations, we can construct a state vector from dynamical
variables as follows:

x⃗(t) =


r⃗ OB/O
α⃗B/O
˙⃗r OB/O
ω⃗ BB/O

⊕


r⃗ H1

T1/H1

α⃗T1/H1

r⃗ H2

T2/H2

α⃗T2/H2

⊕


˙⃗r H1

T1/H1

ω⃗ T1T1/H1

˙⃗r H2

T2/H2

ω⃗ T2T2/H2
,

 (5.46)

where we have used operator ⊕ for appending column matrices to have final matrix of 36x1
dimension. We define the dynamical variables contained in the state vector as follows

• r⃗ BX/A : longitudinal position vector of object X in the preferable reference frame A,
expressed in reference frame B in the equation of motion.

• α⃗A/B ≡ αBA/B: angular position or attitude vector of the object A attached in its body
reference frame A w.r.t. reference frame B, always expressed in preferable reference
frame B, so we omitted the upper index.

• ˙⃗r BX/A : longitudinal velocity vector of object X in the preferable reference frame A,
expressed in reference frame B in the equation of motion.

• ω⃗ CA/B : angular velocity vector of the object A attached in its body reference frame A
w.r.t reference frame B, expressed in reference frame C. According to our notation of
the attitude vector α⃗A/B above, one can deduce a useful expression:

ω⃗ BA/B = ˙⃗αA/B, (5.47)

which is valid only for small α⃗A/B angles. The attitudes attributed to the state vector
correspond to the small jitter rotation motion around working points, so this assumption
is well established.

Hence, our state vector has 12 vectorial variables or 36 dynamical variables. Meanwhile, the
input vector is defined as

u⃗(t) =

[⃗
f OB
t⃗ OB

]
⊕


f⃗ H1
T1

t⃗ H1
T1

f⃗ H2
T2

t⃗ H2
T2

⊕


f⃗r
H1

T1

t⃗r
H1

T1

f⃗r
H2

T2

t⃗r
H2

T2

 , (5.48)

where the force and torque acting on the spacecraft are respectively f⃗ OB , t⃗ OB . It is similar
to the ones acting on each test-mass inside the spacecraft, which corresponds to the second
matrix term. The last matrix term contains the recoil forces f⃗r

H
T and recoil torques t⃗r

H
T of
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the spacecraft acting on the test-masses, which is considered as the non-inertial forces when
we examine the equation of motion in the test-mass frames (non-inertial).

In our study, we modify the state equations, (5.42), (5.43) to be:

M (t, x⃗) ˙⃗x(t) = A (t, x⃗) x⃗(t) +B (t, x⃗) u⃗(t) (5.49)

y⃗(t) = C (t, x⃗) x⃗(t) +D (t, x⃗) u⃗(t), (5.50)

where we add the M matrix due to the complexity of our equations of motion. These equations
could return to the original state equations as:

˙⃗x(t) = M−1 (t, x⃗)A (t, x⃗) x⃗(t) +M−1 (t, x⃗)B (t, x⃗)M (t, x⃗)u⃗(t) (5.51)

y⃗(t) = C (t, x⃗) x⃗(t) +D (t, x⃗) u⃗(t). (5.52)

Interestingly, we also add the arguments time and state vector for the matrices M,A,B,C,D,
so that we can even describe a non-linear and time-varying dynamical system.

Then the equations (5.38), (5.39), (5.40), (5.41) are compactly expressed by following
matrix equation:

M (t, x⃗)



˙⃗r OB/O
ω⃗ OB/O
¨⃗r OB/O
˙⃗ω BB/O
˙⃗r H1

T1/H1

ω⃗ H1

T1/H1

˙⃗r H2

T2/H2

ω⃗ H2

T2/H2

¨⃗r H1

T1/H1

˙⃗ω T1T1/H1

¨⃗r H2

T2/H2

˙⃗ω T2T2/H2



= A (t, x⃗)



r⃗ OB/O
α⃗B/O
˙⃗r OB/O
ω⃗ BB/O
r⃗ H1

T1/H1

α⃗T1/H1

r⃗ H2

T2/H2

α⃗T2/H2

˙⃗r H1

T1/H1

ω⃗ T1T1/H1

˙⃗r H2

T2/H2

ω⃗ T2T2/H2



+B (t, x⃗)



f⃗ OB
t⃗ OB
f⃗ H1
T1

t⃗ H1
T1

f⃗ H2
T2

t⃗ H2
T2

f⃗r
H1

T1

t⃗r
H1

T1

f⃗r
H2

T2

t⃗r
H2

T2



. (5.53)

The M (t, x⃗) ,A (t, x⃗) ,B (t, x⃗) are lengthy, so we use some short notations for zero-matrix and
identity matrix, respectively,

O3 =

0 0 0

0 0 0

0 0 0

 , I3 =

1 0 0

0 1 0

0 0 1

 , (5.54)
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and also write non-zero components implicitly as follows:

A (t, x⃗) =



O3 O3 A1,3 O3 O3 O3 O3 O3 O3 O3 O3 O3

O3 O3 O3 O3 A2,4 O3 O3 O3 O3 O3 O3 O3

A3,1 O3 O3 O3 O3 O3 O3 O3 O3 O3 O3 O3

O3 O3 O3 O3 O3 O3 O3 O3 O3 O3 O3 O3

O3 O3 O3 O3 O3 O3 O3 O3 A5,9 O3 O3 O3

O3 O3 O3 O3 O3 O3 O3 O3 O3 A6,10 O3 O3

O3 O3 O3 O3 O3 O3 O3 O3 O3 O3 A7,11 O3

O3 O3 O3 O3 O3 O3 O3 O3 O3 O3 O3 A8,12

O3 O3 O3 O3 A9,5 O3 O3 O3 O3 O3 O3 O3

O3 O3 O3 O3 O3 O3 O3 O3 O3 O3 O3 O3

O3 O3 O3 O3 O3 O3 A11,7 O3 O3 O3 O3 O3

O3 O3 O3 O3 O3 O3 O3 O3 O3 O3 O3 O3



,

(5.55)
where

A1,3 = A2,4 = I3 (5.56)

A3,1 = −msc

([
˙⃗ω OO/J

]×
+
[
ω⃗ OO/J

]× [
ω⃗ OO/J

]×)
(5.57)

A5,9 = A6,10 = A7,11 = A8,12 = I3 (5.58)

A9,5 = −mtm1

([
TH1
B TBO

˙⃗ω OO/J

]×
+
[
TH1
B ω⃗ BB/O

]× [
TH1
B ω⃗ BB/O

]×
+
[
TH1
B TBO ω⃗

O
O/J

]× [
TH1
B TBO ω⃗

O
O/J

]×
+ 2

[
TH1
B TBO ω⃗

O
O/J

]× [
TH1
B ω⃗ BB/O

]×)
(5.59)

A11,7 = −mtm2

([
TH2
B TBO

˙⃗ω OO/J

]×
+
[
TH2
B ω⃗ BB/O

]× [
TH2
B ω⃗ BB/O

]×
+
[
TH2
B TBO ω⃗

O
O/J

]× [
TH2
B TBO ω⃗

O
O/J

]×
+ 2

[
TH2
B TBO ω⃗

O
O/J

]× [
TH2
B ω⃗ BB/O

]×)
. (5.60)
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M (t, x⃗) =



M1,1 O3 O3 O3 O3 O3 O3 O3 O3 O3 O3 O3

O3 M2,2 O3 O3 O3 O3 O3 O3 O3 O3 O3 O3

M3,1 O3 M3,3 O3 O3 O3 O3 O3 O3 O3 O3 O3

O3 M4,2 O3 M4,4 O3 O3 O3 O3 O3 O3 O3 O3

O3 O3 O3 O3 M5,5 O3 O3 O3 M5,9 O3 O3 O3

O3 O3 O3 O3 O3 M6,6 O3 O3 O3 O3 O3 O3

O3 O3 O3 O3 O3 O3 M7,7 O3 O3 O3 M7,11 O3

O3 O3 O3 O3 O3 O3 O3 M8,8 O3 O3 O3 O3

O3 M9,2 O3 M9,4 M9,5 O3 O3 O3 M9,9 O3 O3 O3

O3 M10,2 O3 M10,4 O3 M10,6 O3 O3 O3 M10,10 O3 O3

O3 M11,2 O3 M11,4 O3 O3 M11,7 O3 O3 O3 M11,11 O3

O3 M12,2 O3 M12,4 O3 O3 O3 M12,8 O3 O3 O3 M12,12



,

(5.61)
where

M1,1 = I3 (5.62)

M2,2 = TBO (5.63)

M3,1 = 2msc

[
ω⃗ OO/J

]×
(5.64)

M3,3 = mscI3 (5.65)

M4,2 =

{([
ω⃗ BB/O

]×
+
[
TBO ω⃗

O
O/J

]×)
IBsc/B + IBsc/B

[
TBO ω⃗

O
O/J

]×
−
[
IBsc/BT

B
O ω⃗

O
O/J

]×}
TBO

(5.66)

M4,4 = IBsc/B (5.67)

M5,5 = I3 (5.68)

M6,6 = TH1
T1 (5.69)

M7,7 = I3 (5.70)

M8,8 = TH2
T2 (5.71)
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M9,2 = −mtm1

([
TH1
B ω⃗ BB/O

]× [
TH1
B r⃗BH1/B

]×
+ 2

[
TH1
B TBO ω⃗

O
O/J

]× [
TH1
B r⃗BH1/B

]×)
TH1
B TBO

(5.72)

M9,4 = −mtm1

[⃗
r H1

T1/H1
+ TH1

B r⃗BH1/B

]×
TH1
B (5.73)

M9,5 = 2mtm1

[
TH1
B ω⃗ BB/O + TH1

B TBO ω⃗
O

O/J

]×
(5.74)

M9,9 = mtm1I3 (5.75)

M10,2 =

{
IT1tm1/T1

[
T T1H1

TH1
B TBO ω⃗

O
O/J

]×
+

([
ω⃗ T1T1/H1

]×
+
[
T T1H1

TH1
B ω⃗ BB/O

]×
+
[
T T1H1

TH1
B TBO ω⃗

O
O/J

]×)
IT1tm1/T1

}
T T1H1

TH1
B TBO

(5.76)

M10,4 = IT1tm1/T1
(5.77)

M10,6 =

{([
ω⃗ T1T1/H1

]×
+
[
T T1H1

TH1
B ω⃗ BB/O

]×)
IT1tm1/T1

+IT1tm1/T1

([
T T1H1

TH1
B ω⃗ BB/O

]×
+
[
T T1H1

TH1
B TBO ω⃗

O
O/J

]×)}
T T1H1

(5.78)

M10,10 = IT1tm1/T1
(5.79)

M11,2 = −mtm2

([
TH2
B ω⃗ BB/O

]× [⃗
rH2

H2/B

]×
+ 2

[
TH2
B TBO ω⃗

O
O/J

]× [
TH2
B r⃗BH2/B

]×)
TH2
B TBO (5.80)

M11,4 = −mtm2

[⃗
r H2

T2/H2
+ r⃗H2

H2/B

]×
TH2
B (5.81)

M11,7 = 2mtm2

[
TH2
B ω⃗ BB/O + TH2

B TBO ω⃗
O

O/J

]×
(5.82)

M11,11 = mtm2I3 (5.83)

M12,2 =

{
IT2tm2/T2

[
T T2H2

TH2
B TBO ω⃗

O
O/J

]×
+

([
ω⃗ T2T2/H2

]×
+
[
T T2H2

TH2
B ω⃗ BB/O

]×
+
[
T T2H2

TH2
B TBO ω⃗

O
O/J

]×)
IT2tm2/T2

}
T T2H2

TH2
B TBO

(5.84)

M12,4 = IT2tm2/T2
(5.85)

M12,8 =

{([
ω⃗ T2T2/H2

]×
+
[
T T2H2

TH2
B ω⃗ BB/O

]×)
IT2tm2/T2

+IT2tm2/T2

([
T T2H2

TH2
B ω⃗ BB/O

]×
+
[
T T2H2

TH2
B TBO ω⃗

O
O/J

]×)}
T T2H2

(5.86)

M12,12 = IT2tm2/T2
. (5.87)
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B (t, x⃗) =



O3 O3 O3 O3 O3 O3 O3 O3 O3 O3

O3 O3 O3 O3 O3 O3 O3 O3 O3 O3

B3,1 O3 O3 O3 O3 O3 B3,7 O3 B3,9 O3

O3 B4,2 O3 O3 O3 O3 B4,7 B4,8 B4,9 B4,10

O3 O3 O3 O3 O3 O3 O3 O3 O3 O3

O3 O3 O3 O3 O3 O3 O3 O3 O3 O3

O3 O3 O3 O3 O3 O3 O3 O3 O3 O3

O3 O3 O3 O3 O3 O3 O3 O3 O3 O3

B9,1 O3 B9,3 O3 O3 O3 B9,7 O3 O3 O3

O3 O3 O3 B10,4 O3 O3 O3 B10,8 O3 O3

B11,1 O3 O3 O3 B11,5 O3 O3 O3 B11,9 O3

O3 O3 O3 O3 O3 B12,6 O3 O3 O3 B12,10



, (5.88)

where

B3,1 = I3

B3,7 = −TOB TBH1

B3,9 = −TOB TBH2

,

B4,2 = TBO

B4,7 = −
[⃗
rBH1/B

]×
TBH1

B4,8 = −TBH1

B4,9 = −
[⃗
rBH2/B

]×
TBH2

B4,10 = −TBH2

,

B9,1 = −mtm1

msc
TH1
B TBO

B9,3 = I3

B9,7 = I3

B10,4 = T T1H1

B10,8 = T T1H1

,

B11,1 = −mtm2

msc
TH2
B TBO

B11,5 = I3

B11,9 = I3

B12,6 = T T2H2

B12,10 = T T2H2

.

