version française rss feed
HAL : hal-00360707, version 1

Fiche détaillée  Récupérer au format
Annals of the University of Craiova Physics AUC (ISSN - 1223 - 6039) 18 (2008) 26
Weyl calculus and Noether currents: An application to cubic interactions
X. Bekaert1, E. Joung2, J. Mourad2

Cubic couplings between a complex scalar field and an infinite tower of symmetric tensor gauge fields of each rank are investigated. A symmetric conserved current, bilinear in a free scalar field and containing r derivatives, is provided for any rank r>0 and is related to the corresponding rigid symmetry of Klein-Gordon's Lagrangian. Following Noether's method, the scalar field interacts with the tensor gauge fields via minimal coupling to the conserved currents. The corresponding cubic vertex is written in a very compact form by making use of Weyl's symbols. This enables the explicit computation of the non-Abelian gauge symmetry group, the four-scalar elastic scattering tree amplitude and the lower orders of the effective actions arising from integrating out either the scalar or the gauge fields. The tree scattering amplitude corresponding to the current exchanges between two scalar particles exhibits an exponential fall-off in the high-energy limit.
1 :  LMPT - Laboratoire de Mathématiques et Physique Théorique
2 :  APC - UMR 7164 - AstroParticule et Cosmologie
Physique/Physique des Hautes Energies - Théorie
Liste des fichiers attachés à ce document : 
L2Bekaert.pdf(266.2 KB)