version française rss feed
HAL : hal-00112987, version 3

Fiche détaillée  Récupérer au format
Journal of Mathematical Physics 49, 04 (2008) 042104
Versions disponibles :
Supersymmetry vs ghosts
Didier Robert1, Andrei. V. Smilga2

We consider the simplest nontrivial supersymmetric quantum mechanical system involving higher derivatives. We unravel the existence of additional bosonic and fermionic integrals of motion forming a nontrivial algebra. This allows one to obtain the exact solution both in the classical and quantum cases. The supercharges $Q, \bar Q$ are not anymore Hermitially conjugate to each other, which allows for the presence of negative energies in the spectrum. We show that the spectrum of the Hamiltonian is unbounded from below. It is discrete and infinitely degenerate in the free oscillator-like case and becomes continuous running from $-\infty$ to $\infty$ when interactions are added. Notwithstanding the absence of the ground state, there is no collapse, which suggests that a unitary evolution operator may be defined.
1 :  LMJL - Laboratoire de Mathématiques Jean Leray
2 :  SUBATECH - Laboratoire SUBATECH Nantes
Mathématiques/Physique mathématique

Physique/Physique mathématique

Physique/Physique des Hautes Energies - Théorie
Liste des fichiers attachés à ce document : 
phantom.pdf(278.7 KB)
phantom.ps(299.2 KB)