(5.89)

The dimensions of the matrices presented above are 36x36 for A,M matrices, and 36x30 for
B matrix. We see that some elements of the matrix A,B,M involve some dynamical variables
of the state vector, which are colored in red, so they attribute to non-linear terms in the
equations of motion. We note that the rotation matrices TBO = TBO(α⃗B/O), T

Ti
Hi

= T TiHi

(
α⃗Ti/Hi

)
,

and their transpose are also dynamical-variable dependent. On the other hand, the leftover
rotation matrix THi

B = THi
B (α⃗Hi/B) and its transpose depending on the breathing angle of the

MOSA i in the B-frame will be the objectives to adapt in the simulation for studying the effect
of rotating MOSAs. We will revisit this point later on in the implementation section 5.3.4.
Therefore, to linearize the equations, we will use the target values of all dynamic variables
in the factor in front of any components of the state vector, which are null values. In other
words, dynamical variables are the perturbations around their working points or target values.
We can keep only the first order of dynamical variable terms in the equations of motion. The
rotation matrices in A,B,M are identity in this approximation, i.e. TBO = THi

B = I3.
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Dynamics assumption 3

We keep only the linear terms of the dynamical variables in the equation of motion,
assuming they stay very close to their dynamical target values, which is guaranteed by
the control-loop of DFACS.

Consequently, we have a new set of equations of motion that describes the linear system.
In particular, we evaluate the state matrices M,A,B at the target points x⃗target. In addition,
the time-dependent terms in these matrices are computed as the average over the simulation
time, which is a good approximation for the simulation time much less than 1 year. The
equation (5.49) becomes:

Mtarget (t, x⃗target) ˙⃗x(t) = Atarget (t, x⃗target) x⃗(t) +Btarget (t, x⃗target) u⃗(t). (5.90)

For the observation equation (5.50), the matrices are defined as follows:

C (t, x⃗) =


O3 C1,2 O3 O3 O3 O3 O3 O3 O3 O3 O3 O3

O3 O3 O3 O3 C2,5 O3 O3 O3 O3 O3 O3 O3

O3 O3 O3 O3 O3 C3,6 O3 O3 O3 O3 O3 O3

O3 O3 O3 O3 O3 O3 C4,7 O3 O3 O3 O3 O3

O3 O3 O3 O3 O3 O3 O3 C5,8 O3 O3 O3 O3

 , (5.91)

D (t, x⃗) = 0, (5.92)

where
C1,2 = C2,5 = C3,6 = C4,7 = C5,8 = I3. (5.93)

Hence, the observation state vector y⃗ =
(
α⃗B/O, r⃗

H1

T1/H1
, α⃗T1/H1

, r⃗ H2

T2/H2
, α⃗T2/H2

)
, which are the

quantities observed by the sensors. The sensing noises of the measurement system, which are
usually embedded in D (t, x⃗), will be modelled separately, so we set it null here.

5.3.3 Implementation

So far, we derive all necessary equations of motion for LISA dynamics and write them in the
linearization form in the target reference frames. In this section, we present the implementation
of the LISA Dynamics in the LISANode simulator.

The idea is to simulate the dynamics of one spacecraft included in the LISA to first check
the implementation before connecting it to the full LISA simulation graph LISA in LISANode

(see section 2.8). The first implementation of LISA Dynamics for one spacecraft has been done
by H.Inchauspé, O.Sauter, P.Wass and J.B.Bayle [89]. Based on that implementation, we apply
some modifications to account for the motion of MOSAs, which we called rotating MOSAs
case. The top-level graph of the LISA dynamics implementation in LISANode is ScDynamics ,
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which is constructed by LISADyn graph. LISADyn is the instance of the closed-loop

system, which is implemented in ClosedLoopSystem graph, with out-of-loop sources such as
sensing noise, direct forces and torques, guidances. Some input parameters of this graph are
provided from LPF. In addition, the test-mass acceleration noise model built from LPF data
attributes to the direct forces applied on the test-mass in the closed-loop system. This noise
plays a role of a spurious force which influences the test-mass in LPF mission. We will see in
section 5.4 that the relative motion between test-mass and spacecraft is about this noise level
if the DFACS works perfectly. The outputs are the in-loop measurements (DWS, IFO sensing,
GRS sensing) and the commanded forces and torques of DFACS. ClosedLoopSystem is the
assemble of DFACS features, including DWS, GRS and IFO sensing measurements, the Micro-
Propulsion System (MPS) and GRS actuation systems. Importantly, the core of this closed-
loop system, the equations of motions, has been implemented in the EomMovingMosas or

EomFixedMosas graph depending on the considered MOSAs configuration, i.e. fixed or
moving. This graph is connected to the total forces and torques blocks, as the inputs u⃗ for
(5.90), and also to the measurement blocks for feeding the current state-space vector to the
DFACS features. The state-space matrices are created outside the graph and used as the fixed
parameters. We illustrate the connection of ClosedLoopSystem graph in figure 5.1.

The DFACS graph is built from a Matlab controller developed by H.Inchauspé et al. [90],
which is also based on the state space representation for dynamics demonstration.

Since the main work of this thesis focuses on implementing the rotating MOSAs configura-
tion, we would like to analyze the graph of the equation of motion carefully. First, we need to
evaluate the matrices Mtarget,Atarget,Btarget,C,D in the linearized equations of motion (5.90)
and (5.50). In our study, the components of these matrices are built time-independently. To
promote any term to be time-dependent, one can extract the corresponding contribution from
EoM graph, build a suitable node/sub-graph to make it as an external, time-varying term,
and then connect that node/sub-graph to the EoM graph. This trick allows us to introduce
MOSA rotation while keeping a generally linear, time-invariant framework for the simulation
model. The matrix Atarget has the same zero components as the A (t, x⃗) in (5.55), with other
components showed in the following:

A1,3 = A2,4 = I3 (5.94)

A3,1 = −msc

([
˙⃗ω OO/J

]×
+
[
ω⃗ OO/J

]× [
ω⃗ OO/J

]×)
(5.95)

A5,9 = A6,10 = A7,11 = A8,12 = I3 (5.96)

A9,5 = −mtm1

([
TH1
B

˙⃗ω OO/J

]×
+
[
TH1
B ω⃗ OO/J

]× [
TH1
B ω⃗ OO/J

]×)
(5.97)

A11,7 = −mtm2

([
TH2
B

˙⃗ω OO/J

]×
+
[
TH2
B ω⃗ OO/J

]× [
TH2
B ω⃗ OO/J

]×)
. (5.98)
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In-loop
measurements

Commaned
forces/torques

Figure 5.1: Schematic of ClosedLoopSystem graph. The central block is EoM graph,

which needs the total net forces/torques in the input vector u⃗. The outputs of EoM are
the dynamical state vector x⃗, which is used to monitor the in-loop measurements such as
differential wavefront sensing (DWS), Interferometer (IFO) sensing and Gravitational Ref-
erence Sensor (GRS) sensing. These in-loop measurements are, in fact, the components of
the observational state vector y⃗. The model for the measurements in DWS , IFOsensing

and GRSsensing graphs is simply the sum of the components of x⃗ and the associated

sensing noise. These sensing noises are the input of the whole ClosedLoopSystem graph.

The outputs of in-loop measurements are then fed to the DFACS graph to provide the
demanded forces and torques to the Gravitational Reference Sensor (GRS) system and Micro-
Propulsion System (MPS) in order to apply the forces/torques on test-mass and spacecraft,
respectively. The applied forces/torques from GRS and MPR systems are the sum of de-
manded ones with the actuation noises. Finally, the applied forces/torques are combined with
the direct forces/torques, which are the inputs of the ClosedLoopSystem graph, to get the

total net forces/torques, as the input vector u⃗ of the EoM graph. That completes the control
loops.
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Similarly, we work out for the Mtarget in (5.61). The non-zero components are:

M1,1 =M2,2 = I3 (5.99)

M3,1 = 2msc

[
ω⃗ OO/J

]×
(5.100)

M3,3 = mscI3 (5.101)

M4,2 =

{[
ω⃗ OO/J

]×
IBsc/B + IBsc/B

[
ω⃗ OO/J

]×
−
[
IBsc/Bω⃗

O
O/J

]×}
(5.102)

M4,4 = IBsc/B (5.103)

M5,5 =M6,6 =M7,7 =M8,8 = I3 (5.104)

M9,2 = −2mtm1

[
TH1
B ω⃗ OO/J

]× [
TH1
B r⃗BH1/B

]×
TH1
B (5.105)

M9,4 = −mtm1

[
TH1
B r⃗BH1/B

]×
TH1
B (5.106)

M9,5 = 2mtm1

[
TH1
B ω⃗ OO/J

]×
(5.107)

M9,9 = mtm1I3 (5.108)

M10,2 =

{
IT1tm1/T1

[
TH1
B ω⃗ OO/J

]×
+
[
TH1
B ω⃗ OO/J

]×
IT1tm1/T1

}
TH1
B (5.109)

M10,4 = IT1tm1/T1
(5.110)

M10,6 = IT1tm1/T1

[
TH1
B ω⃗ OO/J

]×
(5.111)

M10,10 = IT1tm1/T1
(5.112)

M11,2 = −2mtm2

[
TH2
B ω⃗ OO/J

]× [
TH2
B r⃗BH2/B

]×
TH2
B (5.113)

M11,4 = −mtm2

[⃗
rH2

H2/B

]×
TH2
B (5.114)

M11,7 = 2mtm2

[
TH2
B ω⃗ OO/J

]×
(5.115)

M11,11 = mtm2I3 (5.116)

M12,2 =

{
IT2tm2/T2

[
TH2
B ω⃗ OO/J

]×
+
[
TH2
B ω⃗ OO/J

]×
IT2tm2/T2

}
TH2
B (5.117)

M12,4 = IT2tm2/T2
(5.118)

M12,8 = IT2tm2/T2

[
TH2
B ω⃗ OO/J

]×
(5.119)

M12,12 = IT2tm2/T2
(5.120)

Finally, the non-zero components of Btarget in (5.88) are reduced to
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LtiSystemDiscrete

p

state vector observation vector

Figure 5.2: Schematic of general (fixed MOSAs) EoM graph for discrete linear time-invariant
system.

B3,1 = I3

B3,7 = −TBH1

B3,9 = −TBH2

,

B4,2 = I3

B4,7 = −
[⃗
rBH1/B

]×
TBH1

B4,8 = −TBH1

B4,9 = −
[⃗
rBH2/B

]×
TBH2

B4,10 = −TBH2

,

B9,1 = −mtm1

msc
TH1
B

B9,3 = I3

B9,7 = I3

B10,4 = I3

B10,8 = I3

,

B11,1 = −mtm2

msc
TH2
B

B11,5 = I3

B11,9 = I3

B12,6 = I3

B12,10 = I3

.

(5.121)

Then all matrices are the arguments of a linear time-invariant system graph, either discrete
or continuous, contained in EoM graph. The input of this graph is the input vector u⃗. The
output is the state vector x⃗ and the observation vector y⃗. In this study, we use the discrete
linear time-invariant system for constructing our EoM graph, illustrated in figure 5.2.

In the case of fixed MOSAs, we assume the angle between x-axis of the MOSA body H-
frame and x-axis of the spacecraft body B-frame are constantly ±30o. Hence, the opening
angle between the two MOSAs is fixed at 60o.

5.3.4 Application with MOSA motion

In practice, the MOSAs have their rotation motions so that the opening angle evolves, or in
other words, is breathing, during LISA operation. We address the MOSA motion in the LISA
Dynamics implementation by the following assumption:
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Dynamics assumption 4

MOSAs in each spacecraft have the right direction toward the distant spacecraft,
assuming the re-pointing antenna process has been done perfectly and continuously
during LISA operation.

Consequently, the wave vector of the distant beam reaching the MOSA is along the drag-
free axis. Therefore, the drag-free axis and sensitive axis are identical, according to the notation
and definition of reference frames presented in section 5.1. On the other hand, the opening
angle between two MOSAs is defined from distant spacecraft locations since the MOSAs point
ideally to the distant spacecraft. Hence, one can compute the breathing angle α⃗Hi/B from the
LISA orbits2.

In a first approximation, we identify the leading order effect of the MOSA rotation on the
test-mass longitudinal dynamics. The breathing angle α⃗Hi/B appears in the rotation matrix
T TH and contributes to the projection of the spacecraft’s noisy motion along rotating MOSA
axis, c.f. to the second term of the right-hand side of equation (5.38). Therefore, it induces
an apparent motion of the test-mass in a rotating MOSA. In order to account for this effect,
our approach is to modify the Btarget with the time-dependent matrix TH1

B and its transpose.

For simplified implementation, we want to keep the matrix Btarget in the EoM graph
time-invariant. The breathing angle computed from the LISA orbits is used to rotate the
force applied on the spacecraft in the input vector u⃗ from O-frame to H-frame. Hence, the
force applied on the spacecraft is now projected on the MOSA axis in H-frame instead of
the spacecraft axis in B-frame. Then, we connect the rotated spacecraft force to the linear
time-invariant block in the EoM graph, see the figure 5.3.

