159 articles – 2000 Notices  [english version]
HAL : inria-00522937, version 2

Voir la fiche détaillée  BibTeX,EndNote,...
Workshop on High Performance Scientific Software (2011) 20
Versions disponibles
Spherical harmonic transform with GPUs
Ioan Ovidiu Hupca1, Joel Falcou2, Laura Grigori1, R. Stompor3

We describe an algorithm for computing an inverse spherical harmonic transform suitable for graphic processing units (GPU). We use CUDA and base our implementation on a Fortran90 routine included in a publicly available parallel package, S2hat. We focus our attention on the two major sequential steps involved in the transforms computation, retaining the efficient parallel framework of the original code. We detail optimization techniques used to enhance the performance of the CUDA-based code and contrast them with those implemented in the Fortran90 version. We also present performance comparisons of a single CPU plus GPU unit with the \s2hat code running on either a single or 4 processors. In particular we find that use of the latest generation of GPUs, such as NVIDIA GF100 (Fermi), can accelerate the spherical harmonic transforms by as much as 18 times with respect to S2hat executed on one core, and by as much as 5.5 with respect to S2hat on 4 cores, with the overall performance being limited by the Fast Fourier transforms. The work presented here has been performed in the context of the Cosmic Microwave Background simulations and analysis. However, we expect that the developed software will be of more general interest and applicability.
1 :  INRIA Saclay - Ile de France - GRAND-LARGE
2 :  LRI - Laboratoire de Recherche en Informatique
3 :  APC - UMR 7164 - AstroParticule et Cosmologie
Informatique/Calcul parallèle, distribué et partagé

Physique/Astrophysique/Cosmologie et astrophysique extra-galactique

Planète et Univers/Astrophysique/Cosmologie et astrophysique extra-galactique
Liste des fichiers attachés à ce document :
RR-7409.pdf(1.2 MB)