version française rss feed
HAL : hal-00420854, version 1

Fiche détaillée  Récupérer au format
Journal of Physics A Mathematical and Theoretical 43, 8 (2010) 085207
Kowalevski's Analysis of the Swinging Atwood's Machine.
Olivier Babelon1, Michel Talon1, Michel Capdequi-Peyranere2

We study the Kowalevski expansions near singularities of the swinging Atwood's machine. We show that there is a infinite number of mass ratios $M/m$ where such expansions exist with the maximal number of arbitrary constants. These expansions are of the so--called weak Painlevé type. However, in view of these expansions, it is not possible to distinguish between integrable and non integrable cases.
1 :  LPTHE - Laboratoire de Physique Théorique et Hautes Energies
2 :  LPTA - Laboratoire de Physique Théorique et Astroparticules
Physique/Physique mathématique

Physique/Physique des Hautes Energies - Théorie
Systèmes dynamiques – Intégrabilité – Critère de Kowalevski-Painlevé
Lien vers le texte intégral : 
Liste des fichiers attachés à ce document : 
atwood.pdf(471.3 KB)
atwood.ps(758.3 KB)