Meanwhile, we still keep the original applied forces and torques in their default reference
frame as the components in the vector u⃗ to be used in other equations of motion. Hence, in
the case of rotating MOSA, u⃗ is extended by two more components to account for the force
applied on the spacecraft, which is projected on the rotating MOSA axis. We note that the
introduction of two extra inputs is a modeling trick to simplify the implementation, and it is
not fundamentally necessary. We read the extended input vector u⃗ and matrix Btarget:

u⃗(t) =

[⃗
f OB
t⃗ OB

]
⊕


f⃗ H1
T1

t⃗ H1
T1

f⃗ H2
T2

t⃗ H2
T2

⊕


f⃗r
H1

T1

t⃗r
H1

T1

f⃗r
H2

T2

t⃗r
H2

T2

⊕

[⃗
f H1
B

f⃗ H2
B

]
, (5.122)

2This is certainly not the case for the LISA mission in practice, but here we assume that we can calculate
the opening angle from LISA orbits.
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Figure 5.3: Schematic of EomMovingMosas graph for discrete linear time-invariant system.

where f⃗ Hi
B = THi

B
(
α⃗Hi/B

)
TBO
(
α⃗B/O

)
f⃗ OB = THi

B
(
α⃗Hi/B

)
f⃗ OB since TBO

(
α⃗B/O

)
= I3 in the

target frame for linear equations of motion.

B (t, x⃗) =



O3 O3 O3 O3 O3 O3 O3 O3 O3 O3 O3 O3

O3 O3 O3 O3 O3 O3 O3 O3 O3 O3 O3 O3

B3,1 O3 O3 O3 O3 O3 B3,7 O3 B3,9 O3 O3 O3

O3 B4,2 O3 O3 O3 O3 B4,7 B4,8 B4,9 B4,10 O3 O3

O3 O3 O3 O3 O3 O3 O3 O3 O3 O3 O3 O3

O3 O3 O3 O3 O3 O3 O3 O3 O3 O3 O3 O3

O3 O3 O3 O3 O3 O3 O3 O3 O3 O3 O3 O3

O3 O3 O3 O3 O3 O3 O3 O3 O3 O3 O3 O3

O3 O3 B9,3 O3 O3 O3 B9,7 O3 O3 O3 B9,11 O3

O3 O3 O3 B10,4 O3 O3 O3 B10,8 O3 O3 O3 O3

O3 O3 O3 O3 B11,5 O3 O3 O3 B11,9 O3 O3 B11,12

O3 O3 O3 O3 O3 B12,6 O3 O3 O3 B12,10 O3 O3



,

(5.123)
where

B3,1 = I3

B3,7 = −TBH1

B3,9 = −TBH2

,

B4,2 = I3

B4,7 = −
[⃗
rBH1/B

]×
TBH1

B4,8 = −TBH1

B4,9 = −
[⃗
rBH2/B

]×
TBH2

B4,10 = −TBH2

,

B9,3 = I3

B9,7 = I3

B9,11 = −mtm1

msc
I3

B10,4 = I3

B10,8 = I3

,

B11,5 = I3

B11,9 = I3

B11,12 = −mtm2

msc
I3

B12,6 = I3

B12,10 = I3

. (5.124)
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In this case, the dimesion of B is 36x36 instead of 36x30 in equation (5.88). In the
next section, we show some preliminary results of LISANode simulation with the dynamics
implementation and discuss about the performance of DFACS with fixed and rotating MOSAs
cases.

5.4 Result

The output of the ScDynamics graph is the state vector which includes the attitudes and
positions of the test-mass. To see the performance of DFACS, we use the following evaluation
quantities:

• Velocity of the spacecraft, computed from the integration of the force applied on the S/C
(quantity known by the simulator), this quantity can be projected in either sensitive axis
or drag-free axis;

• Velocity of the test-mass 13, which is ˙⃗r H1

T1/H1
of state vector (5.46), hence this quantity

is always projected on the drag-free axis;

• Relative velocity between the test-mass and the spacecraft, by combining two above
quantities.

We remind here that the sensitive axis is along the laser link between two spacecraft. In the
convention of reference frame presented in section 5.1, this axis is associated with x-axis of the
H∗-frame. On the other hand, the drag-free axis is the x-axis of H-frame. These two axes are
identical in the fixed opening angle between two MOSAs. In the case of rotating MOSAs, the
two axes are also the same due to Dynamics assumption 4. All the quantities are computed
in ASD and converted into the unit of fractional frequency deviation.

We consider three cases of LISA Dynamics implementation and compute the evaluation
quantities:

1. ScDynamics graph with fixed MOSAs implementation in EoM graph, all quantities
are projected on drag-free axis, i.e. x-axis of H-frame. This is the baseline case of the
study.

2. ScDynamics graph with fixed MOSAs implementation in EoM graph. The test-mass
velocity is projected on drag-free axis as enforced in the equations of motion. However,
we project the spacecraft velocity on the sensitive axis, i.e. x-axis of H∗-frame. This
projection requires the breathing (varying opening) angle as the input. In this case, we

3Due to the symmetry, we can examine one test-mass inside the spacecraft.
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note that the Equations of Motion (EoM) graph remains using the fixed opening angle
between the two MOSAs. In other words, the test-mass motion is projected onto a fixed
drag-free axis while the spacecraft motion is projected on a movable sensitive axis, which
is different from the drag-free in this case.

3. ScDynamics graph with rotating MOSAs implementation in the equation of motion
to account for the effect of breathing angle. We use Dynamics assumption 4 to compute
the breathing angle. The evaluation quantities are projected on sensitive axis, i.e. x-axis
of H∗-frame, which is identical to the drag-free axis. However, this drag-free axis is not
fixed as in the first case.

For case 1, with a fixed opening angle between two MOSAs, i.e. 60o, the DFACS works
well so that the relative motion between test-mass and spacecraft is small. As we see in
figure 5.4, the motion of the test-mass and the spacecraft are well controlled by the DFACS.
In subfigure 5.4b, the test-mass motion w.t.t. the containing spacecraft has a peak at around
0.1 Hz in the spectral density due to the limitation of the drag-free bandwidth. At lower
frequencies, DFACS performs well so the test-mass and spacecraft move as a rigid body. At
higher frequencies than the peak frequency, the drag-free control is more effective since the
jittering of the spacecraft is insignificant (the large inertia of the spacecraft avoids its fast
oscillating). The residual motion of the test-mass is small, with ASD around 10−22 to 10−24

in fractional frequency deviation unit, in the frequency band from 10−2 to 1 Hz. The residual
motion of the test-mass is compatible with the test-mass acceleration noise, which is about the
LISA requirement level [103], as we see in the combined plot 5.5. According to this result, we
see that the DFACS can suppress the jitter motion between test-mass and the spacecraft in the
fixed MOSAs configuration, which is similar to the capacity of TDI to suppress the spacecraft
jitter motion by combining the ISI and TMI measurements, as described in section 3.2.2.

Then, we consider case 2, in which the opening angle between two MOSA is breathing,
or called rotating MOSAs. Since the velocity for the test-mass and spacecraft motions do
not contain much information in this case, we only show the relative motion between them in
figure 5.5 (orange curve). From that figure, we see that the performance of DFACS worsens
compared to the first cases: there is a considerable residual from 10−2 Hz. The reason can
be that we projected test-mass and spacecraft motion on different directions: the spacecraft
motion is projected on the sensitive axis, but the projection of test-mass motion is done on
drag-free axis. Therefore, we have to modify equations of motion, accounting for the breathing
angle, in order to have the same projections of two motions.

Finally, we examine case 3, with the breathing angle impact in the equations of motion
for LISA Dynamics, particularly in the rotation matrix for the input force applied on the
spacecraft as described at the end of section 5.3.3. The motions of test-mass and spacecraft
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(a) Spacecraft motion w.r.t inertial frame
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(b) Test-mass motion w.r.t. spacecraft
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(c) Residual motion of test-mass

Figure 5.4: Results for fixed MOSAs case with the drag-free axis projection. The data are
generated from LISANode simulator, duration of 104 seconds, with LISA Dynamics implemen-
tation for one spacecraft with a fixed angle between two MOSAs. All quantities are computed
in ASD and expressed in fractional frequency deviation units. Two top plots present the mo-
tions of the spacecraft w.r.t. inertial Galilean frame (a) and of the test-mass 1 w.r.t. to the
containing spacecraft (b). The bottom plot (c) shows the residual relative motion of the test-
mass by subtracting the test-mass-to-spacecraft motion to the spacecraft-to-inertial motion.
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are projected on sensitive axis before computing the relative motion between them. The
result of the relative motion between the test-mass and spacecraft is shown in figure 5.5 (green
curve). We have a lower residual than the previous case, so the correction added in the
new implementation of LISA Dynamics works. With our first naive model for breathing angle
impact on the implementation on LISANode, we have 90% less residual relative motion between
test-mass and spacecraft compared to case 2. The DFACS works well at low frequencies, so
there is no residual relative motion in all three cases. However, to obtain the result as in
the baseline case, i.e. the fixed MOSAs, we still need to investigate more correction terms
in the equation of motion that could contribute significantly to the motion of spacecraft and
test-mass. This potential work is proposed in future tasks for developing the LISA dynamics
simulation.
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Figure 5.5: Comparison between three cases of LISA Dynamics implementation. The blue
curve is the relative motion between test-mass and spacecraft in the fixed MOSAs case with
sensitive axis projection, so there is no impact of breathing angle. The orange curve is for the
case of fixed MOSAs, and the motions of test-mass and spacecraft are projected on sensitive
axis, depending on the breathing angle. The green curve is in the case of rotating MOSAs
with sensitive axis projection. For reference, the red line is the test-mass acceleration noise
shape which is taken from the LISA SciRD, or expressed in (2.5), with the multiply factor of 2
to take into account that the bouncing off on the test-mass gives twice times the noise level in
the measurement. All quantities are computed in ASD and expressed in fractional frequency
deviation units.



Chapter 6

SGWB data analysis with LISA

This work is conducted in collaboration with Mauro Pieroni, Germano Nardini, Chiara Caprini
and Antoine Petiteau.

6.1 Introduction

The search for a SGWB of cosmological origin is particularly challenging for two main reasons:
first, if present, the signal is stochastic and therefore very similar to the instrumental noise;
second, there is no clear expectation about the effective presence of the signal, and no definitive
prediction about its spectral characteristics.

This study aims at examine how uncertainties in the shape of the noise spectral density
can alter the signal reconstruction in the data analysis. In order to perform the SGWB search
in the simulated data, we use the SGWBinner tool, which allows for a blind reconstruction
of the SGWB spectral shape by parameterizing it with a sequence of power laws in adapted
frequency bins. This code has been designed to perform the science performance characteri-
sations and preliminary data analysis the data analysis without imposing a template for the
SGWB spectral shape in the signal search.

The SGWBinner tool is accompanied by a data generation package, SGWB_data. As dis-
cussed in the next section, we can generate the data either by the SGWB_data package or by
the LISANode simulator (presented in section 2.8). We also present two noise models, one
characterized by two parameters and another by three, and some signal templates we can use
in data generation and data analysis pipelines. Then, we review the SGWBinner code and the
associated data analysis techniques to search SGWB in section 6.3. Finally, we demonstrate
that if we perform the parameter estimation on the noise-only generated data with the wrong
noise model, the reconstruction of the noise parameters is biased, and a fake signal is detected.
The other analysis runs performed by SGWBinner with other data, including different SGWB

138
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signal templates and the galactic foreground, are also presented in this chapter.

6.2 Data generation pipeline

In this study, we consider two different generation pipelines for simulated data, either in the
frequency or time domains. In the following, we discuss the two pipelines in detail.

6.2.1 In the frequency domain

The first data generation pipeline which we adopt is SGWB_data [54]. This pipeline directly
generates data (TDI variables) in frequency domain. The data set includes the instrumen-
tal noise, possibly a galactic background and/or SGWB signals. The pipeline for the data
generation is illustrated in figure 6.1.

Foreground
templates

Simulated
L1 data [f]

Power laws

Broken power laws

etc.

Galactic

Extra-galactic

SGWB_dataSGWB 
templates

Noise model

LISA SciRD (A, P)

Modified SciRD 
(A, P, C)

Figure 6.1: Schematic of the data generation pipeline using the SGWB_data code. The TDI
data are generated in frequency domain. A,P , and C are the noise amplitudes, which will be
discussed in section 6.2.3. See section 6.2.1 for the detailed description.

For the generation of the instrumental noise, we can choose either the SciRD noise model
[103], characterized by two noise parameters, or a noise model derived from SciRD, charac-
terized by one more parameter. We will discuss these noise models in section 6.2.3. However,
we use only 3-parameters noise model to generate all simulated data for conducting
the result presented in this chapter. In addition, we assume that the noises are Gaussian,
stationary and uncorrelated.
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The generation pipeline directly generates the XYZ or AET TDI variables in frequency
domain from the analytical noise spectrum of the TDI variables, either in 1.0 or 2.0 generation.
In this chapter, we focus on the combination AET 2.0 generation.

In order to generate long duration data acquisitions, SGWB_data generates simulated data
in frequency domain by generating several short data chunks. Because the noises are assumed
to be uncorrelated, we can generate data in chunks in parallel. Then, one takes the average
of the data from all of chunks for each frequency point.

