680 articles – 6867 references  [version française]
HAL: hal-00718181, version 1

Short view  Export this paper
Telomeres, age and reproduction in a long-lived reptile
Plot V., Criscuolo F., Zahn S., Georges J. Y.
PLoS ONE 7, 7 (2012) e40855 - http://hal.archives-ouvertes.fr/hal-00718181
Environmental Sciences
Life Sciences/Biodiversity/Populations and Evolution
Telomeres, age and reproduction in a long-lived reptile
Virginie Plot1, François Criscuolo1, Sandrine Zahn1, Jean Yves Georges1
1:  DEPE-IPHC - Département Ecologie, Physiologie et Ethologie
CNRS : UMR7178 – Université de Strasbourg
23, rue Becquerel 67087 Strasbourg Cedex 2
A major interest has recently emerged in understanding how telomere shortening, mechanism triggering cell senescence, is linked to organism ageing and life history traits in wild species. However, the links between telomere length and key history traits such as reproductive performances have received little attention and remain unclear to date. The leatherback turtle Dermochelys coriacea is a long-lived species showing rapid growth at early stages of life, one of the highest reproductive outputs observed in vertebrates and a dichotomised reproductive pattern related to migrations lasting 2 or 3 years, supposedly associated with different environmental conditions. Here we tested the prediction of blood telomere shortening with age in this species and investigated the relationship between blood telomere length and reproductive performances in leatherback turtles nesting in French Guiana. We found that blood telomere length did not differ between hatchlings and adults. The absence of blood telomere shortening with age may be related to an early high telomerase activity. This telomere-restoring enzyme was formerly suggested to be involved in preventing early telomere attrition in early fastgrowing and long-lived species, including squamate reptiles. We found that within one nesting cycle, adult females having performed shorter migrations prior to the considered nesting season had shorter blood telomeres and lower reproductive output. We propose that shorter blood telomeres may result from higher oxidative stress in individuals breeding more frequently (i.e., higher costs of reproduction) and/or restoring more quickly their body reserves in cooler feeding areas during preceding migration (i.e., higher foraging costs). This first study on telomeres in the giant leatherback turtle suggests that blood telomere length predicts not only survival chances, but also reproductive performances. Telomeres may therefore be a promising new tool to evaluate individual reproductive quality which could be useful in such species of conservation concern.

Publisher Public Library of Science
ISSN 1932-6203 
Article in peer-reviewed journal