s'authentifier
version française rss feed
HAL : hal-00333881, version 1

Fiche concise  Récupérer au format
Tristability in the Pendula Chain
Khomeriki R., Leon J.
Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 78 (2008) 057202 - http://hal.archives-ouvertes.fr/hal-00333881
Science non linéaire/Formation de Structures et Solitons
Physique/Matière Condensée/Mécanique statistique
Science non linéaire/Systèmes Solubles et Intégrables
Physique/Physique/Physique Classique
Tristability in the Pendula Chain
R. Khomeriki1, Jerome Leon ()2
1 :  Physics Department
Tbilisi State University
0128 Tbilisi
Géorgie
2 :  LPTA - Laboratoire de Physique Théorique et Astroparticules
http://www.lpta.in2p3.fr/
CNRS : UMR5207 – IN2P3 – Université Montpellier II - Sciences et techniques
Bât 13- 1er Et. - CC 070 Place Eugène Bataillon 34095 MONTPELLIER CEDEX 5
France
Experiments on a chain of coupled pendula driven periodically at one end demonstrate the existence of a novel regime which produces an output frequency at an odd fraction of the driving frequency. The new stationary state is then obtained on numerical simulations and modeled with an analytical solution of the continuous sine-Gordon equation that resembles a kink-like motion back and forth in the restricted geometry of the chain. This solution differs from the expressions used to understand nonlinear bistability where the synchronization constraint was the basic assumption. As a result the short pendula chain is shown to possess tristable stationary states and to act as a frequency divider.
Anglais
20/10/2008

Physical Review E: Statistical, Nonlinear, and Soft Matter Physics
internationale
Articles dans des revues avec comité de lecture
12/11/2008
78
057202

nonlinear dynamical systems – numerical analysis – sine-Gordon equation – synchronisation
PACS numbers: 05.45.-a,05.45.Yv, 73.43.Lp
4 pages -
08-062

Lien vers le texte intégral : 
http://fr.arXiv.org/abs/0810.3621