At the time of the start of this study, LISA was expected to be in operation for at least
4 years with gaps due to the antenna re-pointing and other maintenance operations [16]. We
assumed that the data acquisition proceeds with continuous measurements for about 11.5 days,
which is the expected average time between the antenna re-pointing. We also assume that
the total duration of effective data is about 75% (duty cycle) of the whole mission duration,
so a total of 3 years over 4 years of mission duration1. This corresponds to 95 data chunks
of about 11.5 days. The frequency resolution is about 10−6 Hz for each data chunk. The
current planned duration is 4.5 years for the nominal mission and 4 years for the duration of
the usable (i.e. effective) data, corresponding to a duty cycle of 89%.

Similar to the noise generation, SGWB_data generates the SGWB signals and the fore-
ground in frequency domain under the assumptions of Gaussian, stationary and uncorrelated
signals. The models for the strain sensitivity of the foreground and SGWBs are presented in
section 6.2.4. Since the noise and the signal are generated in the same way, it is possible to
unify the notation in a combined result. The relation between the strain sensitivity and the
power spectral density is defined as

Sstrain
ij (f) =

Spsd
ij (f)

Rij(f)
, (6.1)

where i, j ∈ {A,E, T} and Rij(f) is the LISA response function, defined as follows:

Rij = 64 sin2
(
2πfL

c

)
sin2

(
4πfL

c

)(
4πfL

c

)2

R̃ij(f). (6.2)

R̃ij(f) denotes the geometrical factor of the LISA detector, depending on the TDI channels2.
Here, we use its numerical form to compute the strain sensitivity (see appendix A.3 in [69] for
a detailed derivation).

1This duty cycle of 75% were based on the study of performance of LPF. One can find its up-to-date value
and the new recommended LISA mission duration in [14]

2One can find out that the response function in (6.2) is different from the approximated one in [69] (c.f.
equation 2.22 in [69]) by a factor of 4 sin2

(
4πfL

c

)
. This is because in our study we use the TDI variables in 2.0

generation. In [69], the authors used the TDI variables in 1.0 (or 1.5) generation.
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The combined data is written in terms of the total strain sensitivity as (we omit the TDI
channel indices ij at the moment):

Sstrain
tot (f) =

Spsd
n (f)

R(f)
+ Sstrain

fg (f) + Sstrain
sgwb (f), (6.3)

or equivalently in power spectral density,

Spsd
tot (f) = Spsd

n (f) +
[
Sstrain
fg (f) + Sstrain

sgwb (f)
]
R(f), (6.4)

where Spsd
n (f) is PSD of the instrumental noises, Sstrain

fg (f) is the strain PSD of the foreground
signal, Sstrain

sgwb (f) is the strain PSD of the SGWB signal.

In practice, SGWBinner generates the combined data via equation (6.4). Then, one needs
to divide the input data by LISA response function to obtain the strain sensitivity before the
data analysis process.

SGWB are typically expressed in terms of energy density per logarithmic frequency, i.e.
Ωgw(f). The strain sensitivity can therefore be rewritten using equation (1.42) as

Sstrain,Ω
tot (f)h2 =

4π2f3

3(H0/h)2
Sstrain
tot (f). (6.5)

6.2.2 In time domain

The second data generation pipeline is more realistic as far as LISA data processing is con-
sidered, as described in section 3.1. In particular, we start from the raw LISA data or L0
data generation in time domain, before going through the TDI algorithm to get the TDI vari-
ables data. Then, we estimate the spectral density from the time-series TDI data to obtain
the power spectra in frequency domain. The pipeline for the data generation is shown in
figure 6.2.

The raw (or L0) data are generated using LISANode, described in section 2.8. The instru-
mental noise is generated from a specific analytical noise spectrum, characterized by the noise
spectral shape and its amplitude.

The foreground and SGWB signal could be added in the data generation pipeline using
an external software, such as GWResponse [44]. This step remains to be included as a possible
extension of this study.

The L0 data then go through the TDI algorithm to produce the TDI variables, or L1 data,
in time domain. For this purpose, we use the python package PyTDI [138]. Then we estimate
the spectral density for the TDI data by the Welch methods [153], with a specific window, for
example, Kaiser type. Due to insufficient memory storage capacity, we can not handle very
long time-series data using PyTDI. Hence, our strategy is to split the L0 data, which span
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Figure 6.2: Schematic of the data generation pipeline using the LISANode simulator: the
raw measurement data are simulated in time domain. A detailed description is presented in
section 6.2.1.

1 year of observation, into shorten data chunks. We fix the duration of each data chunk to
about 11.5 days, similarly to the data generation pipeline presented in section 6.2.1. For each
data chunk, we compute the TDI variables and use the Welch method to estimate the power
spectral density in frequency domain. Finally, we compute the average value of the spectral
densities from all the data chunks.

Similarly to the data generation pipeline using SGWB_data, the average spectra estimated
from the simulated data (including noise and signal) should be converted into strain sensitivity,
and then in terms of Ωgw. We first divide the spectral densities by the LISA response function,
shown in equation (6.1), to get the strain sensitivity power spectra. However, we encounter
an issue of singularities, shown in the figure 6.3a. This occurs at frequencies where the PSD
Spsd
n (f) (as we will see in section 6.2.3) and Rij are both zero, so that the expression (6.1)

becomes the undetermined form 0/0. Therefore, the strain sensitivity is unreliable at around
these frequencies and should be excluded for the data analysis. In practice, we keep the full
data for feeding the data analysis pipeline, but we include a weight factor which is 0 at the
singularities. Hence, the 0-weighted data do not contribute to the analysis. The rest of the
data, with the weight factor of 1, is shown in figure 6.3b.

Finally, we multiply the strain sensitivity with the conversion factor of equation (6.5) to
get the result in terms of energy density per logarithmic frequency.

6.2.3 Noise characterization

This subsection reviews the instrumental noise models, used for the data generation. These
models can also be used for the data analysis, as described in section 6.3.2.
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Figure 6.3: Comparison between the strain sensitivity of the AA channel estimated from
LISANode simulated data (blue) and the analytical model (orange). In (a), we show all the
data generated with LISANode. In (b), we mask the singular data by cutting out 1% logarithmic
intervals around the frequencies which lead to numerical singularities.
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The instrumental noise model typically used by LISA data analysis is the SciRD noise
model, which has 2 parameters: the test-mass acceleration and the OMS noises [103, 35].
From the study of the noise propagation presented in chapter 4, it turns out that the noise
propagation through TDI of the OMS noises (such as readout and optical path-length noises)
in different IFO measurements are not the same, so they cannot be considered as a single
term as done in the SciRD noise model. Therefore, we propose a new instrumental noise
model, which has one additional noise term, and it is characterized by 3 parameters. This
model, called 3-parameters noise model from now on, captures better the propagation of the
instrumental noises through the LISA instrument and TDI algorithm.

In detail, the test-mass acceleration noise is the same for both noise models. On the other
hand, the OMS noise contribution gets split into two terms, based on the way they propagate
through the interferometric measurements and through the subsequent TDI algorithm. The
Inter-Spacecraft Interferometer (ISI) and Reference Interferometer (RFI) OMS noises propa-
gate through TDI in the same way, while the Test Mass Interferometer (TMI) one propagates
differently, see tables 4.2. Hence, we combine the ISI and RFI OMS noises into a single term.
Finally, we have three parameters characterizing the LISA instrumental noise: the test-mass
acceleration noise amplitude, the OMS noise amplitude from the combined ISI and RFI mea-
surements, and the OMS noise amplitude from the TMI measurement. Their noise shapes and
levels are given in terms of the power spectral density as

Sacc(f,A) = A2 fm2

s4Hz

[
1 +

(
0.4mHz

f

)4
](

1

2πf

)4(2πf

c

)2

, (6.6)

SOMS, isi/rfi(f, P ) = P 2

[
1 +

(
2mHz
f

)4
]

pm2

Hz

(
2πf

c

)2

, (6.7)

SOMS, tmi(f, P ) = C2

[
1 +

(
2mHz
f

)4
]

pm2

Hz

(
2πf

c

)2

. (6.8)

Some approximations are applied to simplify the noise model, as discussed partially in
section 4.1.2. First, we assume that the armlengths of the LISA constellation are equal and
with constant length L. The second approximation is that noises of the same types have the
same spectral shape and amplitude across in different MOSAs or spacecraft. Finally, we assume
that all noises are uncorrelated. With these approximations, the total power spectral densities
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of TDI Michelson XYZ variables in the second generation are written as (see table 4.2):

Stot
aa (f,A, P,C) = 64 sin2

(
2πfL

c

)
sin2

(
4πfL

c

)
{[

3 + cos

(
4πfL

c

)]
Sacc(f,A) + SOMS, isi/rfi(f, P )

+
1

4

[
3 + cos

(
4πfL

c

)]
SOMS, tmi(f, C)

}
(6.9)

Stot
ab (f,A, P,C) = −16 sin

(
2πfL

c

)
sin3

(
4πfL

c

)
[
4Sacc(f,A) + SOMS, isi/rfi(f, P ) + SOMS, tmi(f, C)

]
, (6.10)

where a, b ∈ {X,Y, Z}.

The power spectral densities for TDI variables AET in the second generation read, see
table 4.3,

Stot
AA(f,A, P,C) = Stot

EE(f,A, P,C)

= 32 sin2
(
2πfL

c

)
sin2

(
4πfL

c

)
{
4

[
1 + cos

(
2πfL

c

)
+ cos2

(
2πfL

c

)]
Sacc(f,A)

+

[
2 + cos

(
2πfL

c

)]
SOMS, isi/rfi(f, P )

+

[
1 + cos

(
2πfL

c

)
+ cos2

(
2πfL

c

)]
SOMS, tmi(f, C)

}
, (6.11)

Stot
TT (f,A, P,C) = 32 sin2

(
2πfL

c

)
sin2

(
4πfL

c

)
{
4

[
1− cos

(
2πfL

c

)]2
Sacc(f,A)

+2

[
1− cos

(
2πfL

c

)]
SOMS, isi/rfi(f, P )

+

[
1− cos

(
2πfL

c

)]2
SOMS, tmi(f, C)

}
. (6.12)

There is no cross-power spectral density for the AET variables since they are quasi-orthogonal [126].
The comparison of the power spectral densities in the AET variables between the two noise
models (SciRD and the 3 parameters noise models) is shown in figure 6.4 and figure 6.5. We
see that the differences between the two noise models are primarily at high frequencies, where
the OMS noises dominate over the test-mass acceleration one. In addition, the maximum
difference relatively between the two noise models is about 25%.
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Figure 6.4: Comparison of the strain sensitivities SAA between the analytical 2- and 3-
parameters noise models, the values of noise parameters are taken from table 6.1. The top
panel shows the whole LISA frequency band. The middle panel is the percentage discrepancy
of the 3-parameters noise model w.r.t 2-parameters noise model. The bottom one is zoomed
in a narrower frequency band.

The values of A,P,C used for the first data generation pipeline, c.f. section 6.2.1, are
given in the table 6.1. These values represent the best fit estimation for the LISANode data, as
shown figure 6.6 and figure 6.7, because these values are computed from the input parameters
of LISANode. We collect all the noise terms simulated by LISANode with the same propagation
through the IFO measurements and the TDI algorithm, so that there are finally 3 different noise
terms remaining to characterize the instrumental noise, corresponding to the three parameters
A,P,C. In addition, we note that the spectral shape of the OMS noises implemented in
LISANode at the moment have no relaxation of the factor

[
1 + (2mHz/f)4

]
, contrary to the
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Figure 6.5: Comparison of the strain sensitivities STT between analytical 2- and 3-parameters
noise models, the values of noise parameters are taken from table 6.1. The top panel shows
the whole LISA frequency band. The middle panel is the percentage discrepancy of the 3-
parameters noise model w.r.t 2-parameters noise model. The bottom one is zoomed the first
plot in a narrower frequency band.

analytical expressions in equations (6.7) and (6.8). Therefore, the model used in the data
analysis for fitting the LISANode data needs to be modified by removing this factor. This
has been done also in figures 6.8 and 6.9. On the other hand, the data generation pipeline
in frequency domain using SGWB_data incorporates the relaxation factor. The comparisons
between the strain sensitivity from the two data generation pipelines is illustrated in figure 6.8
for the AA channel and figure 6.9 for the TT channel. The OMS noises in ISI and RFI
contributing to the strain sensitivity STT in (6.12) are dominant at the low frequencies
compared to the test-mass acceleration noise (a2 ≪ a with a = [1− cos(2πfL/c)] < 1 for
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f → 0+). Therefore, the impact of the relaxation factor in the two different noise model is
more apparent in the TT channel.

We also use the SciRD noise model in this work, to study the impact of inaccurate noise
knowledge (i.e. using different noise models for data generation and data analysis pipeline)
in the search for SGWBs. The SciRD noise model is similar to the 3-parameters noise model,
expressed in equations (6.11), (6.12), (6.9), (6.10), but with C = 0 in all equations since in
the SciRD the OMS noise in TMI measurement are assumed to be propagated through TDI
as the same as ones in ISI and RFI measurements. Therefore, it is unnecessary to rewrite the
analytical expressions of SciRD noise model here.

Parameter A P C
True (injected) value 2.4 8.96 4.47

Units
fm

s2
√

Hz
pm√
Hz

pm√
Hz

Table 6.1: The true (injected) values of the noise parameters and their units, used in SGWB_data
generator.
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Figure 6.6: Comparison of strain sensitivities SAA computed from the LISANode data with
the analytical 3-parameters noise model, the values of noise parameters are taken from table
6.1. The top panel shows the whole LISA frequency band. The two bottom ones are zoomed
in smaller frequency regions. A part from the singularity spikes of the strain sensitivity (6.1),
the strain sensitivity SAA (SEE is the same as SAA) computed from LISANode data matches
with the analytical noise model (6.11).
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Figure 6.7: Comparison of strain sensitivities STT computed from the LISANode data with the
analytical 3-parameters noise model, the values of noise parameters are taken from table 6.1.
C.f. figure 6.6 for a detailed description.

