159 articles – 2000 Notices  [english version]
HAL : hal-00649342, version 1

Fiche détaillée  Récupérer au format
Astronomy and Astrophysics 531 (2011) A1
Constraining the structure of the planet-forming region in the disk of the Herbig Be star HD 100546
E. Tatulli1, M. Benisty2, F. Ménard1, P. Varniere3, C. Martin-Zaidi4, W.-F. Thi, C. Pinte4, F. Massi5, G. Weigelt, K.-H. Hofmann6, R.G. Petrov7
(2011)

Studying the physical conditions in circumstellar disks is a crucial step toward understanding planet formation. Of particular interest is the case of HD 100546, a Herbig Be star that presents a gap within the first 13 AU of its protoplanetary disk, that may originate in the dynamical interactions of a forming planet. We gathered a large amount of new interferometric data using the AMBER/VLTI instrument in the H- and K-bands to spatially resolve the warm inner disk and constrain its structure. Then, combining these measurements with photometric observations, we analyze the circumstellar environment of HD 100546 in the light of a passive disk model based on 3D Monte-Carlo radiative transfer. Finally, we use hydrodynamical simulations of gap formation by planets to predict the radial surface density profile of the disk and test the hypothesis of ongoing planet formation. The SED and the NIR interferometric data are adequately reproduced by our model. We show that the H- and K-band emissions are coming mostly from the inner edge of the internal dust disk, located near 0.24 AU from the star, i.e., at the dust sublimation radius in our model. We directly measure an inclination of $33^{\circ} \pm 11^{\circ}$ and a position angle of $140^{\circ} \pm 16^{\circ}$ for the inner disk. This is similar to the values found for the outer disk ($i \simeq 42^{\circ}$, $PA \simeq 145^{\circ}$), suggesting that both disks may be coplanar. We finally show that 1 to 8 Jupiter mass planets located at $\sim 8$ AU from the star would have enough time to create the gap and the required surface density jump of three orders of magnitude between the inner and outer disk. However, no information on the amount of matter left in the gap is available, which precludes us from setting precise limits on the planet mass, for now.
1 :  IPAG - Institut de Planétologie et d'Astrophysique de Grenoble
2 :  MPIA - Max Planck Institut für Astronomie
3 :  APC - UMR 7164 - AstroParticule et Cosmologie
4 :  LAOG - Laboratoire d'Astrophysique de Grenoble
5 :  LaMCoS - Laboratoire de Mécanique des Contacts et des Structures [Villeurbanne]
6 :  MPIFR - Max-Planck Institut für Radioastronomie
7 :  FIZEAU - Laboratoire Hippolyte Fizeau
APC - ADAMIS
Physique/Astrophysique/Astrophysique stellaire et solaire

Planète et Univers/Astrophysique/Astrophysique stellaire et solaire

Physique/Astrophysique/Planétologie et astrophysique de la terre

Planète et Univers/Astrophysique/Planétologie et astrophysique de la terre
Lien vers le texte intégral : 
http://fr.arXiv.org/abs/1104.0905