version française rss feed
HAL : hal-00286461, version 1

Fiche détaillée  Récupérer au format
The Rigorous Renormalization Group, Oberwolfach : Allemagne (2006)
A Non-trivial Fixed Point in a Three Dimensional Quantum Field Theory
P. K. Mitter1

We report on the rigorous construction of an analogue of the Wilson-Fisher fixed point in three dimensions. The model corresponds to a perturbation by a $\phi^4$ interaction of a Gaussian measure on scalar fields with a covariance depending on a real parameter $\epsilon$ in the range $0\le \epsilon \le 1$. For $\epsilon =1$ one recovers the covariance of a massless scalar field in ${\bf R}^3$. For $\epsilon =0$, $\phi^{4}$ is a marginal interaction. For $0\le \epsilon < 1$ the covariance continues to be Osterwalder-Schrader and pointwise positive. We consider the infinite volume critical theory with a fixed ultraviolet cutoff at the unit length scale and we prove that for $\epsilon > 0$, sufficiently small, there exists a non-gaussian fixed point (with one unstable direction) of the Renormalization Group iterations. We construct the stable critical manifold near this fixed point and prove that under Renormalization Group iterations the critical theories converge to the fixed point.
1 :  LPTA - Laboratoire de Physique Théorique et Astroparticules
Physique/Physique mathématique

Mathématiques/Physique mathématique

Physique/Physique des Hautes Energies - Théorie