6.2.4 Stochastic Gravitational Wave Background signal models

In this section, we describe some SGWB templates used in the frequency data generation
pipeline, described in section 6.2.1. We remind here that we did not include a SGWB signal
in the data generated with LISANode, which contains therefore only the instrumental noise.
Time-series data containing SGWBs could be generated with LISANode by a python package
GWResponse [44]. The templates presented in this section can, in principle, be used as the
input for this code.

The following templates are designed to have high SNR, so that they can be detected by
LISA.
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Figure 6.8: Comparison of the strain sensitivity SAA computed from data generated using
LISANode and the SGWB_data, with the analytical 3-parameters noise model. The values of
noise parameters are taken from table 6.1. The noises from LISANode do not contain the
relaxation factor in the OMS noises. The top figure is in the full LISA frequency band. The
two bottom ones are zoomed in smaller frequency regions.
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Figure 6.9: Comparison of the strain sensitivity STT computed from data generated using
LISANode and the SGWB_data, with analytical 3-parameters noise model The values of noise
parameters are taken from table 6.1. The noises from LISANode do not contain the relaxation
factor in the OMS noises. The top figure is in the full LISA frequency band. The two bottom
ones are zoomed in smaller frequency regions.
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1. Power law SGWB signal, the shape of which is given by

h2Ωgw(f) = 10A
(
f

fp

)n

. (6.13)

We set A = −12.45, n = 0.67 ≈ 2/3, and fp =
√
fminfmax is the pivot frequency, typically

defined as the geometrical mean of the LISA frequency band [fmin, fmax]. This single
power-law template represents the foreground due to SOBHs [52], which potentially
emit in the LISA band. As discussed in section 1.3.6, the energy spectral density of
the stochastic signal generated during the inspiral phase by many binary systems is
proportional to f2/3. The amplitude A is computed from the population model of SOBH
binaries derived by the LIGO/Virgo observations and has SNR of about 16.

2. “Double” power law SGWB signal, the shape of which is given by

h2Ωgw(f) = 10A1

(
f

fp

)n1

+ 10A2

(
f

fp

)n2

. (6.14)

We set A1 = −15.5, n1 = −4, A2 = −13, n2 = 3 and fp = 3.2 × 10−3. This template
is inspired the SGWB generated with first-order phase transitions in the early Universe
(see, for example in section 8 and 8.5 in [52]). Searching for this background is one of
science objectives of LISA. The shape of the SGWB from first-order phase transitions,
expected to be similar to a bell, as illustrated in figure 1.4, peaked at a frequency which
can be within LISA frequency bands.

However, we use the reverse shape of the expected signal model in our study. If we can
detect the reverse shape of this signal, which is close to the shape of the LISA instru-
mental noise, in our simulated data, then original shape can be certainly detected as
well. The choice of analyzing the reverse shape is therefore motivated by maximizing
the potential of detectability of SGWBs from first-order phase transitions by LISA.

We also used a modified version of the broken power law in equation (6.14) to run some
tests for the data generation and data analysis pipelines, namely:

h2Ωgw(f) = 10A
(
f

fp

)n1
[
1

2

(
1 +

f

fp

)]n2−n1

, (6.15)

where:

• A is the logarithm of the signal amplitude,

• fp is the pivot frequency, which we usually choose as the geometric mean of the
LISA observation frequency band,

• n1, n2 (n2 < 0 and n1 > 0) are the spectral indexes of the power law shape of the
SGWB at low and high frequencies, respectively.
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• In the the test case, we set A = −9, fp = 10−2, n1 = 6, n2 = −5. Note that this
parameter choice is not motivated by any theoretical SGWB model.

We also implement the galactic foreground model [128]:

Sgalactic_fg(f,Afg) = 10Afgf2/3 exp [−fα − βf sin(κf)] {1 + tanh [γ(fk − f ]} , (6.16)

where fk, α, β, κ, γ are the galactic foreground parameters, given by table 1 in [128]. We use
this model with only one free parameter, the log amplitude Afg. The other parameters are set
to be fixed at the values corresponding to four years of observation, although we generated
data for only 1 year.3

6.3 Methodology for data analysis

This section reviews the data analysis algorithm we use to search for the SGWB signal in the
simulated data. First, we present the coarse graining of the data, a necessary step in the data
processing to reduce the computational work. The coarse graining procedure has been put
forward in [54]. Then, we give a brief introduction of the SGWBinner software and its data
analysis algorithm.

6.3.1 Coarse graining of the data

The outputs of the data generation pipeline (using either SGWB_data or LISANode codes)
are the spectral densities of TDI combinations (L1 data) in frequency domain, as illustrated
in figure 6.1 and figure 6.2. The spectral densities are computed by averaging several data
chunks, each about 11.5 days long. Hence, the frequency resolution of the output data is about
10−6, which implies a large number of data points at high frequencies in the LISA frequency
band. This would increase the computational time, while not providing a significant change
in the result at frequencies greater than the resolution. One reasonable solution to reduce
computational cost is to coarse-grain the simulated data with an increasing graining factor
at higher frequencies. In particular, the values of the data points in the low frequency band
(from 3× 10−5 Hz to 10−3) are not changed, while we split the data at high frequencies (from
10−3 to 0.5 Hz) into 1000 intervals of equal log-spacing, and compute the averaged value:

D̄i =

∑Ni
j=1wj

1

σ2j
Dj∑Ni

j=1

1

σ2j

, (6.17)

3It is a convenient choice since we initially want to generate data for 4 years. Unfortunately, the data file
size is quite big to handle on our laptop. We will consider alternative ways to work with longer data sequences
in subsequent analyses.
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where Ni is the number of data points in the interval i, Dj is the value of spectral density
data j in the interval, with their weight factor wj

4, and σ2j is the variance of the data Dj

computed in the data generation. Therefore, D̄i is the representative data for the interval i

with error/variance given by
(∑

j 1/σ
2
j

)−1/2
and weight factor Ni (or

∑
j wi)5.

6.3.2 SGWBinner

The SGWBinner is a Python3 code developed by Mauro Pieroni et al. [54, 69]. It aims at
reconstructing the SGWB signal and instrumental noise, including the foreground, for any
arbitrary spectral shape for the SGWB signal. It is based on the assumption that the SGWB
spectral shape is expected to be sufficiently smooth.

The idea for the reconstruction of an arbitrary shape signal is to divide the LISA frequency
band in frequency bins, in which the SGWB is assumed to be a power law. One then performs
the data analysis in each frequency bin to find the best fit values for the two parameters of
the power law SGWB signal, i.e. its amplitude and spectral index. This method is similar to
approximating a complex curve by collecting several straight lines.

We assume that the total measurement data provided by the LISA instrument is the
uncorrelated sum of the GW signal Ωgw and the noise Ωn,

h2Ωtot = h2Ωgw + h2Ωn. (6.18)

The noise models used in the data generation, discussed in section 6.2.3, are the reference for
the noise model in the data analysis. Accordingly, we have 2 or 3 parameters to be accounted
for in the estimation, based on the noise model used in the data analysis. We treat the
foreground as noise and it is due to the galactic binaries, expressed by (6.16): this indicates
one extra parameter to be estimated. On the other hand, the signal model for the data analysis
is a piece-wise suite of power laws on a set of frequency bins, obtained by dividing the LISA
frequency band into Nbins equally log-spaced frequency intervals:

h2Ωgw =

Nbins∑
i=1

10αi

(
f√

fmin,ifmax,i

)nt,i

Θ(f − fmin,i)Θ(fmax,i − f), (6.19)

where αi, nt,i are the two parameters, i.e. logarithmic amplitude and spectral index (tilt),
characterizing the power law SGWB signal in the bin i; Θ is the Heaviside step function;
fmin,i, fmax,i are the bounds of the frequency bin i. Hence, the total number of parameters to
estimate is proportional to Nbins. In particular, it is Nn +Nfg + 2Nbins, accounting for 2 or 3

4We remind that wj = 1 for all j, except the case of LISANode data when we need to mask the data to
avoid the singularity spikes in the strain sensitivity. The weight factors for the data points in the vicinity of
the spike are set to be 0.

5In principle, Ni =
∑

j wj except for the case of LISANode data.
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parameters of the noise model, 1 parameter for the galactic foreground (in included), and two
parameters of the power law in each frequency bins.

6.3.3 Bayesian data analysis

The SGWBinner uses a data analysis technique based on the Bayesian theorem to estimate the
parameters. In the Bayesian approach, the posterior probability for the model parameters is
given by [104, 69]

P (θ⃗, n⃗|D) =
πS(θ⃗)πN (n⃗)L

(
D|θ⃗, n⃗

)
p(D)

, (6.20)

where L(D|θ⃗, n⃗) is the likelihood of the experimental (or simulated) data D given by the model
consisting of a set of signal parameters θ⃗ and noise parameters n⃗; πN (n⃗), πS(θ⃗) are the prior
distribution for the noise and signal parameters, respectively; p(D) is the model evidence,
which is generally a constant normalized factor. We are not interested in the model evidence
in this study, so from now on, we will work with the unnormalized posterior, which is the
numerator of equation (6.20). In addition, we omit the D in the notations from now on for
simplicity. We usually use the log posterior function for convenience:

lnP (θ⃗, n⃗) = lnπS(θ⃗) + lnπN (n⃗) + lnL(θ⃗, n⃗). (6.21)

The priors of the noise and foreground (if included)6 parameters are assumed to be Gaus-
sian distributed, so that

πN (n⃗) ∼ N (µ⃗,Σ), (6.22)

where N is a Gaussian distribution, the mean µ⃗ is the set of true (injected) values of the
noise parameters n⃗ in the simulation, and Σ is the covariance matrix for the distribution.
We set Σ = diag(0.2µ⃗)2, where diag stands for a diagonal matrix, assuming the noises are
uncorrelated and their individual standard deviations are 20 percent the true values. Hence,
the contribution of noise prior in the log posterior, equation (6.21), is:

lnπN (n⃗) = −
∑
i

1

2

[
ln(2πσ2i ) +

(
ni − µi
σi

)2
]
, (6.23)

where i is the noise parameter index; ni, µi are the ith-components of the noise parameter
vector n⃗ and of true-value vector µ⃗, respectively; σi is the standard deviation of the Gaussian
distribution for the noise i.

The priors for the signal parameters are generally model-dependent. In SGWBinner, we fit
parameters for a power law SGWB signal in each bin. To adapt an arbitrary overall SGWB, we

6From now on, we consider the foreground as an extra noise component. The foreground parameters are
included in the noise parameter vector.
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use uniform distributions for the priors of the log amplitude and the spectral index parameters
to estimate them in every frequency bins. The range of the uniform distributions for the log
amplitude parameter is from -30 to -5 with the initial guess value is -30. While the range
for the spectral index is from -50 to 50 with the initial guess value is 0. The minimum log
amplitude and null spectral index are chosen for the initial guess values for a prediction of no
significant SGWB signal at the beginning. Therefore, the signal prior attributes to the total
log posterior as a constant:

lnπS(θ⃗) =
∑
i

1/(maxi − mini), (6.24)

where i is the signal parameter index; maxi,mini are, respectively, the maximum and minimum
values for the prior of signal parameter i. Since a constant plays no role in maximizing the
posterior, we can choose the log prior of signal parameters equal to 0.

The likelihood function is built by combining a Gaussian likelihood and a log-normal
one [69]:

lnL =
1

3
lnLG +

2

3
lnLLN , (6.25)

where the Gaussian likelihood is defined as:

lnLG

(
D|θ⃗, n⃗

)
= −Nc

2

∑
i,j

∑
k

n
(k)
ij

[
Dtheory

ij (fkij , θ⃗, n⃗)−D(k)
ij

Dtheory
ij (fkij , θ⃗, n⃗)

]2
, (6.26)

and the log-normal likelihood is expressed by

lnLLN

(
D|θ⃗, n⃗

)
= −Nc

2

∑
i,j

∑
k

n
(k)
ij ln2

[
Dtheory

ij (fkij , θ⃗, n⃗)

D(k)
ij

]
. (6.27)

In the above equations, i, j are TDI channels ({A,E,T} in our case); k is the bin index;
n
(k)
ij is the number of considered data points (in other words, the data point with non-zero

weight factor) within the bin k; Dtheory
ij (fkij , θ⃗, n⃗) is the model for the data within the bin k,

including the noise and the signal (if any) models presented in sections 6.2.3, and 6.2.4; D(k)
ij

are the simulated data in the bin k, depending on the true (injected) values of noise and signal
parameters in the simulator.

