version française rss feed
HAL : hal-00187462, version 1

Fiche concise  Récupérer au format
Towards an inline reconstruction architecture for micro-CT systems.
Brasse D., Humbert B., Mathelin C., Rio M.-C., Guyonnet J.-L.
Physics in Medicine and Biology 50, 24 (2005) 5799-5811 - http://hal.archives-ouvertes.fr/hal-00187462
Sciences du Vivant/Biochimie, Biologie Moléculaire/Biologie moléculaire
Physique/Physique/Instrumentations et Détecteurs
Towards an inline reconstruction architecture for micro-CT systems.
David Brasse1, Bernard Humbert1, Carole Mathelin2, Marie-Christine Rio2, Jean-Louis Guyonnet1
1 :  IReS - Institut de Recherches Subatomiques
CNRS : UMR7500 – IN2P3 – Université Louis Pasteur - Strasbourg I – Cancéropôle du Grand Est
23 rue du Loess - BP 28 - 67037 Strasbourg Cedex 2
2 :  IGBMC - Institut de génétique et biologie moléculaire et cellulaire
CNRS : UMR7104 – INSERM : U596 – Université Louis Pasteur - Strasbourg I
I.G.B.M.C, Parc D'Innovation 1 Rue Laurent Fries - BP 10142 67404 ILLKIRCH CEDEX
Recent developments in micro-CT have revolutionized the ability to examine in vivo living experimental animal models such as mouse with a spatial resolution less than 50 microm. The main requirements of in vivo imaging for biological researchers are a good spatial resolution, a low dose induced to the animal during the full examination and a reduced acquisition and reconstruction time for screening purposes. We introduce inline acquisition and reconstruction architecture to obtain in real time the 3D attenuation map of the animal fulfilling the three previous requirements. The micro-CT system is based on commercially available x-ray detector and micro-focus x-ray source. The reconstruction architecture is based on a cluster of PCs where a dedicated communication scheme combining serial and parallel treatments is implemented. In order to obtain high performance transmission rate between the detector and the reconstruction architecture, a dedicated data acquisition system is also developed. With the proposed solution, the time required to filter and backproject a projection of 2048 x 2048 pixels inside a volume of 140 mega voxels using the Feldkamp algorithm is similar to 500 ms, the time needed to acquire the same projection.

Physics in Medicine and Biology (Phys Med Biol)
Publisher Institute of Physics: Hybrid Open Access
ISSN 0031-9155 (eISSN : 1361-6560)
Articles dans des revues avec comité de lecture

Algorithms – Animals – Imaging – Three-Dimensional – Lung – Mice – Radiographic Image Interpretation – Computer-Assisted – Tomography – X-Ray Computed