For the parameter estimation, we use the conditions of Maximum A Posteriori (MAP)
values, defined as

∂j lnP (θ⃗, n⃗)
∣∣∣
θ⃗b,n⃗b

= 0, (6.28)

where θ⃗b, n⃗b are the vectors of the best fit values of the signal and the noise (including fore-
ground if any) parameters, respectively, and j is the index running over the total number of
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parameters (noises, signal, foreground). One can recognize that these conditions are the differ-
ential equations for finding the local maxima of a function depending on a set of parameters.
In addition, a useful quantity is the Fisher information matrix, defined as

Iij ≡ − ∂i∂j lnP (θ⃗, n⃗)
∣∣∣
θ⃗b,n⃗b

, (6.29)

where again i, j are indices run over the total number of parameters, including noises, fore-
ground (if any) and SGWB signal (if any). The Fisher information matrix is used to compute
the covariance matrix of the estimated parameters, assuming they are Gaussian distributed,
and then the contours for the parameter estimation. The covariance matrix is the inverse of
the Fisher matrix,

Cij = I−1ij . (6.30)

If the noise components are uncorrelated, we have

Cab ≈ diag(σ⃗2), (6.31)

where a, b are the indices run over the number of the noise parameters, and σ⃗2 is a set of
variances of the noise parameters. These variances can be used to construct the reference priors
(Jeffrey’s prior, for example, see in pages 314, 315 in [48]) for the noise parameters. This is
the way how we redefine the noise prior for the AA, EE channels based on the parameter
estimation in TT channel, as described later in section 6.3.4.

6.3.4 Algorithm for the binned reconstruction by SGWBinner

The algorithm of the SGWBinner code is first introduced in [54] and modified for an improved
version in [69]. In this work, we use the improved algorithm, which is summarized from [69],
in the following procedure:

1. We first use the TT-channel data to redefine the prior for the noise parameters since
any GW signal is significantly suppressed at low frequencies in this TDI combination.
As shown in [126], the SNR of a GW signal in the TT channel is much smaller than
in the AA and EE channels. Hence, we expect to constrain the better noise prior from
TT-channel data before applying it in the signal reconstruction for the data of AA and
EE channels.

In practice, the SGWBinner computes the log posterior in the TT channel of a power law
signal and a given noise, e.g. the 3-parameters noise model expressed in (6.12). From
maximizing that log posterior in equation (6.28), the code estimates the best fit values
for the signal and noise parameters. The noise prior using in this parameter estimation
is described in previous section 6.20: Gaussian distribution for noise parameters and
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normal distribution for signal parameters. Then, we compute the Fisher information
matrix (6.29). The noise block in this Fisher information matrix is used to redefine the
priors for noise parameters. These new noise priors is applied for computing the log
posterior in AA and EE channels.

2. The next step is to bin the data (AA and EE channels) in frequency in an arbitrary
number of initial bins, Nb. At the end of this step, the total frequency interval is split
into Nb equally log-spaced frequency bins.

3. Then, we estimate the parameters of the noise, the foreground (if any) and a power law
signal independently in each bin, by maximizing the log posterior function, expressed in
equation (6.21). In other words, we find the best fit values of the parameters, fulfilling the
condition (6.28). This comprises two signal parameters, two or three noise parameters
depending on the adopted noise model, and one parameter for the foreground model (we
use the galactic foreground model with one free parameter (6.16)). The noise and signal
models are introduced in sections 6.2.3 and 6.2.4. Since the data in AA and EE channels
are almost similar, we only show the reconstruction and parameter estimation results
for data in AA channel in this thesis.

4. By dividing the frequency interval into bins, we can improve the signal reconstruction for
an arbitrary SGWB with complicated spectral shape. However, having too many bins
would lead to unnecessary fitting parameters in the data analysis process, and possibly
degrade the result. Therefore, we apply an iterative process to merge two nearby bins
if appropriate. This makes use of the Akaike Information Criterion (AIC) quantity [9],
defined as

AIC ≡ χ2
best fit + 2k, (6.32)

where χ2
best fit = − 2 lnL|

θ⃗b,n⃗b
; k is the number of parameters to estimate (which is, in

our case, proportional to the number of bins). It is statistically favored to merge one or
more nearby bins if the AIC of the parameter estimation performed in the merged bins
is smaller than the one performed in the original bin configuration. If so, the SGWBinner

code redefines the bin configuration (i.e. it merges the two initial bins into a single one)
and repeats the previous step of the parameter estimation by maximizing the likelihood
in the merged bins. This process is done iteratively until having a bin configuration with
the smallest AIC value.

5. When the number of bins has converged, the code computes the error of the signal and
noise reconstructions with the Fisher information matrix (6.29). The SGWBinner decides
whether a power law GW signal is detected in a bin based on the information of its
amplitude (if the best fit value of the log amplitude is above the threshold −20, which



160 Chapter 6. SGWB data analysis with LISA

is the expected amplitude level for a signal detectable by LISA), and of the statistic of
the estimation.

6. It is possible to include an optional step in the algorithm consisting in a MCMC sampler
on the total posterior of all bins and all channel combinations. In particular, once
the optimal number of bins has been obtained after the merging process, a MCMC
algorithm estimates the parameters of a power law signal in every merged bin, and the
parameters of the noise model common to the whole frequency band. The parameters of
the foreground are also estimated globally, as the noise parameters. The MCMC sampler
code used in this study is PolyChord [74, 75] via its interface with Cobaya [146]. The
data analysis results are conducted using GetDist [101]. This process provides a more
accurate estimation of the parameters and improves the components reconstruction with
less uncertainty. However, the authors in [69] found that there is little difference between
the results provided by the SGWBinner including MCMC option and excluding it. In our
study, we try to run the SGWBinner with the MCMC option wherever possible.

We illustrate the SGWBinner data analysis pipeline in figure 6.10.

6.4 Results

This section presents some preliminary results using SGWBinner. We first examine noise-only
data, without any SGWB signal. In this the case, we have generated the data using either
LISANode or SGWB_data. We then proceed to analyze the data including SGWB signals,
generated according to the templates presented in section 6.2.4. In addition, in some cases we
also include the galactic foreground in the data.

6.4.1 Noise-only data

In order to demonstrate that the noise reconstruction works well in the simplest case, we first
run the SGWBinner on the noise-only one-year data generated with SGWB_data. In this run,
the parameter estimation is performed with the MCMC global fit, i.e. in one single bin. We
adopt the same 3 parameters noise model in both the data generation and the data analysis
pipelines. The result is shown in figure 6.11. It appears from the triangle plot in figure 6.11b
that the estimated amplitude of the signal has a probability distribution compatible with
zero, so that there is no signal detection. Furthermore, the noise has been reconstructed well,
since the 1σ regions of the reconstructed noise parameters include the true (injected) values
A = 2.4, P = 8.96, C = 5.387. Hence, no SGWB signal is detected in this case as, it should be

7The C value here is different from the one presented in table 6.1 since this data set is generated with an
old version of SGWB_data.
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Figure 6.10: Schematic of the data analysis pipeline using the SGWBinner. See sections 6.3.2
and 6.3.4 for detailed description.

since we have a good prior knowledge of the noise model used in the data generation, and we fit
this exact model to the data. The contour plot for P and C parameters, it indicates a strong
anti-correlation between the two parameters. However, there is no physical process explaining
that anti-correlation between OMS noise amplitudes in TMI and ISI/RFI measurements.The
anti-correlated behavior of P and C parameters is due to fact that we assume they have the
same noise shape as expressed in equations (6.7) and (6.8). After propagating through the TDI
algorithm, they still share some common terms, although the two total transfer functions are
different. As shown in equation (6.11), the common term is associated with 1 + cos(2πfL/c).
Therefore, in the parameter estimation, the larger value of P will constrain the smaller value
of C and vice versa.
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Figure 6.11: Reconstruction plot and probability distributions of the estimated parameters.
The data analysis is performed using SGWBinner with the MCMC global fit, on the noise-
only data generated with SGWB_data, using the same 3 parameters noise model in both
the data generation and the data analysis pipelines. Subfigure (a) is the reconstruction plot
showing no signal detection, in agreement with the fact that there is no injected signal in
the data. Subfigure (b) is the triangle plot showing the cross correlation of all parameters
(noise and signal). The top plot in each column is the probability density distribution of each
parameter, and the bottom ones are the correlations of that parameter with the others. The
true (injected) values used in the data generation pipeline are indicated by the red dashed
lines. There are no injected signal so that its true amplitude and spectral index (tilt) are
zeros. The bold blue colored area shows the 1σ confidence interval region, while the faint blue
one represents the 2σ confidence interval region.
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In addition, we perform an analysis using the SGWBinner with 10 initial bins, and with
Fisher parameter estimation only to check if we miss any SGWB signal due to the fact that we
do a global fit in the previous case8. The reconstruction plot presented in figure 6.12 confirms
our conclusion that no SGWB signal is detected when one adopts the same noise model in
both the data analysis and the data generation pipelines. In the figure, we also show the power
law sensitivity curve (PLS) with the SNR of 10, in 4 years mission duration, and duty cycle
75%, as a reference for the amplitude of the SGWB signal which could be detected by LISA.
We will show this curve in all the reconstruction plots in the rest of this chapter.

Figure 6.12: Reconstruction plot obtained by running the SGWBinner without MCMC option,
starting from 10 initial bins, on noise-only data generated with SGWB_data in one year.
The same noise model, characterized by 3 parameters (A,P,C), is used in both the data
generation and the data analysis pipelines.

We also analyze the noise-only data generated using LISANode. This data set is more
complicated to analyze, since one needs to mask the data points around the singularity spikes
as discussed in section 6.2.2. From figure 6.13, it can be appreciated that a SGWB signal is
erroneously detected in the data. In addition, the estimation of the noise parameters, shown
in figure 6.13b, indicates that the reconstruction of the noise model is biased. The probability
distributions of the amplitude of the test-mass acceleration noise, A, and the one of the OMS
noise in ISI/RFI measurements, P , do not contain the injected values. We need to investigate
more in depth this problem arising with data generated in time-series before any further
analysis with LISANode simulated data. We defer this to future analyses.

8The SGWBinner has a problem when running with the MCMC option and several initial bins (no global fit)
on the noise-only data with the same noise model in both the data generation and the data analysis pipelines.
Since we used the exact noise model, the SGWBinner gives zero-compatible distribution for the SGWB signal.
The PolyChord and Cobaya packages, which are used for running MCMC, seems not to be able to run in this
case. We will see with the authors of these codes.
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Figure 6.13: Results obtained by running SGWBinner with the MCMC option, starting from 10
initial bins, on the noise-only data generated with LISANode in one year, AET 2.0, and 1%
mask-out in log frequency around singularity spikes. The same noise model, characterized
by 3 parameters (A,P,C), is used in both the data generation and the data analysis pipelines.
Subfigure (a) is the reconstruction plot of the data. A power law signal is erroneously detected
in the second bin although there is no injected signal in the data. Subfigure (b) is the combined
triangle plot of all estimated parameters, including two parameters for the fake signal, and
three ones for the noise. The red dashed lines indicate the true (injected) parameter values
used in the data generation pipeline. We note that the P -parameter injected value lies outside
the figure margins, while there is no references for the true signal parameter values (no injected
signal).
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(a) Reconstruction plot

(b) Noise parameter estimation

(c) Signal contour plot

Figure 6.14: Results obtained by running the SGWBinner with MCMC option, starting from
10 initial bins, on the noise-only data generated with SGWB_data in one year, AET 2.0. The
SciRD noise model, characterized by 2 parameters (A,P ), is adopted for in the data analysis,
while we use the 3 parameters model for the data generation pipeline. Subfigure (a) is the
reconstruction plot showing a fake signals detection, although there is no injected signal in the
data. Subfigure (b) presents the marginal probability distributions for the 2 noise parameters,
A,P , with the red dashed line indicating the true (injected) value used in the data generation
pipeline (see table 6.1). We note that the P -parameter value lies outside the figure margins.
Subfigure (c) presents the contour plots of the cross correlation between the two parameters
of the detected power law signals in every bin. A fake signal is clearly detected in all 4 bins
according to these contour plots. We skip the triangle plot for combined parameters (noise
and signal).
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(a) Reconstruction plot

(b) Noise parameter estimation

(c) Signal contour plot

Figure 6.15: Results obtained by running SGWBinner with MCMC option, starting from 15
initial bins, for noise-only data generated with LISANode in one year, AET 2.0. The SciRD
noise model, characterized by 2 parameters (A,P ), is adopted for the data analysis, while
we use the 3 parameters noise model for the data generation pipeline. Subfigure (a) is
the reconstruction plot showing fake signals detection in 3 bins, although there is no injected
signal in the data. Subfigure (b) presents the marginal probability distributions for the 2 noise
parameters, A,P . The red dashed lines indicating the true (injected) values used in the data
generation pipeline, see table 6.1, are out of the range of the plot’s axes. Subfigure (c) presents
the contour plots of the cross correlation between the two parameters of the detected power
law signals in every bin. These plots indicate that a fake signal is clearly detected in bins 3
and 4.
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We also perform a data analysis run adopting a noise model in the data analysis, which is
different from the one used in the data generation. In particular, we use the LISA SciRD noise
model, characterized by two noise parameters (presented in section 6.2.3) to analyze the data
generated with the 3-parameters noise model. This study aims at testing the performance of
the SGWBinner in searching SGWBs in the data with inaccurate knowledge of the noise that
contaminated the signal. In fact, it is possible to know some noise contributions in the LISA
mission, but others will not be well-measured/modelled, or might even be unknown. The
results of the data analysis using SGWBinner with MCMC option are shown in figure 6.14 on
the data generated using SGWB_data, and in figure 6.15, and ones generated using LISANode.
In both approaches, some power law signals are erroneously detected in several bins of the
noise-only data. It is due to the mismatch between the noise model used for the reconstruction
and the one used in the data generation. This result implies that the noise knowledge plays a
crucial role in the SGWB data analysis. Although the SGWBinner can fit the parameters for
the overall noise level, the parameter estimation results are unreliable if the true noise’s shape
is different from the one attributed to the simulated data (or to the realistic experimental
data).

6.4.2 Data including signal and noise

The next data set in our study includes the instrumental noise and a SGWB signal. We
examine some shapes of SGWB signal presented in 6.2.4, which are injected using exclusively
the data generation pipeline of SGWB_data. All data sets using in this subsection are generated
in one year, 75% duty cycle, and in TDI combination AET 2.0.

Broken power law

The first model of SGWB used in the data generation is a broken power law signal, given
by expression (6.15). The signal parameters in the data generation are set to A = −9, fp =

10−2, n1 = 6 and n2 = −5. This choice is adopted for test purposes, and is not motivated by
any theoretical model of SGWB.

Figure 6.16 shows the result of the data analysis done with the SGWBinner on data gen-
erated with SGWB_data, when we adopt the same noise model in the data analysis as the one
implemented in the data generation pipeline. The 10 initial bins have converged to 5 final
bins, and in each of them there is a signal detection with a power law shape. This allows us
to reconstruct approximately the shape of the injected signal in the data. In the outermost
merged bins, the signal parameters are not estimated well and the 1σ regions of the recon-
structed signals do not include the injected (input) signal. It can be explained by the fact that
the noise is dominant in these frequency regions compared to the signal. Hence, the biases in
the noise parameter estimation can lead to bigger biases in the signal parameter estimation.
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(c) Signal contour plot

Figure 6.16: Results obtained by running SGWBinner with the MCMC option, starting from 10
initial bins, on data including noise and a broken power law SGWB signal. The same 3-
parameters noise model is used in both the data generation and the data analysis pipelines.
Subfigure (a) is the reconstruction plot showing a signal detection. From the 10 initial bins,
the SGWBinner converges to 5 final bins and gives the parameter estimation for a power law
signal in each merged bin. The collection of these power law shapes gives an approximated
broken power law signal. Subfigure (b) presents the marginal probability distributionss of the
3 noise parameters, A,P,C, with the red dashed lines indicating the true (injected) values
used in the data generation pipeline (see table 6.1). Subfigure (c) presents the contour plots
of the cross correlation between the two parameters of the detected power law signals in every
bin.
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Figure 6.17: Results obtained by running SGWBinner with the MCMC option, starting from
10 initial bins, for data including noise and a broken power law SGWB signal. The SciRD
noise model, characterized by 2 parameters (A,P ), is adopted for the data analysis, while
we use the 3 parameters (A,P,C) model for the data generation pipeline. Subfigure (a)
is the reconstruction plot showing a signal detection. The SGWBinner merges the 10 initial
bins into 6 bins. In 5 of the merged bins, the code detects a power law signal for each. For
the first bin, the parameter distribution is compatible with the no signal detection. Subfigure
(b) presents the marginal probability distributions for the 2 noise parameters, A,P , with the
red dashed lines indicating the true values used in the data generation pipeline presented in
table 6.1. The red dashed line corresponding to the P parameter is not visible since its true
value is out of range of the plot’s axes. Subfigure (c) presents the contour plots of the cross
correlation between the two parameters of the detected power law signals in every bin.
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The result worsens if we use different noise models between the data generation and the
data analysis pipelines, as illustrated in figure 6.17. The signal reconstructions for the inner
bins, where the SGWB signal has high SNR, are still good. However, the reconstruction results
in the outermost bins are not convincing. In addition, we see in figure 6.17b that the noise
parameter estimation is biased, especially for the OMS noise parameter P . This bias in the
noise parameter estimation is probably the reason for the bad signal reconstruction in the
outermost bins, where the noises are dominant over the SGWB signal.

Power law

We also inject in the data a power law SGWB signal given by (6.13). This signal is predicted
to be generated by the inspirals of SOBH binaries. The signal parameters chosen for the data
generation are A = −12.45, n = 0.67.

When one adopts the same noise model in both the data generation and the data analysis
pipelines, the SGWBinner gives pretty good results for the noise and signal reconstructions, as
shown in figure 6.18. From the plot 6.18b, one appreciates that the 2σ regions of the estimated
parameters of the signal and the noise contain the true (injected) values.

On the contrary, the result is not convincing when the noise model (SciRD or 2-parameters
noise model) used in the data analysis is different from the one (3-parameters noise model)
used in the data generation, see figure 6.19. The reconstructed signal does not match with the
injected (input) signal in the simulated data. In addition, the estimated noise parameters are
biased: the true values of noise parameters are outside of 2σ regions of the estimated ones. We
recognize that the reconstructed signal is further away from the injected one at high frequency,
where the two noise models are discrepant, see figure 6.4.

“Double” power law

In this case, a “double” power law SGWB signal, expressed in (6.14), is injected in the data.
We choose the injected signal parameters as A1 = −15.5, n1 = −4, A2 = −13, n2 = 3.

The result of the SGWBinner when we adopt the same noise model (3 parameters) in both
pipelines is presented in figure 6.20. There are only two bins left from the merging of the
10 initial bins. The power law signals reconstructed in the two bins combined approximately
into the injected double power law shape. The noise estimation from the reconstruction is
good, according to the subfigure 6.20b, all the true values of the noise and signal parameters,
except the signal amplitudes, lay within 1σ regions of the estimation. One can recover the
true (injected) values of the signal parameters from the estimated ones of the two independent
power law signals that the SGWBinner reconstructs in the two merged bins.
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Figure 6.18: Results obtained by running the SGWBinner with the MCMC option, starting
from 15 initial bins, on data including noise and a power law SGWB signal. The same 3-
parameters noise model is used in both the data generation and the data analysis pipelines.
Subfigure (a) is the reconstruction plot showing a signal detection. From the 15 initial bins,
the SGWBinner converges to a single bin with the detection of a power law signal. Subfigure
(b) is the triangle plot showing the cross correlation among parameters (signal and noise). The
top plot of each column is the marginal probability distribution of each estimated parameter.
The true values used in the data generation pipeline are indicated by the red dashed lines.
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Figure 6.19: Results obtained by running the SGWBinner with the MCMC option, starting
from 13 initial bins, on data including noise and a power law SGWB signal. The SciRD
noise model, characterized by 2 parameters (A,P ), are used in the data analysis while we use
3 parameters noise model in the data generation pipeline. Subfigure (a) is the reconstruction
plot showing a signal detection. From the 13 initial bins, SGWBinner merges them into 4 bins.
In each of them, the code detects a power law signal. Subfigure (b) presents the marginal
probability distributions from parameter estimation for 2 noise parameters, A,P . The red
dashed lines indicating the true (injected) values used in the data generation pipeline, see
table 6.1, are out of range of the plot’s axes. Subfigure (c) presents the contour plots of the
cross correlation of the two parameters of detected power law signals in every bin. The last
contour plot corresponds to the signal reconstruction in bin 6, which is compatible with null
signal.
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• At low frequencies in the first bin of subfigure 6.20a, the double power law (6.14) is
dominated by the power law term with A1 = −15.5, n1 = −4. The best fit values
of the power law signal in the first bin are A1st = −11.32, n1st = −4.02, shown in
subfigure 6.20b. The value of the spectral index n1 is within the 1σ region of the best fit
value, so it is acceptable. The power law model used in the parameter estimation has a
different pivot frequency than the one in (6.14) since this pivot frequency is computed as
the geometrical mean of the frequency within the merged bin. In particular, the first
bin in subfigure 6.20a has frequency range from 3× 10−5 to approximately 3.87× 10−3

Hz so the pivot frequency is f1st∗ = 3.41 × 10−4 Hz, while the pivot frequency used
in (6.14) is the geometrical mean of the full LISA frequency band (3× 10−5, 0.5) Hz, i.e.
fp = 3.87×10−3 Hz. Hence, the injected value of A1 is compatible with the estimated log
amplitude parameter A1st of the first bin via the relation A1 = log

[
10A

1st
(fp/f

1st
∗ )n

1st
]
.

• In the second bin of the reconstruction plot 6.20a, where the power law with A2 =

−13, n2 = 3 is dominant, the best estimated parameters are A2nd = −10.21, n2nd = 3.02.
We can recover the true value ofA2 in similar way done above forA1. The pivot frequency
for the second bin is f2nd∗ = 4.4 × 10−2 Hz. One then can verify that the relation
A2 = log

[
10A

2nd
(fp/f

2nd
∗ )n

2nd
]
, where fp = 3.87 × 10−3 Hz, holds approximately. We

illustrate in figure 6.21 the power law shapes in the two bins with the best fit values from
the data analysis done by the SGWBinner, and the double power law shape expressed
in (6.14).

Once again, if we use different noise models between the data generation and the data
analysis pipelines, the reconstruction result worsens, as shown in figure 6.22. At low frequency,
the reconstruction of the SGWB is still good. However, it goes worsen at high frequency, the
reconstructed signal does not match with the injected one. This is due to the differences
between two noise models in that frequency band. The bias in the estimation of the OMS
noise parameter P , which is dominant at high frequency, leads to the bad signal reconstruction.
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Figure 6.20: Results obtained by running SGWBinner with MCMC option, starting from 10
initial bins, on data including noise and a double power law SGWB signal. The same 3-
parameters noise model is used in both the data generation and the data analysis pipelines.
Subfigure (a) is the reconstruction plot showing the signal detection. Subfigure (b) is the
triangle plot showing the cross correlation among parameters (signal and noise). The top plot
of each column is the marginal probability distribution of each estimated parameter. The true
values used in the data generation pipeline are indicated by the red dashed lines. The true
values of signal amplitudes are out of range of the plot’s axes. They can be recovered from
the estimated values, as explained in the double power law subsection of section 6.4.2.



6.4. Results 175

10 4 10 3 10 2 10 1

Frequency (Hz)

10 22

10 19

10 16

10 13

10 10

10 7
St

ra
in

 se
ns

iti
vi

ty
 (e

ne
rg

y 
de

ns
ity

/H
z)

Injected double power law signal, A1 = 15.5, n1 = 4, A2 = 13, n2 = 3, fp = 3.88e 3
Best fit power law signal A=-11.32, n=-4.02, from 3e-5 to 3.87e-3 Hz (f * = 3.41e 4)
Best fit power law signal A=-9.89, n=2.99, from 3.87e-3 to 5e-1 Hz (f * = 4.4e 2)

Figure 6.21: Decomposition of the double power law signal into the two power law shapes
which are reconstructed by the SGWBinner in figure 6.20.

6.4.3 Impact of galactic foreground

We can extend the previous analysis by including the galactic foreground. We adopt the model
expressed in (6.16) for injecting the foreground in the data. We always use the same noise
model, e.g. the 3 parameter noise model, in both the data generation and the data analysis
pipelines, since it is not necessary to reconsider the case that leads to a misinterpretation of
the SGWB signal in the reconstruction for studying the impact of the galactic foreground.
In addition, we assume that we fully understand the galactic foreground characterization, so
we can use the same foreground model (6.16) in both the data generation and the analysis
pipelines. Note that the SGWBinner treats the GW foreground as an additional noise, so the
parameters of the foreground model are estimated in the same way as the parameters of the
noise model. All the data sets used in the following plots are generated by SGWBinner, in one
year duration, and 75% duty cycle.

First, for the data containing noise and galactic foreground only, we obtain a good re-
construction of the foreground by running SGWBinner with the MCMC global fit option, as
shown in figure 6.23. We also run the SGWBinner on this data set for 10 initial bins without the
MCMC option9, to confirm the conclusion of no fake signal detection, illustrated in figure 6.24.

9As mentioned in section 6.4.1, the MCMC (non-global fit) option does not work on noise-only data with
the perfect knowledge of noise (here the galactic foreground plays a role as an extra noise component).
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Figure 6.22: Result obtained by running SGWBinner with the MCMC option, starting from 17
initial bins, on data including noise and a double power law SGWB signal. The SciRD
noise model, characterized by 2 parameters (A,P ), is used in the data analysis, while we
use 3 parameters model for the data generation pipeline. Subfigure (a) is the reconstruction
plot showing the signal detection. From the 17 initial bins, the SGWBinner converges to 6
bins. Subfigure (b) presents the marginal probability distributions for the 2 noise parameters,
A,P , with the red dashed lines indicating the true values used in the data generation pipeline
presented in table 6.1. The injected value of the P parameter is out of range of the plot’s
axes. Subfigure (c) presents the contour plots showing the cross correlation between the two
parameters of the detected power law signals in every bin. The last contour plot corresponds
to the parameter estimation in bin 6, and is compatible with a null signal.
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(b) Triangle plot from parameter estimation

Figure 6.23: Reconstruction plot and triangle plot of the estimated parameters by running the
SGWBinner, with the MCMC global fit option, using the same noise (3 parameters) and
galactic foreground model in both the data generation and the data analysis pipelines.
Subfigure (a) is the reconstruction plot showing the absence of a fake SGWB signal detection,
in agreement with the fact that there is no injected signal, except the galactic foreground
in the data. Subfigure (b) is the triangle plot showing the cross correlation of all estimated
parameters. The true (injected) values used in the data generation pipeline are indicated by
the red dashed lines. The first two parameters corresponds to the search of a power law signal.
The log amplitude of the putative signal is compatible with zero. The other three ones are
related to the noise. The last parameter is the log amplitude of the galactic foreground.
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Figure 6.24: Reconstruction plot obtained by running the SGWBinner without the MCMC
option, for 10 initial bins, on data including noise and galactic foreground. The same noise
model, characterized by 3 parameters (A,P,C), and galactic foreground model, characterized
by 1 parameter log Ωfg ≡ Afg, is used in both the data generation and the data analysis
pipelines.

For the data including noise, galactic foreground and a SGWB signal, the data analysis
results of the SGWBinner remain good as in the case of data excluding the galactic foreground.

• As shown in figure 6.25, in the case of data including a broken power law signal (6.15),
the collection of the power law signals in all merged bins approximates well the broken
power law shape, except for the last merged bin where the instrumental noise highly
dominates over the signal. The noise and foreground parameters are estimated very well
by the SGWBinner reconstruction, since the true (injected) values of these parameters
are all within the 1σ regions around the best fit values, see subfigure 6.25b.

• We also inject a power law signal (6.13) in the data, and the analysis results from the
SGWBinner are presented in figure 6.26. We obtain a good reconstruction of the noise,
galactic foreground and SGWB signal. All the true values of the parameters lie in at
least 2σ the region around the best fit values.

• The final case is the double power law signal, as illustrated in figure 6.27. With this
SGWB injection, the signal reconstruction in the first bin (see subfigure 6.27a) does not
match to the injected signal. A reasonable explanation for this mismatch is the impact
of the galactic foreground. In the first bin, the contribution of the galactic foreground
is dominant, both over the instrumental noise and the SGWB signal. Hence, the un-
certainty of the parameter estimation for the foreground, probably from the confusion
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with instrumental noise, has an effect on the estimation result for the signal parame-
ters. Moreover, we see in subfigure 6.27b that the amplitude of test-mass acceleration
noise, A, is biased, since its true value lies outside of the 2σ region. The uncertainty on
the test-mass acceleration noise parameter also influences to the signal reconstruction
in the first bin. On the other hand, the signal in the second bin in subfigure 6.27a is
reconstructed to be compatible with the injected SGWB signal.
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(c) Contour plots for signal parameter estimation

Figure 6.25: Results obtained by running the SGWBinner with the MCMC option, starting
from 20 initial bins, on data including noise, galactic foreground and a broken power
law SGWB signal. The same 3-parameters noise model and 1-parameter galactic
foreground model are used in the data generation and data analysis pipeline. Subfigure
(a) is the reconstruction plot showing the signal detection. From the 20 initial bins, the
SGWBinner converges to 7 bins, for each of which a signal is detected as a power law. Subfigure
(b) presents the marginal probability distributions from the parameter estimation for the 3
noise parameters, A,P,C, and for the galactic foreground amplitude, log Ωfg ≡ Afg. The
red dashed lines indicate the true (injected) values used in the data generation pipeline (the
injected galactic foreground log amplitude is Afg ≈ −7.95, while the noise parameters are
given in table 6.1). Subfigure (c) presents the contour plots of the cross correlation between
the two parameters of a detected power law signal in every bin.
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Figure 6.26: Results obtained by running the SGWBinner with the MCMC option, starting
from 16 initial bins, on data including noise, galactic foreground and a power law SGWB
signal. The same 3-parameters noise model and 1-parameter galactic foreground
model are used in both the data generation and the data analysis pipelines. Subfigure (a) is
the reconstruction plot showing the signal detection. From the 16 initial bins, the SGWBinner
converges to a single bin where a power law signal is detected. Subfigure (b) is the triangle
plot showing the cross correlation of all parameters (signal and noise).



182 Chapter 6. SGWB data analysis with LISA

10 4 10 3 10 2 10 1

Frequency [Hz]

10 15

10 13

10 11

10 9

10 7

10 5

10 3

h2
G

W

Binned reconstruction (2 bins)

Data (used by the binner)
Analytic LISA sensitivity
LISA PLS 1.0y, 0.75% eff, SNR=10
Input signal
Reconstructed sensitivity
Reconstructed foreground
Reconstructed signal
Bin extremes
Foreground 1  region
Foreground 2  region
Signal 1  region
Signal 2  region

(a) Reconstruction plot

12.0 11.5
log10(h2 * ) (bin 1)

7.950

7.945

7.940

lo
g(

fg
)

4.45
4.46
4.47
4.48

C

8.955

8.960

8.965

8.970

P

2.40

2.42

2.44

A

2.9

3.0

n s
(b

in
2)

9.68

9.64

9.60

9.56

lo
g 1

0(
h

2
*)

(b
in

2)

4.4
4.2
4.0
3.8

n s
(b

in
1)

4.3 4.0 3.7
ns (bin 1)

9.65 9.60
log10(h2 * ) (bin 2)

2.9 3.0
ns (bin 2)

2.40 2.42 2.44
A

8.960 8.965
P

4.45 4.46 4.47 4.48
C

7.950 7.945
log( fg)

(b) Triangle plot

Figure 6.27: Result obtained by running the SGWBinner with the MCMC option, starting
from 12 initial bins, for data including noise, galactic foreground, and a double power
law SGWB signal. The same 3-parameters noise model and 1-parameter galactic
foreground model are used in both the data generation and the data analysis pipelines.
Subfigure (a) is the reconstruction plot showing the signal detection. From the 12 initial bins,
the SGWBinner converges to two bins, in each of which a power law signal is detected. Subfigure
(b) is the triangle plot showing the cross correlation among parameters (signal and noise). The
top plot of each column is the marginal probability distribution of each estimated parameter.
The true values used in the data generation pipeline are indicated by the red dashed lines.
The true values of signal amplitudes are out of range of the plot’s axes.



Chapter 7

Conclusion and Outlook

In this thesis, we first briefly reviewed Gravitational Waves (GWs) from the theoretical and the
experimental points of view. In addition, some GW sources have been presented, especially the
Stochastic Gravitational Wave Backgrounds (SGWBs). Some current and future GW detectors
and their detectable sources are also discussed. With several ground-based GW detectors,
scientists have discovered many astrophysical events in the recent years. We expect to observe
more interesting objects in the next decades, both of astrophysical and cosmological origin.
Therefore, the gravitational wave astronomy opens a new window to explore the Universe, its
cosmic history and fundamental physics.

Our study then focuses on the future space-based GW detector, Laser Interferometer Space
Antenna (LISA). This observatory is one of the most complex space missions, consisting of
three spacecraft, separated by 2.5 million kilometers, to observe GW sources in the milli-
hertz band. LISA uses laser interferometry to measure the tiny variations (about picometers)
of the proper distance between inertial test-masses hosted in the spacecraft when the GWs
pass through spacetime. The test-masses are kept in free-falling on their geodesics, while
the spacecraft follow them in drag-free motion. The laser beams are exchanged among the
spacecraft, going through a complex optical metrology system before their interferences are
recorded. Some critical subsystems in this complex measurement chain have been presented
in chapter 5. In addition, several dominant noises, which can influence LISA interferometric
measurements, are discussed.

The simulator LISANode has been developed to generate realistic LISA data to study the
instrument, the data measurement and processing chains and to provide the data, on which
to develop the data analysis pipelines. In this thesis, we introduced some implementations
contributing to the LISANode development, especially the model for correlated and nonstation-
ary noises. We also applied this implementation of the correlated noises for data generation,
which is used in the model validation of test-mass acceleration noise propagation, presented
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in section 4.4. In the future, we would like to study the impact of the nonstationary noise in
the data processing chain and data analysis results.

The raw measurement data in LISA are contaminated by instrumental noises, some of
which are much higher than the level of the detectable GW signal. Hence, a data processing
pipeline called Initial Noise-Reduction Pipeline (INREP) has been developed to suppress the
dominant noise sources and to provide variables for the data analysis steps. One of the crucial
blocks included in INREP is the Time Delay Interferometry (TDI) algorithm. The main goal
of this algorithm is to suppress the laser frequency noise, which is about 8 orders of magnitude
higher than the brightest GW signal which will hopefully be detected by LISA. We reviewed
the principle of TDI and some of its combinations in chapter 3. In addition, this technique
was applied to data generated with an electronic simulator, LISA-On-Table (LOT), to study
the laser frequency noise suppression. We analyzed the noise propagation in LOT and TDI
variables. The preliminary results show that we can reduce the laser frequency noise in the
LOT simulation data for some configurations. Further analyses are necessary to study the
effect of the electronic devices in the measurement chain, for a better understanding of LOT
and, therefore, of the design of LISA.

One of the main works performed in the thesis is to study the propagation of noise through
the LISA instrument, measurement chain and TDI algorithm, addressed in chapter 4. In
particular, we computed the analytical transfer functions in TDI Michelson combinations. In
addition, we examine some realistic LISA configurations such as laser locking schemes and
possible correlation scenarios in the noise propagation study. These analytical results are
validated with the LISANode simulator. Nevertheless, the statistical test of the validation
process needs to be improved, especially for the cross-spectral density. Furthermore, we want
to validate the noise propagation in other TDI combinations, for example AET, with simulated
data and to consider more blocks in INREP to study the propagation of noises.

The study of noise propagation contributed to the development of the LISA Performance
Model and noise budget, which are crucial to understand the impact of changes in the in-
strument design on the measurement data and hence the on science objectives of the LISA
mission. This study provides the basis for constructing a new noise model, which we can use
to analyze the data searching for a SGWB signal, as presented in chapter 6.

Besides, a study of LISA dynamics in the LISANode simulator has also been conducted in
this thesis. In particular, we modified the implementation of LISA Dynamics in the LISANode,
which accounts for the motion of the MOSAs. We also studied its impact on the performance
of the Drag-Free Attitude Control System (DFACS) to control the attitudes and positions of
the test-masses and spacecraft. The results presented in chapter 5, reveals the improvement
of the simulated result when we account for the breathing angle in the moving MOSAs case to
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have the same projections on sensitive axis for test-mass and spacecraft motions. However, the
residual relative motion between the test-mass and the spacecraft does not match the injected
test-mass acceleration noise, which implies that the implementation of LISA Dynamics needs
to be improved. In the future, we would like to add more correction terms in the equations
of motion and investigate other methods for solving the equation of motion of LISA dynamics
to address this problem.

In the chapter 6, we applied the result of the noise propagation study to develop a new
noise model to be adopted when searching for SGWBs. The data have been generated by
simulation tools, such as LISANode (in the time domain, however we did not inject any SGWB
signal in the data with this pipeline) and SGWB_data (in the frequency domain). We then
used the SGWBinner code to reconstruct the noise and the SGWB signal from the simulated
data. The data analysis method implemented in the SGWBinner is model-independent as far
as the signal is concerned, so we can apply it to the data containing arbitrary SGWB signals.
However, we found that the noise model used in data analysis needs to accurately represent
the one used for the data generation. The lack of noise knowledge, particularly of its spectral
shape or of the TDI transfer functions, can lead either to a fake detection of SGWB signals,
or to considerable uncertainties in the signal parameter estimation. In the future, we must
improve the data generation with LISANode in the time domain by including the SGWB signal,
since this is the more realistic data generation pipeline. In addition, we would like to develop
a more flexible data analysis tools to reconstruct both the SGWB signal and the noise being
agnostic on both their spectral shapes because, in practice, the LISA noises will not be fully
characterized.
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ADC Analog-to-Digital Converter

AIC Akaike Information Criterion

AOM acousto-optic modulator

ASD amplitude spectral density

BSM Beyond Standard Model

CIC Cascaded Integrator–Comb

CMB Cosmic Microwave Background

CSD Cross Spectral Density

DAC Digital-to-Analog Converter

DDS Direct Digital Synthesizer

DECIGO DECi-hertz Interferometer Gravitational wave Observatory

DFACS Drag-Free Attitude Control System

DLL delay-locked loop

DPLL digital phase locked loop

DWS differential wavefront sensing

EM electromagnetic

EMRIs extreme mass-ratio inspiral

EoM Equations of Motion

EOM Electro-Optical Modulator
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ESA European Space Agency

FDS Frequency Distribution System

GBs Galactic Binaries

GRS Gravitational Reference Sensor

GW Gravitational Wave

IFO Interferometer

INDIGO Indian Initiative in Gravitational-wave Observations

INREP Initial Noise-Reduction Pipeline

IPTA International Pulsar Timing Array

ISI Inter-Spacecraft Interferometer

KAGRA Kamioka Gravitational Wave Detector

LIGO Laser Interferemeter Gravitational Wave Observatory

LISA Laser Interferometer Space Antenna

LPF LISA Pathfinder

LOT LISA-On-Table

LSST Large Synoptic Survey Telescope

LUT look-up table

MCMC Markov-chain Monte Carlo

MOSA Moving Optical Sub-Assembly

MPR Measured Pseudo-Range

MPS Micro-Propulsion System

NCO numerically controlled oscillator

OB Optical Bench

OMS Optical Metrology System

OP optical path
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https://gwcenter.icrr.u-tokyo.ac.jp/en/
http://www.ligo.caltech.edu/
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PA phase accumulator

PIR phase-increment register

PRN pseudo-random noise

PSD Power Spectral Density

QPD Quadrant photodiode

RF radio frequency

RFI Reference Interferometer

RIN Relative Intensity Noise

S/C spacecraft

SciRD Science Requirement Document

SGWB Stochastic Gravitational Wave Background

SGWBs Stochastic Gravitational Wave Backgrounds

SMBH supermassive black hole

SNR Signal-to-Noise Ratio

SOBH Stellar Origin Black Hole

TCB Barycentric Coordinate Time

TDI Time Delay Interferometry

TDIR Time Delay Interferometry Ranging

TM test mass, often proof mass

TMI Test Mass Interferometer

TT transverse-traceless

TTL Tilt-To-Length

USO ultra-stable oscillator

Virgo Virgo

https://www.cosmos.esa.int/documents/678316/1700384/SciRD.pdf/25831f6b-3c01-e215-5916-4ac6e4b306fb?t=1526479841000
https://www.virgo-gw.eu/
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